物理学前沿论文
物理学前沿问题研究论文

物理学前沿问题研究论文摘要:从简单的自然规律出发,推导出了宇宙的诞生、万有引力、万有斥力的、物质的构造形式、原子核的放射性、低温超导现象、同位素等之间有着内在的必然的联系。
合理的解释了时间的不可逆性、电磁力的产生、太阳系的起源、原子构造、原子核放射性规律、重核元素构造等。
其中有许多的新观点和新思维,对拓宽视野,推进物理学的开展很有好处。
关键词:万有引力万有斥力宇宙低温超导原子构造同位素放射性太阳系的起源1.万有引力和万有斥力弹簧振子作往复振动,压缩时,弹簧产生一个向外伸展的弹力;拉长时,产生一个向内拉伸的弹力;平衡位置时,弹簧不产生弹力。
如同弹簧振子,对于宇宙,也具有类似的特性。
现代天文学发现,当今宇宙正好处在“拉伸”的状态,正在向着要收缩的趋势开展.既使宇宙今天仍在膨胀,总有一天,整个宇宙将会膨胀到终极点后再向内收缩.这就是为什么现在存在万有引力的原因。
根据对称性原理,宇宙在特定的条件下会产生万有斥力,当宇宙收缩且通过其平衡位置(即万有引力和万有斥力的临界点)时,宇宙中的所有物体就开场相互排斥.但由于宇宙的巨大惯性,仍将在其惯性的作用下抑制物质间的万有斥力继续收缩,直到所有宏观宇宙动能转换为物质间的万有斥力为止.这时宇宙成了原始宇宙蛋,这时宇宙的体积最小。
在这宇宙的整个宏观运动过程中,宇宙的运动动能和势能(引力势和斥力势)相互转换.当宇宙收缩到极点时,宇宙的引力势能释放殆尽,这时宇宙的万有斥力势能积蓄到最大值,物质间的万有排斥力到达顶峰,宇宙瞬时静止.紧接着宇宙又开场反方向将宇宙万有斥力势能逐步释放转变为宇宙动能,当到达平衡位置时,其斥力势能释放完毕,引力势能开场诞生并发挥作用.在引力势和斥力势的临界点(即平衡位置)的一瞬间,宇宙中的物质不受斥力和引力的作用,这时宇宙的膨胀速度到达最大值,通过平衡位置后,宇宙引力势能的逐渐积累,导致宇宙的膨胀速度缓慢降低.由于宇宙巨大的惯性作用,将继续膨胀,宇宙动能慢慢转变为宇宙引力势能,当宇宙动能完全转变为引力势能时,宇宙将停顿膨胀,这时宇宙膨胀体积到达最大,其引力势能的积累也到达最大,宇宙将有一个瞬间的静止.紧接着,宇宙又在强大的引力势能的作用下开场收缩,又将其积累的引力势能转变为宇宙动能.如此往复,以至无穷.在宇宙膨胀(或收缩)的不同时期,万有引力(或斥力)的大小是不相同的,且呈周期性变化.宇宙的膨胀(或收缩)的周期对人类来说大得惊人.人类历史与宇宙运动周期相比,仅相当于其中的一个极小极小极小的点.所以人类无法用实验或观察的方法进展验证。
物理学专业优秀毕业论文范本量子纠缠在量子通信中的应用研究

物理学专业优秀毕业论文范本量子纠缠在量子通信中的应用研究摘要:本文旨在研究量子纠缠在量子通信中的应用,并探讨它在物理学领域中的重要性。
通过深度分析量子纠缠的原理、性质及其在量子通信中的应用案例,展示了量子纠缠对于未来通信技术发展的巨大潜力。
本研究对理解和推动量子通信领域的进一步发展具有重要的参考意义。
1. 引言量子通信作为一项前沿技术,引起了广泛的关注。
在传统通信中,信息的传递是通过传统的电子载流子进行的,而在量子通信中,利用光子进行通信的方式,具有更高的安全性和传输效率。
量子纠缠作为量子信息科学中的关键技术之一,被广泛应用于量子通信系统中,本文将对其进行深入研究,并探讨其在量子通信中的应用。
2. 量子纠缠的原理与性质量子纠缠是指两个或多个量子系统之间存在相互联系,无论它们之间的距离有多远,一旦一个系统的量子态发生改变,其他系统的态也会瞬间发生改变,即所谓的“纠缠”。
这种相互联系并不受到时空距离的限制,被大量应用于量子通信中。
