各种恒流电路分析

合集下载

创维168P-P32DWM-40恒流板电路分析与维修

创维168P-P32DWM-40恒流板电路分析与维修

倒绻168P -P 32D W M -40恒流様电路分析与维修□贺学金创维168P -P 32D W M -40恒流板是一块独立 的L E D 背光驱动电路板,主要应用于创维 32E 360E 、32E 361W 、32E 360EY 等型 LED 液晶彩 电中。

创维168P -P 32D W M -40恒流板采用O Z 9902C G N 方案,为L ED 背光灯提供68V 左右的工作电压,其电路如图1所示。

该电路由三部分 组成,一是以〇Z 9902C G N ( ICB 100)为核心组成 的升压和恒流控制电路,二是以储能电感L 100、开关管Q B 1U 1、整流管BD 101、滤波电容C 101//C 102为核心组成的升压电路,将+24V 电压提升为LED 供电所需直流电压,为L ED 背光灯串正 极供电;三是以开关管Q B 102为核心组成的LED 灯串电流控制电路,对流过LED 背光灯串的电流 进行控制,达到调整背光灯亮度和稳定背光灯串电流的目的。

1.OZ 9902CGN 简介O Z 9902有两种封装:一种是24引脚封装,型号为O Z 99()2A 、O Z 9902G N ,这些1C 为双通道L ED 灯电流控制块;另一种是16引脚封装,型号C103调光控制信号P W M 波形12 Tvisionw w w.j w1989.c n APPL-IATSJCE F2E P A IT R I7SJG为OZ9902C G N,此IC为单通道LED灯电流控 制块。

创维168P-P32D W M-40恒流板采用的是 第二种,该芯片内含振荡器、升压驱动、背光灯电 流控制、保护电路。

功能特性是:可设计恒流驱动 和恒压驱动模式,可实现0~100%的P W M调光控 制,支持模拟线性调光模式;升压频率稳定(该频 率可设置),具有功率M O S管过流、输出对地短 路、灯条短路、输出过载、过流等保护功能。

