高中数学选修2-1课时作业1:1.1.2 四种命题

合集下载

高二数学上:选修2-1答案

高二数学上:选修2-1答案

高二数学上:选修2-1答案答案:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。

假。

7.若 $AB \neq B$,则 $AB \neq A$,真;8.3;9.原命题是真命题,则它的逆否命题是真命题。

10.略。

11.原命题真;逆命题:“已知 $\alpha,\beta \in \{x|x\neqk\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则 $\alpha=\beta$”假;否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则 $\tan\alpha\neq\tan\beta$”假;逆否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”真。

改写:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。

这是错误的。

7.若 $AB \neq B$,则 $AB \neq A$,这是正确的;8.3;9.原命题是真命题,则它的逆否命题也是真命题。

10.略。

11.原命题是真命题;逆命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则$\alpha=\beta$”是错误的;否命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则$\tan\alpha\neq\tan\beta$”是错误的;逆否命题:“已知$\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”是正确的。

高中数学选修2-1课时作业19:1.1.2 四种命题

高中数学选修2-1课时作业19:1.1.2 四种命题

1.1.2四种命题1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”2.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数3.命题“若x≠1,则x2-1≠0”的逆否命题的真假性为(填“真”或“假”).4.命题“若直线a,b不平行,则直线a,b相交”的逆命题是,这是命题.(填真或假)5.已知命题p:“若ac≥0,则一元二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题.(2)判断命题p的否命题的真假,并证明你的结论.——★参考答案★——1. B[解析]互逆命题的条件与结论的位置是互换的.故选B.2. B[解析]原命题的否命题既否定条件又否定结论.3. 假[解析]逆否命题为“若x2-1=0,则x=1”,显然此命题是假命题.4.若直线a,b相交,则直线a,b不平行真[解析]逆命题只需将原命题中的条件与结论互换即可,即逆命题为“若直线a,b相交,则直线a,b不平行”,此说法显然正确,是真命题.5.解:(1)命题p的否命题为:“若ac<0,则一元二次方程ax2+bx+c=0有实根”.(2)命题p的否命题是真命题.证明如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0,所以一元二次方程ax2+bx+c=0有实根,所以该命题是真命题.。

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.2

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.2

1.1.2四种命题【课时目标】 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的____________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的命题结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:__________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1 B.2 C.3 D.42.命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是()A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是____________________________;逆命题是_______;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.11.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.12.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【能力提升】13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2四种命题知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B[由a>-3⇒a>-6,但由a>-6 a>-3,故真命题为原命题及原命题的逆否命题,故选B.]2.C[先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题否命题:已知a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.11.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.12.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.13.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.] 14.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

人教A版数学选修2—11.1.1——1.1.2命题及四种命题

人教A版数学选修2—11.1.1——1.1.2命题及四种命题
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
“若p则q”情势的命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”的情势。 p
q
通常,我们把这种情势的命题中的p叫做命题的条 件,q叫做命题的结论。
“若p则q”情势的命题是命题的一种情势而不是 唯一的情势,也可写成“如果p,那么q” “只要p,就有 q”等情势。
┐p
┐q
为书写简便,常把条件p的否定和结论q的否定分别记作
“┐p” “┐q”
互否命题 原命题 (原命题的)否命题
原命题:若p,则q 否命题:若┐p,则┐q
例位如角,不命相题等“,同两位直角线相不等平,行两”直。线平行”的否原命否命题存命的在题题真相与是假关其“是性否同
呢?
视察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
不是(疑问句) 不是(疑问句) 不是(感叹句) 是(否定陈说句) 是(肯定陈说句) 不是(开语句)
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数(. 是,假) (3)指数函数是增函数吗?(不是命题)
(4)若平面上两条直线不相交,
问题1
思考?
下列语句的表述情势有什么特点?你能判断
它们的真假吗?
• (1) 若直线a//b,则直线a和直线b无公共点;
• (2) 2+4=7
语句都是陈说句,
• (3)垂直于同一条直线的两个平面平行;
• (4)若x2=1,则x=1; 并且可以判断真假。
• (5)两个全等三角形的面积相等;
• (6)3能被2整除.