量子纠缠具有非局域性、不可克隆性和不可分割性等独特的性质,这些性质使得量子纠缠成为了保障信息传输安全性的理想选择。
3. 量子纠缠在量子通信中的应用案例3.1 量子密钥分发量子纠缠可用于量子密钥分发(QKD),这是一种基于量子力学原理的安全通信方案。
通过量子纠缠的特性,发送方可以将量子密钥传递给接收方,实现信息的安全传输。
量子纠缠的应用使得密钥分发过程更加安全可靠,有效地防止了信息的窃取和篡改。
3.2 量子隐形传态量子隐形传态是一种将量子态从发送方传输到接收方的方法,通过量子纠缠,可以实现以较高的传输效率和保真度传输量子态。
量子隐形传态技术的应用,不仅可以用于信息传输,还可以用于远程量子计算和量子密码等领域。
3.3 量子远程态准备量子远程态准备是指将一个特定的量子态从发送方传输到接收方,通过量子纠缠的特性,可以实现远程态的准备。
这种技术在量子通信网络中起到了关键作用,为实现复杂的量子信息处理提供了重要的手段。
物理学论文(5篇)

物理学论文(5篇)物理学论文(5篇)物理学论文范文第1篇本文提出的针对于理论物理教学与实践的探究方案,是遵循微观到宏观,理论讨论到详细实践,单体到多体的挨次绽开的,一共包括三个学问单元,它们是统计物理,量子力学和固体物理。
为了使得同学充分把握理论物理学问,我们需要结合教材中原有的三个单元的学问体系,改善原有体系中学问的规律性,合理支配各个学问的所占比例,以帮助同学循序渐进的把握学问点。
热力学和统计物理学主要是讨论宏观物体。
宏观物体主要是由微观粒子组成,因此,在这个学问单元里面,我们依照宏观到微观的挨次绽开讲解,并遵循统计学和宏观物体的联系。
以一般物理学为背景,循序渐进,引入量子统计理论,渐渐激发同学对量子力学的学习爱好。
由此引出其次个学问单元。
量子力学学问单元。
在其次个学问单元里面,我们首先讲解单原子分子量子理论,渐渐引入到多原子分子量子理论,最终引出第三个学问单元——固体物理。
在第三个学问单元里面,先讲解理论,在注意实践应用,引导同学实现创新。
这样,三个学问单元相互联系,前后连接,最终贯穿成为一个整体,赐予同学整体上对于理论物理学的学问。
二、理论教学与实践教学相结合物理理论较为抽象,即便是来源于详细的事例,同学学习起来也具有肯定的困难。
因此,在理论物理的教学中,需要引导同学从感性上熟悉物理现象和物理过程。
培育同学的感性熟悉,一方面可以从同学的日常生活中着手,另一方面可以引导同学从物理试验中不断培育。
本质与非本质的熟悉影响着同学对物理概念的熟悉,因此同学熟悉物理规律会有肯定的困难。
物理试验能够供应给同学最详细、最直观的感性熟悉,由于这些出来的物理试验,是最通俗易通,简明扼要表达物理理念的感性材料。
与生活中的现实例子有所不同,物理试验也有自己的特点,例如:物理试验比较典型,可以代表肯定的物理现象;物理试验需要有动手操作,有肯定的趣味性;物理试验定性定量的表明白全面性。
同学通过物理试验,可以积累制造意识,同时可以帮助同学科学的讨论理论物理。
物理学领域的前沿研究和应用

物理学领域的前沿研究和应用物理学是自然科学中最古老、最基本、最深奥、最具有前沿性的一门学科,它的研究范围包括物质的结构、性质、运动、相互作用等方面。
在现代科学技术的发展中,物理学在各个领域都起着至关重要的作用。
本文将着重介绍物理学领域的前沿研究和应用。
一、量子计算量子计算是近年来物理学领域的一个热门研究方向。
传统的计算机使用的是经典比特,量子计算则使用量子比特,可以通过量子纠缠等量子现象进行快速计算,解决经典计算机不能解决的复杂问题。
目前,各国政府和科学机构已经投入大量人力、物力和财力来研究量子计算的理论和实践问题,并取得了一些重要进展。