多用恒流充电器电路设计及原理详解

多用恒流充电器电路设计及原理详解

多用恒流充电器电路设计及原理详解恒流充电器是一种能够提供恒定电流充电的电路设计。

它的设计原理是基于负反馈控制原理,在充电过程中,监测充电电流并通过负反馈控制电路来保持充电电流在设定值上的恒定。

恒流充电器主要由一个电源,一个负反馈控制电路和一个负载组成。

首先,电源供电的直流电通过一个电流调节元件输入到负载中。

这个电流调节元件可以是晶体管、电阻或者电流传感器等。

在这个电流调节元件的帮助下,可以将电池的电压稳定在一个设定值上,并通过校准元件进行校准。

接下来,负反馈控制电路对充电电流进行监测,并根据充电电流与设定值之间的差异来调节电流调节元件的导通电流。

负反馈控制电路可以采用运算放大器、比较器、反馈电路等元件,根据峰值检测、综合反馈等原理来实现电流的负反馈控制。

最后,负载通过电流调节元件获取相应的恒定电流进行充电。

当电池内部电压上升到设定的最大限制值时,充电过程停止。

这种恒流充电器可以确保电流稳定、电池充电效率高并且能够延长电池的使用寿命。

在恒流充电器的设计中,需要注意以下几个关键因素:1.充电电流设定值的选择:根据电池的特性和需求,选择一个合适的充电电流设定值,以确保电池能够得到高效的充电。

2.恒流控制元件的选择:根据充电电流的设定值和需求,选择一个适合的恒流控制元件,例如电流传感器、晶体管等。

3.负反馈控制电路的设计:根据设定的充电电流,设计合适的负反馈控制电路来实现电流的恒定控制。

可以根据需要选择运算放大器、比较器等元件来实现电流的负反馈控制。

4.充电电路的保护措施:为了确保电池的安全性和延长使用寿命,可以在充电电路中添加过电压、过热、过流等保护措施来避免因充电过程中出现的故障而对电池造成损害。

恒流充电器常见的应用场景包括电动车充电器、手机充电器、电池充电器等,可以提供恒定电流的充电功率,保证了充电过程中的电流稳定性和充电效率。

总结起来,恒流充电器通过负反馈控制电路,实现充电电流的恒定控制。

它能够提供稳定的充电电流,确保了充电过程的高效性和电池的安全性。

常用的恒流电路

常用的恒流电路

常用的恒流电路
恒流电路是一种控制电流大小不受负载变化影响的电路。

在实际电路中,常用的恒流电路有电流源电路和晶体管恒流源电路。

一、电流源电路
1. 晶体管基本电流源电路
晶体管基本电流源电路是一种简单的恒流电路,由一个固定电阻和晶体管组成。

其原理是通过晶体管的基极和发射极之间的电压来控制电流。

当输入信号的电压改变时,电流也会相应地改变。

2. 晶体管双向恒流源电路
晶体管双向恒流源电路是一种具有双向输出的恒流电路,其原理是使用两个晶体管和一个电阻网络实现。

当输入信号的电压改变时,输出电流也会相应地改变。

二、晶体管恒流源电路
晶体管恒流源电路是一种高精度、高稳定性的恒流电路,其原理是通
过负反馈控制器将输出电流保持在恒定的值。

该电路通常由一个晶体管、一个稳压电路、一个电阻和一个电容组成。

总之,恒流电路在实际应用中有着广泛的用途,如LED驱动、电机控制、高精度电源等。

通过采用适当的电路设计和元件选择,可以实现高效、稳定的恒流输出,从而为实际应用提供可靠的支持。

mos管恒流源电路

mos管恒流源电路

mos管恒流源电路介绍在电子电路中,常常需要使用恒流源来对电路中的负载进行电流控制。

MOS管恒流源电路是一种常见的电路配置,它可以提供稳定的电流输出并对负载电阻的变化具有一定的抵抗能力。

本文将对MOS管恒流源电路进行全面、详细、完整且深入地探讨。

基本原理MOS管恒流源电路是通过MOS管的工作原理来实现恒流输出的。

当MOS管处于饱和区时,其漏极电流与栅极电压成正比。

通过合理的电路设计和偏置设置,可以使得MOS管工作在饱和区,从而实现恒流输出。

电路结构MOS管恒流源电路的基本结构如下所示:Vdd|R|+---| ||MOS|| |---|GND其中,Vdd为电源电压,R为负载电阻,MOS为MOS管。

通过控制MOS管的栅极电压,可以控制电路中的电流。

工作原理MOS管恒流源电路的工作原理如下:1.当电源电压Vdd施加在电路上时,MOS管的栅极电压为0V,此时MOS管处于截止区,没有漏极电流流过负载电阻R。

2.当把栅极电压逐渐增加时,当栅极电压达到某个阈值电压时,MOS管开始进入饱和区。

此时,栅极电压的增加将导致漏极电流的增加。

3.当栅极电压继续增加时,MOS管的漏极电流逐渐稳定在一个恒定值。

这是因为MOS管的饱和区特性决定了漏极电流与栅极电压成正比。

4.当电源电压Vdd变化时,由于MOS管的饱和区特性,漏极电流基本保持不变,从而实现了对负载电阻变化的抵抗能力。

设计与优化设计和优化MOS管恒流源电路时,需要考虑以下几个关键因素:1. MOS管尺寸选择MOS管的尺寸选择对电路的性能有重要影响。

较大的MOS管尺寸可以提供更大的漏极电流范围,但也会增加电路的功耗和面积。

因此,需要根据具体应用需求综合考虑。

2. 偏置电路设计为了使MOS管能够工作在饱和区,需要设计合适的偏置电路。

常见的偏置电路包括电流镜电路和电流源电路。

合理的偏置电路设计可以提高电路的稳定性和性能。

3. 电源电压选择电源电压的选择也会影响电路的性能。

4~20ma恒流电路

4~20ma恒流电路

4~20ma恒流输出电路分析1,电路概括一些传感器仪表电路,变送器电路中经常用到4~20ma可调恒流输出,本文将为您提供一个廉价简洁的方案,其中包括电路使用说明,电路灵活变通方法,电路计算分析等详细介绍。