高中数学选修2-1 1.1.2 四种命题课件

高中数学选修2-1  1.1.2  四种命题课件

结 论 1
原命题的真假和 逆命题的真假没有关 系。
二.四种命题的关系
2.互否命题的真假关系
判断下列否命题的真假,并总结规律。
原命题:若a>b,则a+c>b+c 否命题:若a≤b,则a+c≤b+c
真 真
原命题与其否 命题的真假是 否存在相关性 呢?
真 原命题:若四边形是正方形,则四边形两对角线垂直。 假 否命题:若四边形不是正方形,则四边形两对角线不垂直。
否命题与命题的否定
否命题是用否定条件也否定结论的方式 构成新命题。 命题的否定是逻辑联结词“非”作用于 判断,只否定结论不否定条件。 对于原命题: 若 p , 则 q 有 否命题: 若┐p , 则┐q 。 命题的否定: 若 p ,则┐q 。

一.四种命题的概念
分别写出下列命题。
3.知识巩固
p 4. 若f(x)不是周期函数,则f(x)不是正弦函数. ┐q
q
┐p
互为逆否命题 原命题 (原命题的)逆否命题
原命题: 若p, 则q 逆否命题: 若┐q, 则┐p
例如,命题“同位角相等,两直线平行”的逆否命题是 “两直线不平行,同位角不相等”。
三个概念
1、互逆命题:如果第一个命题的条件(或题设)是第二个 命题的结论,且第一个命题的结论是第二个命题的条件,那 么这两个命题叫互逆命题。如果把其中一个命题叫做原命题, 那么另一个叫做原命题的逆命题。 2、互否命题:如果第一个命题的条件和结论是第二个命题 的条件和结论的否定,那么这两个命题叫做互否命题。如果 把其中一个命题叫做原命题,那么另一个叫做原命题的否命 题。 3、互为逆否命题:如果第一个命题的条件和结论分别是第 二个命题的结论的否定和条件的否定,那么这两个命题叫做 互为逆否命题。

【人教A版】高中选修2-1数学:1.1.2-四种命题-教学课件

【人教A版】高中选修2-1数学:1.1.2-四种命题-教学课件
在两个命题中,如果第一个命题的条件是第二个命题的结论, 且第一个命题的结论是第二个命题的条件,那么这两个命题叫 做互为逆命题.
思考2
除了命题与逆命题之外,是否还有其它形式的命题? 答案 有.
梳理
名称
阐释
对于两个命题,如果一个命题的条件和结论分别是另一个命题 互逆 的 结论和条件,那么我们把这样的两个命题叫做互逆命题.其中
4.反证法与逆否证法的区别 (1)目的不同:反证法否定结论的目的是推出矛盾,而逆否证法否定结论 的目的是推出“綈p”(即否定条件); (2)本质不同:逆否证法实质是证明一个新命题(逆否命题)成立,而反证 法是把否定的结论作为新的条件连同原有的条件进行逻辑推理,直至推 出矛盾,பைடு நூலகம்而肯定原命题的结论.
反思与感悟
若原命题为真命题,则它的逆命题、否命题可能为真命题,也可能为假 命题. 原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆 否命题的两个命题的真假性相同. 在原命题及其逆命题、否命题、逆否命题中,真命题的个数要么是0, 要么是2,要么是4.
跟踪训练2 下列命题中为真命题的是 答案 解析
反思与感悟
由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其 他三种命题的定义,确定所写命题的条件和结论.
跟踪训练1 写出下列命题的逆命题、否命题、逆否命题. (1)实数的平方是非负数; 解答
逆命题:若一个数的平方是非负数,则这个数是实数. 否命题:若一个数不是实数,则它的平方不是非负数. 逆否命题:若一个数的平方不是非负数,则这个数不是实数.
类型三 反证法的应用
证明
反思与感悟
(1)求解此类含有“至少”“至多”等命题,常利用反证法来证明.用反 证法证明命题的一般步骤:①假设命题的结论不成立,即假设结论的反 面成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出 假设不正确,从而肯定命题的结论正确. (2)常见的一些词语和它们的否定词语对照如下:

人教A版高中数学选修2-1课件:1.1.2四种命题 精品

人教A版高中数学选修2-1课件:1.1.2四种命题 精品

定义
对于两个命题,如果一个命题的条 件和结论是另一个命题的结论和条件, 那么我们把这两个命题叫做互逆命题. 其中一个命题叫做原命题,另一个命题 叫做原命题的逆命题.
即如果原命题为“若p,则q” , 那么它的逆命题为“若q,则 p”.
例题
原命题:同位角相等,两直线平行. 条件:同位角相等, 结论:两直线平行.
它的逆否命题: 两直线不平行,同位角不相等.
探究
1.请举出一些逆否命题的例子,并判断 原命题与逆否命题的真假.
2.如果原命题是真命题,那么它的逆否 命题一定是真命题吗?
总结
• 原命题:
“若p,则 q”
• 它的逆命题: “若q,则 p”
• 它的否命题: “若¬p,则¬q”
• 它的逆否命题:“若¬q,则¬p”
• 例2 写出命题“若xy=0,则x=0或y =0” 的逆命题、否命题、逆否命题.
提示: ┓(p或q)=(┓p)且(┓q) ┓(p且q)=(┓p)或(┓q)
小结
• 若p为原命题的条件,q为原命题的结论,则 原命题:若p,则q 逆命题:若q,则p 否命题:若p,则q 逆否命题:若q,则p
课后作业
课本:P8 习题1.1A组 2
即 如 果 原 命 题 为 “ 若 p, 则 q” , 那么它的否命题为 “若¬p,则¬q”.
例题
原命题:同位角相等,两直线平行. 条件:同位角相等, 结论:两直线平行.
它的否命题: 同位角不相等,两直线不平行.
探究
1.请举出一些互否命题的例子,并判断 原命题与否命题的真假.
2.如果原命题是真命题,那么它的否命 题一定是真命题吗?
逆否命题:
若一个数的平方不是正数,则它不是负数.
(2)正方形的四条边相等.

人教版数学选修2—1作业本答案与提示

人教版数学选修2—1作业本答案与提示

人教版数学选修2—1作业本答案与提示第一章常用逻辑用语1.1.命题及其关系1.1.1命题1.1.2 四种命题1.C 2.C 3.D 4.若A不是B的子集,则A∪B≠B5.①6.逆7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中?若两条直线相交,则这两条直线不平行。