在量子计算的研究中,制备和操控量子比特是一个关键问题。
利用超导材料制备的固态量子比特有望在量子计算领域发挥重要作用。
此外,利用光学和原子物理技术制备的离子量子比特以及超冷原子间的量子纠缠也是研究的热点之一。
量子计算将会在安全通信、密码学、化学计算等领域产生重要的影响。
例如,在高效模拟微观粒子的动力学过程、分子合成反应的机制、制药过程等方面,量子计算都将能够得到广泛应用。
二、宇宙学宇宙学是研究宇宙的起源、演化及其性质的一门学科。
随着现代天文观测技术的发展,宇宙学已成为物理学领域的前沿研究方向之一。
宇宙学的研究将帮助我们更深入地了解宇宙,并为宇宙中各种现象的出现和演化提供科学依据。
宇宙学的研究涉及到宇宙的大尺度结构、宇宙演化史、宇宙中的物质和能量分布等方面。
其中,暗物质和暗能量的研究备受关注。
暗物质是指在宇宙中占主导地位的物质,它不发光也不通过电磁波与普通物质相互作用,但通过引力影响着宇宙的演化。
暗能量是指在宇宙中占据主导地位的一种物质,它的存在是为了解释宇宙膨胀加速的现象。
随着大型科学项目的推进,珂朵莉天空巡天、天琴计划等将会有更多重大发现。
这些项目将为我们提供更全面和深刻的宇宙观测数据,有助于推动宇宙学研究向更深入的方向发展。
三、新材料新材料研究是物理学领域的常青课题。
大学物理论文3000字(精选5篇)

⼤学物理论⽂3000字(精选5篇) ⽆论是在学习还是在⼯作中,⼤家都尝试过写论⽂吧,借助论⽂可以达到探讨问题进⾏学术研究的⽬的。
你知道论⽂怎样写才规范吗?下⾯是⼩编收集整理的⼤学物理论⽂3000字(精选5篇),希望能够帮助到⼤家。
⼤学物理论⽂篇1 摘要: 电磁运动是物质的⼜⼀种基本运动形式,电磁相互作⽤是⾃然界已知的四种基本相互作⽤之⼀,也是⼈们认识得较深⼊的⼀种相互作⽤。
在⽇常⽣活和⽣产活动中,在对物质结构的深⼊认识过程中,都要涉及电磁运动。
因此,理解和掌握电磁运动的基本规律,在理论上和实际上都有及其重要的意义,这也就是我们所说的电磁学。
关键词: 电磁学,电磁运动 1.库伦定律 17xx年法国物理学家库伦⽤扭秤实验测定了两个带电球体之间的相互作⽤的电⼒。
库伦在实验的基础上提出了两个点电荷之间的相互作⽤的规律,即库仑定律: 在真空中,两个静⽌的点电荷之间的相互作⽤⼒,其⼤⼩和他们电荷的乘积成正⽐,与他们之间距离的⼆次⽅成反⽐;作⽤的⽅向沿着亮点电荷的连线,同号电荷相斥,异号电荷相吸。
这是电学以数学描述的第⼀步。
此定律⽤到了⽜顿之⼒的观念。
这成为了⽜顿⼒学中⼀种新的⼒。
与驽钝万有引⼒有相同之处。
此定律成了电磁学的基础,如今所有电磁学,第⼀必须学它。
这也是电荷单位的来源。
因此,虽然库伦定律描述电荷静⽌时的状态⼗分精准,单独的库伦定律却不容易,以静电效应为主的复印机,静电除尘、静电喇叭等,发明年代也在1960以后,距库伦定律之发现⼏乎近两百年。
我们现在⽤的电器,绝⼤部份都靠电流,⽽没有电荷(甚⾄接地以免产⽣多余电荷)。
也就是说,正负电仍是抵消,但相互移动。
──河中没⽔,不可能有⽔流;但电线中电荷为零,却仍然可以有电流! 2.安培定律 法国物理学家安培(Andre Marie Ampere, 1775-1836)提出:所有磁性的来源,或许就是电流。
他在18xx年,听到奥斯特实验结果之后,两个星期之内,便开始实验。
物理学专业优秀毕业论文范本量子力学中的量子纠缠与量子通信研究

物理学专业优秀毕业论文范本量子力学中的量子纠缠与量子通信研究在物理学专业中,量子力学是一个重要的研究领域。
量子力学中的一个重要概念就是量子纠缠,它是描述微观粒子之间的相互关系和相干性的基本性质。
本文将探讨量子纠缠在量子通信中的应用,并以优秀的毕业论文范本的形式进行论述。