2,电路说明电路分为三部分:A,输入部分:输入部分由0~2ma信号源经过R5形成一个“0~1V”的可变电压然后送入前级放大电路U1A,这个输入跟后级电路成线性关系,当输入变化时输出可实现“4~20ma”输出的变化。

输入电路形式可根据实际应用调整变化,只要能产生线性变化的直流电压即可送入前级放大电路,得出的结果是一样的,B,前级放大电路:LM358有两个运算放大器通道,我们用一个作为前级放大电路,前级放大电路由“R7,R9”组成的负反馈比例放大电路,其主要的作用是将“0~1V”的电压放大到“0~11V”,至于为什么要放大到这个电压我们后面再介绍,此处先埋下来。

C,恒流电路恒流电路是由LM358组成的另一个负反馈放大器,其主要作用是在“特定的阻抗”上面产生“特定的电压”,当阻抗和电压固定,那么电流即为恒定。

在固定电阻上面产生固定的电压这也是恒流源设计的核心,掌握了这一点就可以灵活设计各种恒流电路。

通常运算放大器的输出能力很小,所以电路中的三极管Q1起到扩流的作用。

3,电路计算分析A,图中输入为“0~2ma”,根据运算放大器虚断的分析R1上面不过电流,所以“0~2ma”电流全部经过R5到地,设置输入的“0~2ma”为电流i。

得出“0<=V1<=1V”,公式参考如下:V=Iin5*1RB,根据运算放大器虚短可得V2=V1,即“0V<=V2<=1V”,公式如下:V=2V1C , 根据运算放大器虚断,V2处无电流流入运放,即R7和R9的电流值相同,得出V3的电压为“0V<=V3<=11V ”,公式如下:92*)97(392)97(31R V R R V R V R R V i +=Þ=+=将B 公式带入上式,求出V3与V1的关系: 1*1191*)97(3V R V R R V =+=将A 式带入上式,求出V3与Iin 的关系:5**111*113R Iin V V ==D , 根据运算放大器虚断,所以V4无电流流入运算放大器,我们设置V7为已知变量,则可以求出V4的电压,公式如下:34*)42()37(4V R R R V V V ++-=E , 根据运算放大器虚断,所以V5无电流流入运算放大器,我们设置V8为已知变量,则可以求出V5的电压,公式如下:12*)1211(85R R R V V +=F , 根据运算放大器虚短,所以有V4=V5,我们将“D ,E ”的公式带进去,然后解一下方程,公式如下:3*02.07812*)1211(834*)42()37(54V V V R R R V V R R R V V V V =-Þ+=++-Þ= G , 我们前面有讲到恒流源的核心就是有固定的电压在固定的电阻上面就可以产生恒定的电流,那么我们R8-R7的差值恒定,那么是不是可以认为R10上面的电压恒定呢,而这个阻值也是不变的,所以就得出来恒流了,下面我们将公式补全:10)78(R V V i -=我们将F 公式中V8-V7的值带入上式,得出来输出电流和V3的关系:3*002.010)3*02.0(V R V i ==我们将C 式带入上式,得出输出电流i 与Iin 的关系:Iin R Iin i *115**11*002.0==即输出电流的范围为“0ma<= I <=22ma ”.4, 电路分析图中电路是应用在输入“0~2ma ”,输出“4~20ma ”的电路中,输入部分“0~20ma ”是线性变化可调的,所以输出电流也是线性变化可调整的,所以应用在变送器或者仪表电路中最为合适。