以上均为真命题9.若ab≠0,则a,b都不为零.真命题10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b <0,真命题.证明略11.甲1.1.3 四种命题间的相互关系1.C 2.D 3.B 4.0个、2个或4个5.原命题和逆否命题6.若a+b是奇数,则a,b至少有一个是偶数;真7.逆命题:若a^2=b^2,则a=b.假命题.否命题:若a≠b,则a^2≠b^2.假命题.逆否命题:若a^2≠b^2,则a≠b.真命题8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a^2,b^2,c2也都是奇数,又a^2+b^2=c^2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数9.否命题:若a^2+b^2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题10.真┌(4a)2一4(一4a+3)<0,11.三个方程都没有实数根的情况为┤(a-1)2一4a2<0,=>-3/2<a<-l└4a2+8a<0所以实数a的取值范围a≥一l,或a≤-3/21.2 充分条件与必要条件1.2.1 充分条件与必要条件1.A 2.B 3.A 4.(1) ≠> (2) ≠> (3) ≠> (4)≠>5.充分不必要6.必要不充分7.“c≤d”是“e≤f”的充分条件8.充分条件,理由略9.一元二次方程ax^2+2x+l=0 (a≠0)有一个正根和一个负根的充要条件为a<0 10.m≥911.是1.2.2 充要条件1.C 2.B 3.D 4.假;真5.C和D 6.λ+μ=17.略8.a=-39.a≤l10.略11.q=-1,证明略1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.A 2.C 3.C 4.真5.①③6.必要不充分7.(1)p:2<3或q:2=3;真(2)p:1是质数或q:1是合数;假(3)非p,p:0∈φ;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真8,(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;┑p:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;┑p:4≤6,真9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-l 11.(5/2,+∞)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.D 2.C 3.(1)真(2)真4,③5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和6.若一个四边形为正方形,则这个四边形是矩形;全称;真7.(1)x,x^2≤0(2)对x,若6|x则3|x (3)正方形都是平行四边形8.(1)全称;假(2)特称;假(3)全称;真(4)全称;假9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假;p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真;┑p:所有实数的绝对值都不是正数,假10.(1)存在,只需m>一4即可(2)(4,+∞)11.a≥一21.4.3 含有一个量词的命题的否定1.C 2.A 3.C 4.存在一个正方形不是菱形5.假6.所有的三角形内角和都不大于180°7.(1)全称;┑p假(2)全称;┑p假(3)全称;┑p真8.(1)┑p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假⑵┑p: 所有的质数都是偶数;假(3)┑p:存在乘积为0的三个实数都不为0;假9.(1)假(2)真(3)假(4)真10.a≥311.(一√2,2)单元练习1.B 2.B 3.B 4.B 5.B 6.D 7.B 8.D 9.C 10.D11.5既是17的约数,又是15的约数:假12.[1,2)13.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角14.充要;充要;必要15.b≥0 16.既不充分也不必要17.①③④18.a≥319.逆命题:两个三角形相似,则这两个三角形全等;假;否命题:两个三角形不全等,则这两个三角形不相似;假;逆否命题:两个三角形不相似,则这两个三角形不全等;真;命题的否定:存在两个全等三角形不相似;假20.充分不必要条件21.令f(x) = x^2+(2k一1)x+k^2,方程有两个大于1的实数根┌ △=(2k2-1)-4k2≥0,<=>┤->1,即是k<-2,所以其充要条件为k<-2.└ f (1)>0,22.(-3,2]10.a√3/3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 四种命题
1.1.3四种命题间的相互关系
一、基础过关
1.若“x>y,则x2>y2”的逆否命题是()
A.若x≤y,则x2≤y2B.若x>y,则x2<y2
C.若x2≤y2,则x≤y D.若x<y,则x2<y2
[答案] C
[解析]由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.
2.命题“若a∉A,则b∈B”的否命题是()
A.若a∉A,则b∉B B.若a∈A,则b∉B
C.若b∈B,则a∉A D.若b∉B,则a∉A
[答案] B
[解析]命题“若p,则q”的否命题是“若綈p,则綈q”,“∈”与“∉”互为否定形式.
3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()
