砂型铸造工艺流程
砂型铸造流程

直于分型面的立壁,制造模样时必须留出一定的倾斜度,此倾斜度称为起模斜度,
如图1-29所示。
在铸造工艺图上,加工表面上的起模斜度应结合加工余量直接表示出,而不
加工表面上的斜度(结构斜度)仅需用文字注明即可。
图1-29 起模斜度
3. 收缩率 铸件冷却后的尺寸比型腔尺寸略为缩小,为保证铸件的应有尺 寸,模样尺寸必须比铸件放大一个该合金的收缩率。铸造收缩率 K 表达式为:
手工造型误差大,余量应加大。铸钢件因表面粗糙,余量应加大;非铁合金铸件
价格昂贵,且表面光洁,余量应比铸铁小。铸件的尺寸愈大或加工面与基准面之
间的距离愈大,尺寸误差也愈大,故余量也应随之加大。浇注时铸件朝上的表面
因产生缺陷的机率较大,其余量应比底面和侧面大。灰铸铁的机械加工余量见表
1-6。
表1-6 灰铸铁的机械加工余量
箱后的砂型周围填紧,也可在砂型 铸件,砂箱尺寸较小
上加套箱
模样是整体的,多数情况下,型 腔全部在下半型内,上半型无型 腔。造型简单,铸件不会产生错型 缺陷
适用于一端为最 大截面,且为平面的 铸件
模样是整体的,但铸件的分型面 是曲面。为了起模方便,造型时用 手工挖去阻碍起模的型砂。每造一 件,就挖砂一次,费工、生产率低
图1-27 车床床身铸件
3.尽量使型腔及主要型芯位于下型 这样便于造型、下芯、合箱和检验铸件 壁厚。但下型型腔也不宜过深,并尽量避免使用吊芯和大的吊砂。如图1-28所示。
图1-28 机床支架
注意:选择分型面的上述诸原则,对于某个具体的铸件来说难以全面满足,
有时甚至互相矛盾。因此,必须抓住主要矛盾、全面考虑,至于次要矛盾,则应
注意:为了提高型芯的刚度和强度,需在型芯中放入芯骨;为了提高型芯的 透气性,需在型芯的内部制作通气孔;为了提高型芯的强度和透气性,一般型芯 需烘干使用。
翻砂铸造工艺(3篇)

第1篇一、引言铸造是一种古老的金属加工方法,早在公元前2000年左右,人类就已经开始使用金属进行铸造。
随着科技的发展,铸造工艺也在不断地演变和进步。
翻砂铸造作为一种传统的铸造方法,至今仍然广泛应用于机械制造、汽车制造、航空航天、船舶制造等行业。
本文将详细介绍翻砂铸造工艺的基本原理、工艺流程、特点及其在现代工业中的应用。
二、翻砂铸造工艺的基本原理翻砂铸造工艺,又称砂型铸造,是一种将熔融金属浇注到预先准备好的砂型中,待金属凝固后取出铸件的一种铸造方法。
其基本原理如下:1. 制造砂型:首先,根据铸件图纸,设计并制作出砂型。
砂型由砂芯、砂箱、浇注系统、排气系统等组成。
2. 浇注金属:将熔融金属浇注到砂型中,金属在砂型中凝固成铸件。
3. 脱砂:铸件凝固后,从砂型中取出铸件。
4. 后处理:对铸件进行清理、打磨、热处理等后处理工艺,以满足使用要求。
三、翻砂铸造工艺流程1. 铸造工艺设计:根据铸件图纸,确定铸造工艺参数,如浇注系统、砂芯设计等。
2. 砂料准备:选用合适的砂料,如石英砂、粘土砂等,并进行筛分、清洗、干燥等处理。
3. 砂型制备:将砂料与粘结剂、润滑剂等混合,制成砂型。
砂型制备主要包括造型、合箱、烘干等工序。
4. 浇注:将熔融金属浇注到砂型中,浇注温度、速度、压力等参数需严格控制。
5. 冷却与凝固:铸件在砂型中冷却凝固,直至完全凝固。
6. 脱砂:铸件凝固后,从砂型中取出铸件。
7. 清理与后处理:对铸件进行清理、打磨、热处理等后处理工艺。
四、翻砂铸造工艺的特点1. 适用范围广:翻砂铸造工艺可适用于各种形状、尺寸和材质的铸件。