第一部分:引言量子力学是描述微观世界的理论框架,它在过去几十年里取得了巨大的突破,并引发了众多颠覆性的科技创新。
其中,量子纠缠是量子力学中一个重要的现象,它描述了量子系统之间的非经典相关性。
量子纠缠的应用在量子通信领域具有重要意义。
第二部分:量子纠缠的概念与原理量子纠缠是指处于某个纯态的量子系统的多粒子状态无法被分解为单个粒子态的一个重要现象。
它表征了粒子间的相互依赖关系,即使这些粒子远离彼此,它们的状态仍然是密切相关的。
量子纠缠可以通过数学形式表示,例如贝尔态、GHZ态等。
量子纠缠的原理是量子力学的基本规律之一,它为量子通信的实现提供了理论基础。
第三部分:量子纠缠在量子通信中的应用1. 量子隐形传态量子纠缠在量子通信中的一个重要应用是量子隐形传态。
量子隐形传态是指利用量子纠缠将一个未知量子态传输给另一个空间位置上的粒子,而不需要将原有粒子本身传输过去。
这种传输方式在传统通信中是不可实现的,但在量子通信中可以通过量子纠缠的特性实现。
2. 量子密钥分发量子纠缠还可以用于实现安全的量子密钥分发。
传统的密钥通信方式容易受到窃听和破解的威胁,而利用量子纠缠的量子密钥分发可以实现完全安全的信息传输。
通过量子纠缠,可以将密钥拆分成两部分,并在传输过程中进行对应的密钥检测,以确保密钥的安全性。
第四部分:量子纠缠与量子通信的实验验证为了验证量子纠缠在量子通信中的应用,科学家们进行了一系列的实验研究。
这些实验证明了量子纠缠在量子通信中的有效性和可行性。
例如,利用量子纠缠成功实现了量子隐形传态和量子密钥分发等关键技术,为后续的量子通信应用打下了坚实的基础。
物理科学论文(5篇)

物理科学论文(5篇)物理科学论文(5篇)物理科学论文范文第1篇(一)消退心理障碍许多同学一看到物理问题,就感觉心烦意乱,摸不着头脑。
有些题目文字一大堆,叙述的内容特别多,这样的问题不仅仅是在考验同学把握学问的水平,还是在考验同学的心理素养。
在面对这样的问题时,首先不要恐慌,更不要抗拒和躲避,我们应当英勇面对,用平常心去对待,就把它当成一个简洁的问题去看待,其实许多题目,当我们读完之后,会发觉,其实并不是那么简单,或许考察的正是最基础的那部分学问。
在平常的教学训练中,老师就可以有方案、有目的性地选取一些这样的题目进行分析,关心同学消退心理障碍。
(二)消退熟悉障碍高中物理就其学科特征而言,的确具有规律性、严谨性、系统性、理论性等特征,在教学中,我们需要向同学说明这些特征,让同学对物理有一个基础而全面的了解,但是,在教学过程中,我们肯定要谨记,不能一味地灌输给同学这些学问,假如我们只是过分地强调这些,只会让同学对物理学习产生恐惊心理,让他们可怕学习物理,甚至消失放弃学习物理的念头。
所以,我们在教学中,除了向同学阐述物理学科的特征外,更应当向同学介绍物理学科的趣味性和多面性,物理与我们的生活息息相关,在我们生活中,随处可见各种物理现象,这些现象,有些是好玩的,有些是奇妙的,物理这个大世界中还包括太多好玩、奇妙的东西,都需要我们一步步的去揭开,去解密,只有通过学习,我们才能了解到这些现象发生的本质,用这样的语言去为同学描述一个多彩物理大世界,消退他们的熟悉障碍。
二、高中物理教学设计的详细流程(一)课题引入———创设问题情境在高中物理教学设计方案中,第一步就是要进行有效的课前导入,教学一个新课题,会带给同学一些新奇感,激发同学的奇怪心理,基于此,我们可以采纳情境教学法,创设问题情境,以此来激发同学的求知欲,让同学带着问题去学习,去思索。
课前导入是特别关键的教学环节,这一环节的成效,直接影响整堂课的教学质量。
凝聚态论文