运放恒流电流电路

运放恒流电流电路

运放恒流电流电路⼀、引⾔在电⼦电路设计中,恒流电流电路扮演着⾄关重要的⻆⾊。

这种电路能够确保电流在特定负载上保持恒定,不受外部条件(如电压波动、温度变化等)的影响。

其中,使⽤运算放⼤器(运放)构建的恒流电路因其⾼稳定性、易实现性⽽⼴受欢迎。

本⽂将详细探讨基于运放的恒流电流电路的设计原理、实现⽅法以及应⽤场景。

⼆、运放恒流电路的基本原理运放恒流电路的核⼼思想是利⽤运放的⾼放⼤倍数和负反馈机制来维持输出电压的恒定,进⽽通过负载电阻转换为恒定的电流输出。

其基本原理如下:1.电压到电流的转换:在电路中,通常利⽤⼀个精密的电阻(称为负载电阻)将运放的输出电压转换为电流。

根据欧姆定律,当电阻值固定时,电压与电流成正⽐。

2.负反馈机制:为了维持输出电压的恒定,电路中引⼊了负反馈机制。

当输出电压因外部条件变化⽽波动时,负反馈会调整运放的输⼊电压,使其恢复到原始值,从⽽保持输出电压的稳定。

3.运放的⾼放⼤倍数:运放具有极⾼的放⼤倍数,这意味着即使输⼊电压有微⼩的变化,输出电压也会发⽣显著的变化。

这种特性使得运放能够迅速响应外部条件的变化,维持电流的稳定。

三、运放恒流电路的实现⽅法实现运放恒流电路的⽅法有多种,以下是其中⼀种典型的实现⽅式:1.电路组成:该电路主要由运放、负载电阻、反馈电阻和电源组成。

其中,运放负责提供输出电压,负载电阻将电压转换为电流,反馈电阻则与运放的反相输⼊端相连,构成负反馈回路。

2.电路设计:在设计电路时,需要根据所需的恒流值和负载电阻的值来选择合适的反馈电阻。

此外,还需考虑电源的稳定性、运放的带宽和失真等指标。

3.元件选择:为了确保电路的稳定性和可靠性,应选择性能优良的运放和精密的电阻。

同时,还需注意元件的耐压、耐流等参数,以确保电路在恶劣环境下仍能正常⼯作。

四、运放恒流电路的应⽤场景运放恒流电路在众多领域有着⼴泛的应⽤,例如:1.LED驱动:LED的亮度与其电流成正⽐,因此,使⽤运放恒流电路可以为LED提供稳定的驱动电流,确保LED亮度的稳定。