2. 成本低:翻砂铸造工艺设备简单,操作方便,生产成本低。
3. 可重复使用:砂型可以重复使用,降低生产成本。
4. 可实现复杂铸件:通过合理设计砂芯和浇注系统,可以实现复杂铸件的铸造。
5. 环保:翻砂铸造工艺对环境污染较小。
五、翻砂铸造工艺在现代工业中的应用1. 机械制造:翻砂铸造工艺广泛应用于机械制造领域,如发动机、变速箱、齿轮箱等铸件的制造。
砂型铸造工艺一般流程

砂型铸造工艺一般流程目录1.型砂,芯砂配制工艺规程-----------------22.制芯工艺守则--------------------------23.砂芯烘干工艺规程----------------------34.造型,下芯,合箱操作规程----------------45.浇注工艺规程--------------------------76.落砂工艺操作规程----------------------107.清理工艺守则--------------------------11XXXX机械有限公司工艺文件砂型铸造通用工艺规程 SXJZ-2011-01-20001.型砂.芯砂配制参见《混砂工艺规程》2.制芯工艺守则2.1芯盒检验,芯盒在车间使用超过半个月,每半个月检验芯盒1次,芯盒磨损以芯盒图纸为准。
2.2制芯.2.2.1舂砂时紧实度要均匀,芯子表面要致密光滑,不得有松砂现象,字要清晰完整,刮砂面要用工具刮子压光.2.2.2芯头用Ф8毫米的气眼针扎透.2.2.3 砂芯应尽量轻轻在专用工作台上均匀敲出或磕出芯盒.2.2.4以修整的砂芯,其几何形状及尺寸必须符合要求,不得有凸凹毛刺,多材,缺陷.2.2.5对于大芯子,烘烤前停放时间不应过长以防蠕变.2.3检芯.2.3.1砂芯必须件件进行检验.2.3.2砂芯几何形状完整,清晰,不得有凸凹毛刺,多材,裂纹等缺陷,表面应致密,光滑.2.3.3检查刹车面外缘处,芯子两侧平面不得大于0.3毫米,厚度尺寸不小于芯盒磨损极限尺寸.2.4码放保存.2.4.1检验合格的芯子应按操作者号在指定位置摆放整齐.3.砂芯烘干工艺规程3.1准备.3.1.1炉衬无裂纹,倒塌等损坏现象,炉内无异物.3.1.2炉门启闭灵活,不变形.3.1.3烟道畅通,烟道闸门启闭灵活.3.1.4台车牢固可靠,运转灵活.3.1.5测温装置准确可靠.3.1.6装炉前去掉外观不合格砂芯.3.1.7根据炉膛内,高处高温低处低温的特点,大复杂件尽量放在高处,装卸时要轻拿轻放.3.1.8在芯子悬空处做好随行砂胎,砂芯停放时间不宜过长,以防变形.3.2烘芯.3.2.1煤窑升温160-200℃,电室升温至260-280℃,时间不超过2小时(电阻炉)或2.5小时.时间要适当,以防哄干不足或过烧.室式燃煤烘干工艺规程,同上.4.造型,下芯,合箱操作规程4.1造型前的准备.4.1.1检查生产装备.4.1.1.1模样的起模装置及吊运装置安装合不合适.4.1.1.2砂箱有下列情况不能使用.a)箱把脱落或有严重变形.b)箱壁破裂未经修补.c)砂箱翘曲变形严重.d)定位销,定位销套孔磨损超过极限偏差.e)销套孔内有严重锈皮或粘砂未清除.4.1.1.3检查出砂,背砂是否符合工艺要求.4.1.1.4准备所需冷铁,芯撑,垫片,不允许有油,水,锈存在.4.1.1.5准备所需脱模剂或分型粉,及其它工具.4.1.1.6机器造型前,尚需检查造型设备.4.1.2 手工造型需要清理,平整场地.4.2 造型.4.2.1 