凝聚态物理前沿论文物理学前沿领域——凝聚态物理学凝聚态物理学是当今物理学最大也是最重要的分支学科之一。
据70 年代中期的调查统计,从60 年代末到80 年代末,获诺贝尔物理奖的人数中,从事凝聚态研究的人数,超过了研究粒子物理的人数,接近总人数的一半,也居首位。
凝聚态物理学得以迅猛发展,首先表现在其研究对象的开拓上。
在由原来传统的三维周期性结构,向着低维甚至非周期结构的发展中,所涉及到的理论也逐渐地趋于深化与成熟,从30 年代的晶体结构分析的唯象理论与固体的比热理论、金属自由电子论和铁磁性理论,发展到30 年代后的能态理论、电子衍射和X 射线衍射的动力学理论,以及点阵动力理论。
60 年代以后,在凝聚态物理学中,对称性破缺理论又占据了中心地位。
以它为基础,建立了能态、元激发、缺陷及临界区域四个层次。
与之相应,各种有序态的序参量、广义刚度、标度不变性、自相似结构等一系列新的概念随之诞生。
此外,大量非线性课题相继出现,使凝聚态物理不仅在深度及广度上冲破了传统固体物理学,而且向着更深层次与更大的范围蓬勃发展。
其中一项非常重要的新型研究就是硅原子纳米线的生长,可以通过这种方式在半导体硅表面精确制造磁性结构,有重要意义.本文中将通过对PRL上硅表面单原子纳米线研究的相关论文Above room temperature ferromagnetism in Mn-ion implanted Si与Magic Monatomic Linear Chains for Mn Nanowire Self-Assembly on Si(001)的研究,解读利用第一性原理研究归纳米线生长的方式,.利用第一性原理研究各种直径和生长方向的氢钝化硅纳米线的能量相对稳定性和机械性能。
为了比较硅纳米线的物理性质和理解在某些方向优先生长的原因,研究了沿着[100],[110],[111],[112]结晶取向生长的纳米线。
第一性原理(First Principle):广义的第一性原理计算指的是一切基于量子力学原理的计算;物质由分子组成,分子由原子组成,原子由原子核和电子组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理学前沿论文
—对核能应用与核安全的体会
核能理论基础
19世纪末英国物理学家汤姆逊发现了电子。
1895年德国物理学家伦琴发现了X射线。
1896年法国物理学家贝克勒尔发现了放射性。
1898年居里夫人与居里先生发现新的放射性元素钋。
1902年居里夫人经过三年又九个月的艰苦努力又发现了放射性元素镭。
1905年爱因斯坦提出质能转换公式。
1914年英国物理学家卢瑟福通过实验,确定氢原子核是一个正电荷单元,称为质子。
1935年英国物理学家查得威克发现了中子。
1938年德国科学家奥托·哈恩用中子轰击铀原子核,发现了核裂变现象。
简介
利用核反应堆中核裂变所释放出的热能进行发电的方式。
它与火力发电极其相似。
只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。
除沸水堆外(见轻水堆),其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。
沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的过饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。
核能发电利用铀燃料进行核分裂连锁反应所产生的热,将水加热成高温高压,利用产生的水蒸气推动蒸汽轮机并带动发电机。