220v恒流电路原理

220v恒流电路原理

220v恒流电路原理220V恒流电路原理解析引言在电子领域中,恒流电路是一种非常重要的电路类型。

它能够稳定地输出恒定的电流,无论负载的变化。

本文将从基本概念开始,逐步深入解释220V恒流电路的原理。

什么是恒流电路?恒流电路是一种电子电路,用于控制负载中通过的电流,以确保电流的稳定性。

恒流电路原理恒流电路的原理基于电压稳定器的工作原理,通过使用负反馈控制技术来控制电流。

其基本组成包括恒流源、当前传感器和反馈回路。

恒流源恒流源是恒流电路的核心组成部分,它的作用是保持电流的稳定性。

恒流源通常由晶体管或集成电路实现,它能够根据反馈信号调整电流的大小,以确保其恒定。

当前传感器当前传感器用于监测负载中通过的电流,并将其转化为电压信号。

当前传感器的输出电压与电流成正比,可用作反馈回路中的输入。

反馈回路反馈回路是恒流电路中非常重要的一部分。

它通过比较当前传感器的输出电压与参考电压,来判断是否需要调整恒流源的输出电流。

反馈回路将调整信号传递给恒流源,使其相应地调整输出电流,以保持设定的恒流值。

实际应用恒流电路在现实生活中有广泛的应用。

以下是一些常见的实际应用场景:•LED照明系统:恒流电路可用于驱动LED照明系统,确保LED的亮度稳定。

•电池充电器:恒流电路可用于控制电池的充电电流,防止充电时电流过大。

•激光二极管驱动器:恒流电路可用于控制激光二极管的工作电流,确保其稳定输出激光光束。

总结恒流电路是一种能够稳定输出恒定电流的电路类型。

它通过负反馈控制技术,使用恒流源、当前传感器和反馈回路来实现电流的稳定性。

恒流电路在LED照明系统、电池充电器和激光二极管驱动器等领域有着广泛的应用。

理解恒流电路的原理对于电子工程师和爱好者来说非常重要。

以上就是220V恒流电路原理的相关解析,希望对您有所帮助。

参考资料: - 恒流源( - [电流稳定器](。

恒流源电路设计总结

恒流源电路设计总结
uint result;
result = ADC12MEM0;
results[index++] = ADC12MEM0; // Move results
if(index == Num_of_Results)
{
uchar i;
unsigned long sum = 0;
index = 0;
for(i = 0; i < Num_of_Results; i++)
}
2、PWM输出模块
用定时器A输出pwm信号,P1.2作为输出
文件名*pwm.c*
#include <msp430x14x.h>
void out_pwm() //输出pwm信号
{
uchar i;
BCSCTL1 &= ~XT2OFF; //打开XT振荡器
BCSCTL2 |= SELM_2+SELS; //MCLK为8MHz,SMCLK为8MHz
do
{
IFG1 &= ~OFIFG; //清除振荡错误标志
for(i = 0; i< 100;i ++) //延时等待
_NOP();
}
while((IFG1 & OFIFG) != 0); //如果标志为1,则继续循环等待
IFG1 &= ~OFIFG;
P1SEL |= BIT2 ; //选择p1.2作为PWM输出
=
化简得
设计思路
1、编程让430单片机产生占空比可调的PWM方波,通过占空比的调节来控制MOS管的开启时间,从而调节电路的电流,达到相对恒定的电流。
2、通过单片机内部的AD转换模块,采集到硬件电路的电压值,比较得出电压(或电流)的变化趋势(增大还是减小),若电压(电流)增大,则减小占空比,缩短MOS管的开启时间;反之,增大占空比,增加MOS管的开启时间。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恒流电路
有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:
类型1:特征:使用运放,高精度输出电流:Iout=Vref/Rs
类型2:特征:使用并联稳压器,简单且高精度
输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V)类型3:特征:使用晶体管,简单,低精度
输出电流:Iout=Vbe/Rs 检测电压:约0.6V
类型4:特征:减少类型3的Vbe 的温度变化,低、中等精度,低电压检测 输出电流:Iout=Vref/Rs 检测电压:约0.1V ~0.6V
类型5:
特征:使用JEFT ,超低噪声 输出电流:由JEFT 决定 检测电压:与JEFT 有关 其中类型1为基本电路,工作时,输入电压Vref 与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示,
图5
注:Is=IB+Iout=Iout(1+1/h FE )其中1/h FE 为误差
若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET 管
图6 Is=Iout-I G
类型2,这是使用运放与Vref (2.5V )一体化的并联稳压器电路,由于这种电路的Vref 高达2.5V ,所以电源利用范围较窄
类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe (约0.6V )替代Vref 的电路,因此,Vbe 的温度变化毫无改变地呈现在输出中,从而的不到期望的精度
类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V 左右,应此,电源利用范围很宽
类型5,这是利用J-FET的电路,改变R
gs 可使输出电流达到漏极饱和电流I
DSS

由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该
电路中不接R
GS ,则电流值变成I
DSS
,这样,J-FET接成二极管形式就变成了“恒
流二极管”
以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