模样和模底板清理干净,撒分型粉或喷涂和刷擦脱模剂.4.2.2采用面砂时,面砂应均匀的覆盖模样及浇注系统上,紧实后的厚度为15-45mm.4.2.3准备安装冷铁.4.2.4为提高砂型强度,在砂型的在平面和凸缘拐角界处插钉子加固.4.2.5砂型紧实应均匀全面,紧实后硬度要达到70-90,捣好后刮平.4.2.6扎气眼时,气孔离型腔20-30mm,气孔Ф10-Ф64.2.7起模要平稳并保持垂直.4.2.8直模后,检查砂型硬度,发现局部松软或破损处,应用同类砂修补.4.3下芯4.3.1检查砂芯质量,不允许将有缺陷的砂芯下入型内,砂芯干燥深度不少于6mm,同时不得过烧.4.3.2按顺序下芯,重要件可用样板控制砂芯位置,做到位置准确, 安放牢固.4.3.3堵塞芯头与芯座的间隙,防止跑铁液.4.3.4下芯完后,应清除型内余砂.4.4合箱.4.4.1合箱前,检查铸型质量,如发现砂芯偏移,芯撑漏放和型内有散砂时,应采取措施解决. 4.4.2合箱按导向销准确平稳操作.4.4.3按工艺要求,放置浇口杯和冒口圈,并用铁板或纸盖好.4.4.4脱箱造型时,脱箱后埋好箱,箱与箱之间扎通气孔.4.4.5合箱后安放压铁,压铁重量,位置应合适.5.浇注工艺规程5.1浇注前的准备.5.1.1浇注时必须了解待浇注件所需铁液牌号及重量.5.1.2检查起吊设备是否正常,包括:5.1.2.1吊车运行是否正常.5.1.2.2吊车的回转机械是否灵活可靠.5.1.3检查浇包数量,修包质量,以及烘干预热是否合格.5.1.4备好保温聚渣,材料及工具.5.1.5检查压铁重量和位置是否合适,浇口杯是否安放妥当.5.1.6根据炉前结果对于铁水质量不合格,温度不高的铁水不得浇注.5.2按浇注工艺要求进行浇注.5.2.2开炉后的第一包铁液(约一至二批料)浇注不重要铸件.5.2.3第一次盛铁液的浇包,至发现沸腾现象应立即停止出铁液,该包铁液不允许浇注铸件,可浇芯骨或回炉料.5.2.4出铁时,铁液不得冲在包壁或塞杆上,出铁完毕,应清除表面渣子,及时用草灰等材料覆盖保温.5.2.5吊包中铁液面应低于包口30mm以上.5.2.6根据铸件要求的浇注温度进行浇注.5.2.7浇注时应有挡渣措施,浇包嘴应尽量接近浇口杯,浇口杯应保持充满并不得引起铁液飞溅或产生漩涡.5.2.8 浇注开始后,应立即引气,大型铸件应点燃出气孔旁的引火材料.5.2.9浇注时如发生铁液猛烈沸腾并从冒口连续喷出铁液时应立即停止浇注.5.2.10当冲天炉不间隔熔炼两个牌号的铸铁时,应准确估计交界铁液进入前炉的时间和数量,交界铁液不可浇注重要铸件.5.2.11浇注时应一次性充满,尽量避免补浇.5.2.12浇注剩余的铁液或不合格铁液应倒入盛回炉料的铁模或倒入废砂中.5.3安全注意事项.5.3.1车间应制定安全技术规则,工作时穿戴好工作服,防热皮鞋,手套,帽子,防护眼镜等.5.3.3吊车工吊运铁液时须鸣铃并不得从现场人员头上经过.5.3.4浇注时不得用眼睛正视冒口.5.3.5挡渣人员不得位于包嘴正面操作.5.3.6浇注完毕后应全面检查,清理场地,并熄灭火源.6.落砂工艺操作规程6.1控制冷却时间,浇注后刹车盘8分钟,大型壳体类3小时方可落砂,生产线上浇注的铸件应控制输送小车的速度,不可大范围调整.6.2去除砂箱上的残铁和残留砂块.6.3浇冒口必须在完全凝固后方能打掉,以防带肉和影响补缩.6.4落砂前先将箱上及地面上的铁片,铁豆打扫收集.6.5落砂后的砂箱堆放整齐备用.6.6清理平整工作场地.7.