核反应所放出的热量较燃烧化石燃料所放出的能量要高很多(相差约百万倍),比较起来所以需要的燃料体积比火力电厂少相当多。
核能发电所使用的的铀235纯度只约占3%-4%,其馀皆为无法产生核分裂的铀238。
发电过程
核能→水和水蒸气的内能→发电机转子的机械能→电能。
优点
1.核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。
2.核能发电不会产生加重地球温室效应的二氧化碳。
3.核能发电所使用的铀燃料,除了发电外,暂时没有其他的用途。
4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运
输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。
5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。
6.核能发电实际上是最安全的电力生产方式.相比较而言,在煤炭、石油和天然气的开采过程中,爆炸和坍塌事故已杀死了成千上万的从业者。
缺点
1.核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政治困扰。
2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境中,故核能电厂的热污染较严重。
3.核能电厂投资成本太大,电力公司的财务风险较高。
4.核能电厂较不适宜做尖峰、离峰之随载运转。
5.兴建核电厂较易引发政治歧见纷争。
6.核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界环境,会对生态及民众造成伤害。
未来展望
1.海洋核能是人类最具希望的未来能源。
人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。
重元素的裂变技术,己得到实际性的应用;而轻元素聚变技术,也正在积极研制之中。
可不论是重元素铀,还是轻元素氘、氚,在海洋中都有相当巨大的储藏量。
60年代起,日本、英国、联邦德国等先后着手研究从海水中提取铀,并且逐渐建立了从海水中提取铀的多种方法。
其中,以水合氧化钛吸附剂为基础的无机吸附方法的研究进展最快。
评估海水提铀可行性的依据之一是一种采用高分子粘合剂和水合氧化钻制成的复合型钛吸附剂。
海水提铀已从基础研究转向开发应用研究的阶段。
日本已建成年产10千克铀的中试工厂,一些沿海国家也计划建造百吨级甚至千吨级工业规模的海水提铀厂。
2.月球核能,早在20世纪60年代末和70年代初,美国阿波罗飞船登月时,6次带回368.194千克的月球岩石和尘埃。
科学家将月球尘埃加热到3000华氏度时,发现有氦等物质。
经进一步分析鉴定,月球上存在大量的氦-3。
科学家在进行了大量研究后认为,采用氦-3的聚变来发电,会更加安全。
有关专家认为,氦-3在地球上特别少,但是月球上很多,光是氦-3就可以为地球开发1万-5万年用的核电。
地球上的氦-3总量仅有10-15吨,可谓奇缺。
但是,科学家在分析了从月球上带回来的月壤样品后估算,在上亿年的时间里,月球保存着大约5亿吨氦-3,如果供人类作为替代能源使用,足以使用上千年。
核能安全
当今,全世界几乎16%的电能是由441座核反应堆生产的,而其中有9个国家的40%多的能源生产来自核能。
在这一领域,国际原子能机构作为隶属联合国大家庭的一个国际机构,对和平利用、开发原子能的活动积极加以扶持,并且为核安全和环保确立了相应的国际标准。
国际原子能机构的作用相当于一个在核领域进行科技合作的政府间中心论坛。