附图方框内的4个电阻其数值是一样的。

因此才有公式:Io=(V3-V2)/R 。

由公式可看出:当V32幅度与R的数值恒定不变时,Io恒定输出且与负载电阻Load的数值大小无关(在运放的线性工作区域以内)。

可以利用负载电阻为0欧姆和负载电压为1V两种状态,推演出上面运放输出端(PIN6)的电压Vo'会随负载电压Vo等比升降,从而保证定流电阻的端压与通过电流幅度恒定不变的和与输入电压的比例结果。

供参考。

双运放恒流源有两个显著特点:1.负载可以接地;2.输出电流可以是双向输出或交流输出(通常以双电源供电为前提条件)。

单电源供电时,双运放恒流源的第2个特长也就不存在了--即只能输出单向电流,所用运放也必须是单电源运放。

当V2为零,即接地时,根据公式可计算得到输出电流的极性与流向;此时输出电流的大小、极性由V3控制(以双电源供电为前提条件)
vi转换和恒流源电路图如下所示:
细说恒流源(转载)
恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。

恒流源分为流出(Current Source)和流入(Current Sink)两种形式。

最简单的恒流源,就是用一只恒流二极管。

实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。

最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,
电流数值为:I = Vbe/R1。

这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特
殊的元件,有利于降低产品的成本。

缺点是不同型号的管子,其be电压不是一
个固定值,即使是相同型号,也有一定的个体差异。

同时不同的工作电流下,这个电压也会有一定的波动。

因此不适合精密的恒流需求。

为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。

典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。

电流计算公式为:I = Vin/R1
这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。

只不过其中的Vin还需要用户额外提供。

从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。

有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。

最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。

如图(3)所示:
电流计算公式为:I = (Vd-Vbe)/R1
TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。

TL431组成流出源的电路,暂时我还没想到:)
TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》电流计算公式为:I = 2.5/R1
事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。

利用三端稳压构成恒流源,也有非常好的性价比,如图(5)所示。

这种结构的恒流源,不适合太小的电流,因为这个时候,三端稳压自身的维持电流会导致较大的误差。

电流计算公式为:I = V/R1,其中V是三端稳压的稳压数值。

实际的电路中,有一些特殊的结构,也可以提供很好的恒流特性,最典型的就是一个很高的电压通过一个电阻在一个低压设备上形成电流,如图(6),这个恒流源的精度,取决于高压的精确度和低压设备本身导致的电压波动。

在一些开关电源电路中,这个结构用来给三极管提供偏置电流。

电流计算公式为: I = Vin/R1
值得一提的是,以上这些恒流源并不都适合安培以上级别的恒流应用,因为电阻上面太大的电流会导致发热严重。

图(2)可以通过使用更小的电阻来降低这个热量,不过在单电源供电模式下,多数运放都不能有效检测和输出接近地或者Vcc的电压,因此必须使用特殊的器件才能达到要求。

有个简单的办法是通过一个稳压器件(稳压管,或者TL431等)偏置电阻上面的电压,使得这个电压进入运放的检测范围。

恒流源的实质是利用器件对电流进行反馈,动态调节设备的供电状态,从而使得电流趋于恒定。

只要能够得到电流,就可以有效形成反馈,从而建立恒流源。

能够进行电流反馈的器件,还有电流互感器,或者利用霍尔元件对电流回路上某些器件的磁场进行反馈,也可以利用回路上的发光器件(例如光电耦合器,发光管等)进行反馈。

这些方式都能够构成有效的恒流源,而且更适合大电流等特殊场合,不过因为这些实现形式的电路都比较复杂,这里就不一一介绍了
步进式伺服机构的控制电路
步进式伺服机构的控制电路如下图所示,该电路采用可变单结晶体管振荡器,在数字电平的控制下,产生脉冲串。

逻辑电平为1时,每秒产生1000个脉冲;逻辑电平为0时,每秒产生4400个脉冲。

当逻辑电平改变时,两个脉冲速率之间过渡是平滑的。

脉冲串用来启动步进式伺服电机。

Q1和Q2是两个恒流源,Q3作为压控电阻使用,与R10并联,控制单结晶体管振荡器的脉站速度。

相关文档
最新文档