清理工艺守则7.1准备工作.7.1.1了解铸件结构及清理工艺要求.7.1.2熟悉设备性能及操作规程并严格执行.7.1.3检查设备是否运转正常,发现故障用时排除.7.1.4准备好所用的工具,检查是否完好,安全.7.1.5按规定穿戴好劳保用品.7.2清砂的一般要求.7.2.1工作前应先检查铸件表面有无严重缺陷,如有严重陷,应报告检查员处理.7.2.2铸件内表面所有附着的型.芯应清理干净,飞边,毛刺应铲除掉.7.2.3清砂时不许损伤铸件的边缘,棱角,禁止重锤敲打.7.2.4清除浇冒口时应正确选择敲击方向和敲击力量,以免铸件缺肉损伤.7.2.5铸件转运,堆放清铲过程中不准扔砸撞磕,以免损坏铸件,造成废品.7.3铸件表面清理.7.3.1使用清理设备应严格执行安全操作规程.7.3.2装入的铸件应无导致报废的缺陷.7.3.3经常检查清理设备易损部位和易损件,按要求及时更换,更换叶片时,应使叶轮运转平衡.7.3.4铸件上的披缝,飞刺,多肉,胀箱和错箱造成的不平处应去除磨平.7.3.5粗糙不平的内外圆柱非加工面要用砂轮磨光.7.3.6铸件表面上的夹砂,夹层等缺陷中的砂子应铲除干净.(此页无正文)附加说明本标准由科研所提出本标准由工艺科起草本标准的主要起草人:XXXX机械有限公司工艺文件砂型铸造通用工艺规程编号:SXJZ-2011-01-2000版号:2.0序号:2000-05-01发布 2000-05-08实施XXXX机械有限公司发布。
砂型铸造工艺流程

砂型铸造工艺流程一、砂型铸造简介砂型铸造是一种常用的铸造方法,通过使用砂模来制造金属铸件。
砂型铸造工艺流程包括模具制备、砂型制备、浇铸、冷却、脱模和后处理等步骤。
本文将详细介绍砂型铸造的工艺流程及每个步骤的具体操作。
二、模具制备在砂型铸造中,模具是制作砂型的重要工具。
首先需要准备好铸造所需的模子。
模子可以使用木模、金属模或者其他材料制作而成。
模具制备的具体步骤如下:1.设计模具结构–根据所需铸件的结构和尺寸,设计模具的内外形状和结构。
–考虑到铸件的收缩率和热胀冷缩等因素,在设计模具时需要留出相应的缩孔和浇口。
2.制作模具–根据设计图纸,选择合适的模具材料进行制作。
–使用机械加工或者手工加工的方式,按照设计图纸的要求制作模具的内外形状。
3.组装模具–将制作好的模具组装在一起,确保模具内外表面的高度一致,以保证最终铸件的尺寸精度。
–使用螺栓或者其他连接方式将模具牢固地固定在一起。
三、砂型制备砂型是铸造的关键步骤之一,其质量直接影响到最终铸件的质量。
砂型制备的具体步骤如下:1.选择砂料–根据铸件的性质和金属的种类,选择适合的砂料。
–砂料应具有良好的塑性和耐高温的特性,以便能够更好地填充模具。
2.调配砂料–将砂料和适量的粘结剂混合,用水使其充分搅拌均匀。
–确保砂料的湿度适中,既能够起到黏合作用,又不会因过度湿润而影响成型效果。
3.成型砂型–将调配好的砂料倒入模具中,使用工具进行压实,确保砂料填充整个模具空间。
–模具中的芯子应根据需要放置在合适的位置,以形成中空的铸件结构。
4.敲击模具–使用锤子等工具敲击模具的四周和底部,以去除空气泡并提高砂型的密实度。
–确保模具表面平整光滑,以便于浇铸过程中金属的流动。
5.脱模–等待砂型充分硬化后,将模具分离并轻轻敲击,使铸件和砂型分离。
–检查铸件和砂型的质量,并进行必要的修整和清理。
四、浇铸浇铸是将熔融金属倒入砂型中的过程。