作为一个协调中心,该机构的设立便于在核安全领域交换信息、制订方针和规范以及应有关政府之要求提供如何加强核反应堆安全和避免核事故风险的方法。
国际原子能机构还在旨在确保核技术的运用以求可持续发展的国际努力中扮演重要作用。
随着各国的核能计划增多,公众日益关注核安全问题,国际原子能机构在核安全领域的职责也扩大了。
为此,国际原子能机构制订了辐射防护基准标准,并就特定的业务类型颁布了有关条例和业务守则,其中包括安全运送放射性材料方面的条例和业务守则。
核电的弱点
核电站在一般人的眼中都是非常坚固的目标。
在美国,核电站由使用电子监控的两排高高地围墙包围,在核电站附近还有许多武装警卫巡逻。
核管理委员会对核电站设计时所考虑到的威胁级别是保密的,因此无法确切知道核电站能够防守多大的攻击力量。
而且核电站紧急关闭仅须少于五秒钟,而重启过程则需要若干小时,这也可以严重牵制以释放放射性物质为目的的恐怖力量。
在九一一袭击事件以后,对核电站的空中打击成为了一个重要问题。
但是,其实在1972年,就有三名劫机者劫持了沿美国东海岸飞行的南部航空49号航班,并威胁要将飞机追毁于位于田纳西州的橡树岭核武器工厂。
在劫机者的要求得到满足以前,这架飞机距离工厂高度只有约2.5千米了。
如果核电站被空中打击,能够防止放射性物质泄露的最重要的保护就是它的遏制建筑和导弹防御系统。
目前的核管理委员会主席戴尔·克莱恩表示,“核电站自身拥有结实的结构,根据我们的研究,可以在假想的空中打击中提供足够的保护。
核管理委员会也要求核电站操作员有能力处理大火或爆炸事件,不论事件的起因是什么。
”
2010年9月,对震网计算机蠕虫的分析表明它的主要目的是破坏核电站。
这种网络攻击可以越过物理上的保安人员,直接对控制核电站的系统进行攻击,因此这个发现暴露了核电站的一个新的弱点。
严重核事故
严重的核事故于辐射事故包括切尔诺贝利核事故、吉斯亭灾难、苏联K-431核潜艇事故、苏联核潜艇K-19事故、白垩河核反应堆事故、温德斯格尔火灾、三哩岛核泄漏事故、哥斯达黎加放疗事故、萨拉戈萨放疗事故、戈亚尼亚事故、教堂岩铀矿石泄露、SL-1和福岛第一核电站事故等。
个人体会
核能自其为大众所知的那天起,就给人留下了极其恐怖的印象,美国投下的两颗原子弹也许就是一部分人对核能的全部认识。
而正是这种浅短的认识造成了民众对核能的恐惧,以至于对核能和平利用的恐惧,但在消除这种偏见的同时,我们却的确不应忽视核电事故带来的可怕后果和可能引起的严重灾难。
从之前日本福岛核事故的情况来看,虽说救援没有十分地不及时,但至少是有错过最佳救援时间的嫌疑。
造成这种状况的原因很多,主要是日本政府的行动力太差。
这种情况在我国当然不可能发生,因为我们政府拥有好几层的应急系统,可以果断地采取措施,能在很短的时间内集中大量的人力物力。
因此,在核安全方面,目前我们是交了一份合格的答卷,但这并不代表我们以后能一直保持这种状态,我们还有很多方面需要改进。
当然,以上的分析都是以处在以和平的状态为前提的条件下。
如果一旦发生战争,我们的核设施该如何保护,还是个需要仔细考虑的问题。
核电的任何问题在某种程度上都源于人为错误,核安全文化应作为一项基本管理原则加以推广,以防止和减少人因错误。
当每个人都致力于“减少或防止人为错误,充分发挥人的积极影响”这一核安全共同目标时,才能获得最高水平的核安全政府应通过推行核安全法规和标准、对核电厂运行实行严格的监督。
这样由政府部门对安全实行如此严格的监督和管理。
安全是核电的高压线,任何人不得触碰这条底线。
在这样一种情况下,核安全文化作为一项基本管理原则加以推广,提升全体对核安全的重视与关注,帮助我们形成正确的思维习惯和良好的工作作风,最大限度的提高安装质量和减少安全事故。