A.1 B.2 C.3 D.4
[答案] B
[解析]原命题显然为真命题,故其逆否命题为真命题,而其逆命题为“若a>-6,则a>-3”,这是假命题,从而否命题也是假命题,因此只有两个真命题.
4.“若x,y全为零,则xy=0”的否命题为.
[答案]若x,y不全为零,则xy≠0
[解析]由于“全为零”的否定为“不全为零”,所以“若x,y全为零,则xy=0”的否命题为“若x,y不全为零,则xy≠0”.
5.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有个.
[答案] 2
[解析]原命题为真命题,逆命题“当△ABC是等腰三角形时,AB=AC”为假命题,否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题,逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.
6.下列命题中:
①若一个四边形的四条边不相等,则它不是正方形;
②正方形的四条边相等;
③若一个四边形的四条边相等,则它是正方形.
其中互为逆命题的有;互为否命题的有;互为逆否命题的有.(填序号)
[答案]②和③①和③①和②
7.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.
(1)写出命题p的否命题;
(2)判断命题p的否命题的真假,并证明你的结论.
解(1)命题p的否命题为“若ac<0,则二次方程ax2+bx+c=0有实根.”
(2)命题p的否命题是真命题.
证明如下:
∵ac<0,
∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.
∴该命题是真命题.
二、能力提升
8.有下列四个命题:
①“若x+y=0,则x、y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤1,则x2+2x+q=0有实根”的逆命题;
④“不等边三角形的三个内角相等”的逆否命题.
其中真命题的序号为()
A.①②B.②③C.①③D.③④
[答案] C
[解析]命题①:“若x、y互为相反数,则x+y=0”是真命题;命题②:可考虑其逆命题“面积相等的三角形是全等三角形”是假命题,因此命题②是假命题;命题③:“若x2+2x+q=0有实根,则q≤1”是真命题;命题④是假命题.
9.已知原命题“两个无理数的积仍是无理数”,则:
(1)逆命题是“乘积为无理数的两数都是无理数”;
(2)否命题是“两个不都是无理数的积也不是无理数”;
(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;
其中所有正确叙述的序号是.
[答案](1)(2)
[解析]原命题的逆命题、否命题叙述正确.逆否命题应为“乘积不是无理数的两个数不都是无理数”.
10.给定下列命题:
①若k>0,则方程x2+2x-k=0有实数根;
②若x+y≠8,则x≠2或y≠6;
③“矩形的对角线相等”的逆命题;
④“若xy=0,则x、y中至少有一个为零”的否命题.
其中真命题的序号是.
[答案]①②④
[解析]①∵Δ=4-4(-k)=4+4k>0,∴①是真命题.
②其逆否命题为真,故②是真命题.
③逆命题:“对角线相等的四边形是矩形”是假命题.
④否命题:“若xy≠0,则x、y都不为零”是真命题.
11.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.
解逆命题:已知a,b∈R,若a>b,则a2>b2;
否命题:已知a,b∈R,若a2≤b2,则a≤b;
逆否命题:已知a,b∈R,若a≤b,则a2≤b2.
∵原命题是假命题,∴逆否命题也是假命题.
∵逆命题是假命题,∴否命题也是假命题.
12.判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.
解方法一(利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.
方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.
方法二(利用逆否命题)原命题的逆否命题为“若关于x的方程x2-2bx+b2+b=0无实根,则b>-1”.方程判别式为Δ=4b2-4(b2+b)=-4b,因为方程无实根,所以Δ<0,即-4b<0,所以b>0,所以b>-1成立,即原命题的逆否命题为真.
三、探究与拓展
13.已知函数f(x)在(-∞,+∞)上是增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”
(1)写出逆命题,判断其真假,并证明你的结论;
(2)写出逆否命题,判断其真假,并证明你的结论.
解(1)逆命题:若f(a)+f(b)≥f(-a)+f(-b),
则a+b≥0,为真命题.
由于逆命题与否命题具有相同的真假性,因此可转化为证明其否命题为真,即证明“若a +b<0,则f(a)+f(b)<f(-a)+f(-b)”为真命题.
因为a+b<0,则a<-b,b<-a.
因为f(x)在(-∞,+∞)上为增函数,
则f(a)<f(-b),f(b)<f(-a),
所以f(a)+f(b)<f(-a)+f(-b).
因此否命题为真命题,即逆命题为真命题.
(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),则a+b<0,为真命题.
因为一个命题的真假性与它的逆否命题的真假性相同,所以可证明原命题为真命题.因为a+b≥0,所以a≥-b,b≥-a.
又因为f(x)在(-∞,+∞)上是增函数,
所以f(a)≥f(-b),f(b)≥f(-a).
所以f(a)+f(b)≥f(-a)+f(-b).
所以逆否命题为真命题.。

相关文档
最新文档