在浇铸之前,需要进行一系列准备工作:1.预热砂型–在浇铸之前,将砂型预热以提高砂型的温度稳定性。
砂型铸造流程

最小铸出孔的参考数值见表1-7。对于零件图上不要求加工的孔、槽以及弯曲孔
等,一般均应铸出。
表1-7 铸件毛坯的最小铸出孔(mm)
生产批量
大量生产 成批生产 单件、小批量生产
最小铸出孔的直径 d
灰铸铁件
铸钢件
12~15
—
15~30
30~50
30~50
50
2. 起模斜度 为了使模样(或型芯)易于从砂型(或芯盒)中取出,凡垂
注意:为了提高型芯的刚度和强度,需在型芯中放入芯骨;为了提高型芯的 透气性,需在型芯的内部制作通气孔;为了提高型芯的强度和透气性,一般型芯 需烘干使用。
二、砂型铸造工艺设计 目的:为了获得健全的合格铸件,减小铸型制造的工作量,降低铸件成本, 在砂型铸造的生产准备过程中,必须合理地制订出铸造工艺方案,并绘制出铸造 工艺图。 铸造工艺图:在零件图中用各种工艺符号表示出铸造工艺方案的图形,其中 包括:铸件的浇注位置;铸型分型面;型芯的数量、形状、固定方法及下芯次序; 加工余量;起模斜度;收缩率;浇注系统;冒口;冷铁的尺寸和布置等。铸造工 艺图是指导模样(芯盒)设计、生产准备、铸型制造和铸件检验的基本工艺文件。 依据铸造工艺图,结合所选造型方法,便可绘制出模样图及合箱图。图1-19为支 座的铸造工艺图、模样图及合箱图。
式中 ——模样或芯盒工作面的尺寸,单位为 mm; ——铸件的尺寸,单位为 mm。
通常,灰铸铁的铸造收缩率为0.7%~1.0%,铸造碳钢为1.3%~2.0%,铸造锡青 铜为1.2%~1.4%。
4. 型芯头 型芯头可分为垂直芯头和水平芯头两大类,如图1-30所示。
图1-30 型芯头的构造 a)垂直芯头 b)水平芯头 (四)铸造工艺设计的一般程序
铸造工艺设计:在生产铸件之前,编制出控制该铸件生产工艺的技术文件。 铸造工艺设计主要是画铸造工艺图、铸件毛坯图、铸型装配图和编写工艺卡片等, 它们是生产的指导性文件,也是生产准备、管理和铸件验收的依据。因此,铸造 工艺设计的好坏,对铸件的质量、生产率及成本起着决定性的作用。
砂型铸造工艺流程及所需材料

单击此处添加副标题
202X/XX/XX
汇报人姓名
2. 铸造工艺准备工作 2.2 铸造工艺装备准备 模样是造型过程中必备的工艺装备,直接关系铸件的形状和尺寸精度。模样须有足够的强度和刚度,要保证表面光洁,并且要使用方便、制造简单、成本低廉。 模样材料: a、木材:轻便,易加工,价格低;但强度低,易吸潮变形,寿命短。 b、金属:铝合金轻便,加工性好,表面光洁,不易锈,但耐磨性差;铜合金易加工,表面光滑,耐蚀、耐磨,但成本高,重量大;铸铁强度硬度高,耐磨,低价,但重量大、易锈且不易加工。 c、塑料:制造简便、修理方便、较耐磨、变形小、生产周期短,但导热性差、不可加热。 d、泡沫塑料:密度小,重量轻,制造简便,但模样表面不够光滑,易撞破,只能使用一次。
砂型铸造简介 砂型铸造较之其它铸造方法成本低、生产工艺简单、生产周期短。所以像汽车的发动机气缸体、气缸盖、曲轴等铸件都是用粘土湿型砂工艺生产的。
2.铸造工艺准备工作
铸造准备
工艺装备
原材料
涂料
配制
型砂
混合
砂箱
模板
模样
涂敷
配制
组成
2.铸造工艺准备工作 2.1 型砂的准备 铸造用型砂的种类可分为石英砂、镁砂、橄榄石砂、锆英石砂、石灰石砂、黏土砂、水玻璃砂、树脂砂、油砂等。 为获得优质的铸件和良好的技术经济效果,型砂按一定比例混合后,应具有以下性能: a、良好的成型性; b、足够的强度; c、一定的透气性; d、较小的吸湿性; e、较低的发气量; f、较高的耐火度; g、较好的退让性、溃散性和耐用性。 型砂性能对铸件的质量有重要影响,因此,所采用的型砂均要满足一定的性能需求。型砂的性能主要包括:水分、紧实率、透气性、变形量、破碎指数、有效黏土含量、有效煤粉含量等。
砂型铸造工艺流程简介

砂型铸造工艺流程简介
砂型铸造工艺是一种广泛应用于金属加工领域的铸造工艺,其工艺流程一般包括以下几个步骤:
1. 设计和制作模具:根据产品的几何形状和尺寸要求,设计和制作相应的铸模,通常采用木模或金属模。
2. 准备砂型材料:将粘结剂、砂粒等材料混合均匀,形成砂型材料,通常采用粘土砂、树脂砂等。
3. 制作砂型:将砂型材料按照产品的形状和尺寸要求制作成铸型,通常采用手工或机械加工等方式。
4. 浇注和冷却:将熔融金属液体倒入砂型中,待冷却后取出铸件,然后进行后续加工处理。
5. 清理和修整:对铸件进行清理和修整,以去除表面的砂型残留物和毛边等,提高铸件的表面质量和精度。
6. 后处理:对铸件进行必要的后处理,如热处理、表面处理等,以满足后续使用要求。
需要注意的是,不同的产品和工艺要求可能会有所不同,因此在实际应用中,还需要根据具体情况进行调整和优化。
砂型铸造工艺具有生产效率高、成本低等优点,被广泛应用于机械、汽车、航空航天、电子等领域。
砂型铸造生产工艺流程

随着科技的进步,新型材料和技术的应用 不断推动着砂型铸造工艺的发展,铸件的 质量和性能得到了显著提升。
02 砂型铸造生产工艺流程
模具设计与制作
01
根据产品图纸或样品进行模具设计,确定模具结构、尺寸和材 料。
02
使用CAD软件进行三维建模,并优化设计以满足生产要求。
制作模具原型,进行试模和修正,确保模具的准确性和可靠性。
检测流程
根据产品图纸和技术要求,对铸件的各个部位进行尺寸和形位公差 的测量,记录数据并评估其是否符合标准或客户要求。
05 砂型铸造生产中的问题与 解决方案
气孔与缩孔
气孔
气孔是由于气体在金属液中未及时逸出而形成的 孔洞,通常出现在铸件表面或内部。
缩孔
缩孔是由于金属液在冷却过程中收缩而形成的孔 洞,通常出现在铸件内部。
01
02
03
04
浇注系统阻塞
由于金属液中的杂质或砂粒堵 塞浇注系统而导致的生产中断
。
解决方案
定期清理和检查浇注系统,控 制金属液的纯净度,加强过滤
和脱氧处理等。
模具损坏
由于模具材料、设计或使用不 当导致模具损坏或寿命缩短。
解决方案
选择合适的模具材料,优化模 具设计和制造工艺,加强模具
的维护和保养等。
04 砂型铸造质量控制与检测
化学成分检测
检测目的
确保铸件材料的化学成分符合标准要求,满足产品性能和使用要 求。
检测பைடு நூலகம்法
采用化学分析法对铸件材料进行成分分析,如使用光谱分析仪、 滴定分析等。
检测流程
采集铸件样品,进行破碎、研磨、溶解等处理,然后进行化学分 析,得出各元素的含量。
金相组织检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
砂型铸造工艺流程
砂型铸造——在砂型中生产铸件的铸造方法。
钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。
由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。
砂型铸造所用铸型一般由外砂型和型芯组合而成。
为了提高铸件的表面质量,常在砂型和型芯表面刷一层涂料。
涂料的主要成分是耐火度高、高温化学稳定性好的粉状材料和粘结剂,另外还加有便于施涂的载体(水或其他溶剂)和各种附加物。
[编辑本段]原料及工艺砂型制造砂型的基本原材料是铸造砂和型砂粘结剂。
最常用的铸造砂是硅质砂。
硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。
为使制成的砂型和型芯具有一定的强度,在搬运、合型及浇注液态金属时不致变形或损坏,一般要在铸造中加入型砂粘结剂,将松散的砂粒粘结起来成为型砂。
应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。
砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分为粘土湿砂型、粘土干砂型和化学硬化砂型3种。
粘土湿砂型以粘土和适量的水为型砂的主要粘结剂,制成砂型后直接在湿态下合型和浇注。
湿型铸造历史悠久,应用较广。
湿型砂的强度取决于粘土和水按一定比例混合而成的粘土浆。
型砂一经混好即具有一定的强度,经舂实制成砂型后,即可满足合型和浇注的要求。
因此型砂中的粘土量和水分是十分重要的工艺因素。
粘土湿砂型铸造的优点是:①粘土的资源丰富、价格便宜。
②使用过的粘土湿砂经适当的砂处理后,绝大部分均可回收再用。
③制造铸型的周期短、工效高。
④混好的型砂可使用的时间长。
⑤砂型舂实以后仍可容受少量变形而不致破坏,对拔模和下芯都非常有利。
缺点是:①混砂时要将粘稠的粘土浆涂布在砂粒表面上,需要使用有搓揉作用的高功率混砂设备,否则不可能得到质量良好的型砂。
②由于型砂混好后即具有相当高的强度,造型时型砂不易流动,难以舂实,手工造型时既费力又需一定的技巧,用机器造型时则设备复杂而庞大。
③铸型的刚度不高,铸件的尺寸精度较差。
④铸件易于产生冲砂、夹砂、气孔等缺陷。
20世纪初铸造业开始采用辗轮式混砂机混砂,使粘土湿型砂的质量大为改善。
新型大
功率混砂机可使混砂工作达到高效率、高质量。
以震实为主的震击压实式造型机的出现,又显著提高了铸型的紧实度和均匀性。
随着对铸件尺寸精度和表面质量要求的提高,又出现了以压实为主的高压造型机。
用高压造型机制造粘土湿砂型,不但可使铸件尺寸精度提高,表面质量改善,而且使紧实铸型的动作简化、周期缩短,使造型、合型全工序实现高速化和自动化。
气体冲击加压的新型造型机,利用粘土浆的触变性,可由瞬时施以0.5兆帕的压力而得到非常紧密的铸型。
这些进展是粘土湿砂型铸造能适应现代工业要求的重要条件。
因而这种传统的工艺方法一直被用来生产大量优质铸件。
粘土干砂型制造这种砂型用的型砂湿态水分略高于湿型用的型砂。
砂型制好以后,型腔表面要涂以耐火涂料,再置于烘炉中烘干,待其冷却后即可合型和浇注。
烘干粘土砂型需很长时间,要耗用大量燃料,而且砂型在烘干过程中易产生变形,使铸件精度受到影响。
粘土干砂型一般用于制造铸钢件和较大的铸铁件。
自化学硬化砂得到广泛采用后,干砂型已趋于淘汰。
化学硬化砂型这种砂型所用的型砂称为化学硬化砂。
其粘结剂一般都是在硬化剂作用下能发生分子聚合进而成为立体结构的物质,常用的有各种合成树脂和水玻璃。
化学硬化基本上有3种方式。
①自硬:粘结剂和硬化剂都在混砂时加入。
制成砂型或型芯后,粘结剂在硬化剂的作用下发生反应而导致砂型或型芯自行硬化。
自硬法主要用于造型,但也用于制造较大的型芯或生产批量不大的型芯。
②气雾硬化:混砂时加入粘结剂和其他辅加物,先不加硬化剂。
造型或制芯后,吹入气态硬化剂或吹入在气态载体中雾化了的液态硬化剂,使其弥散于砂型或型芯中,导致砂型硬化。
气雾硬化法主要用于制芯,有时也用于制造小型砂型。
③加热硬化:混砂时加入粘结剂和常温下不起作用的潜硬化剂。
制成砂型或型芯后,将其加热,这时潜硬化剂和粘结剂中的某些成分发生反应,生成能使粘结剂硬化的有效硬化剂,从而使砂型或型芯硬化。
加热硬化法除用于制造小型薄壳砂型外,主要用于制芯。
化学硬化砂型铸造工艺的特点是:①化学硬化砂型的强度比粘土砂型高得多,而且制成砂型后在硬化到具有相当高的强度后脱膜,不需要修型。
因而,铸型能较准确地反映模样的尺寸和轮廓形状,在以后的工艺过程中也不易变形。
制得的铸件尺寸精度较高。
②由于所用
粘结剂和硬化剂的粘度都不高,很易与砂粒混匀,混砂设备结构轻巧、功率小而生产率高,砂处理工作部分可简化。
③混好的型砂在硬化之前有很好的流动性,造型时型砂很易舂实,因而不需要庞大而复杂的造型机。
④用化学硬化砂造型时,可根据生产要求选用模样材料,如木、塑料和金属。
⑤化学硬化砂中粘结剂的含量比粘土砂低得多,其中又不存在粉末状辅料,如采用粒度相同的原砂,砂粒之间的间隙要比粘土砂大得多。
为避免铸造时金属渗入砂粒之间,砂型或型芯表面应涂以质量优良的涂料。
⑥用水玻璃作粘结剂的化学硬化砂成本低、使用中工作环境无气味。
但这种铸型浇注金属以后型砂不易溃散;用过的旧砂不能直接回收使用,须经再生处理,而水玻璃砂的再生又比较困难。
⑦用树脂作粘结剂的化学硬化砂成本较高,但浇注以后铸件易于和型砂分离,铸件清理的工作量减少,而且用过的大部分砂子可再生回收使用。
型芯为了保证铸件的质量,砂型铸造中所用的型芯一般为干态型芯。
根据型芯所用的粘结剂不同,型芯分为粘土砂芯、油砂芯和树脂砂芯几种。
粘土砂芯用粘土砂制造的简单的型芯。
油砂芯用干性油或半干性油作粘结剂的芯砂所制作的型芯,应用较广。
油类的粘度低,混好的芯砂流动性好,制芯时很易紧实。
但刚制成的型芯强度很低,一般都要用仿形的托芯板承接,然后在200~300℃的烘炉内烘数小时,借空气将油氧化而使其硬化。
这种造芯方法的缺点是:型芯在脱模、搬运及烘烤过程中容易变形,导致铸件尺寸精度降低;烘烤时间长,耗能多。
树脂砂芯用树脂砂制造的各种型芯。
型芯在芯盒内硬化后再将其取出,能保证型芯的形状和尺寸的正确。
根据硬化方法不同,树脂砂芯的制造一般分为热芯盒制芯和冷芯盒制芯两种方法。
①热芯盒法制芯:50年代末期出现。
通常以呋喃树脂为芯砂粘结剂,其中还加入潜硬化剂(如氯化铵)。
制芯时,使芯盒保持在200~300℃,芯砂射入芯盒中后,氯化铵在较高的温度下与树脂中的游离甲醛反应生成酸,从而使型芯很快硬化。
建立脱模强度约需10~100秒钟。
用热芯盒法制芯,型芯的尺寸精度比较高,但工艺装置复杂而昂贵,能耗多,排出有刺激性的气体,工人的劳动条件也很差。
②冷芯盒法制芯:60年代末出现。
用尿烷树脂作为芯砂粘结剂。
用此法制芯时,芯盒不加热,向其中吹入胺蒸汽几秒钟就可使型芯硬化。
这种方法在能源、环境、生产效率等方面均优于热芯盒法。
70年代中期又出现吹二氧化硫硬化
的呋喃树脂冷芯盒法。
其硬化机理完全不同于尿烷冷芯盒法,但工艺方面的特点,如硬化快、型芯强度高等,则与尿烷冷芯盒法大致相同。