七年级数学下册第六章实数613平方根学案新人教版
人教版七年级下册第六章实数6.1平方根教案

(1) (2) (3) (4)
分析:此题本质还是求几个非负数的算术平方根。
解:(1) =2,(2) = ,
(3) = =11,(4) =6
例3、求下列各数的算术平方根:
⑴ ⑵ ⑶(-10)²⑷
解:(1)因为 =9,所以 = =3;
⑵因为 =64= ,所以 = = =8;
⑶因为(-10)²=100= ,所以 = =10;
所以大正方形的边长为 dm。
二、探究 的大小:
由上面的实验我们认识了 ,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论 的大小。
因为 =1, =4, < < ,所以 < < ,
因为 =1.96, =2.25,所以 < < ,
因为 =1.9881, =2.0164,所以 < < ,
因为 =1.999 396, =2.002 225,所以 < < ……
填表:
正方形的面积/
1
9
16
36
正方形的边长/
学生会求出边长分别是1、3、4、6、 ,
提问:上面的问题它们有共同点吗?它们的本质是什么呢?
实际上是已知一个正数的平方,求这个正数的问题。
归纳:
1、算术平方根的概念:
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。
2、算术平方根的表示方法:
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
六、布置作业
课本P47习题6.1第1、2题
板书设计
一、引入:
二、探究:
归纳:
三、典例:
例1、
例2、
例3、
四、随堂练习:
教学反思
人教版七年级下6.1平方根学案(3课时)

6.1 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根; 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入在我校举行的绘画比赛中,欢欢同学准备了一些正方形的画布,若知道画布的边长,你能计算出它们的面积吗?若知道画布的面积,你能求出它们的边长吗?表 一 正方形的边长 1 2 0.5 23 正方形的面积140.2549表一:已知一个正数,求这个正数的平方.表 二 正方形的面积 1 4 0.36 49 正方形的边长120.67表一和表二中的两种运算有什么关系? 二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8; (2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又∵92=81,∴81=9.而32=9, ∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑;(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a .解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题. 探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3. 方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方都具有非负性,即a ≥0,|a |≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a ≥0a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化第2课时用计算器求算术平方根及其大小比较1.会比较两个数的算术平方根的大小;(重点)2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识;(难点) 3.会用计算器求一个数的算术平方根.一、情境导入请大家四个人为一组,拿出自己准备好的两个边长为1的正方形纸片和剪刀,按虚线剪开拼成一个大的正方形.因为两个小正方形面积之和等于大正方形的面积,所以根据正方形面积公式可知a2=2,那么a是多少?这个数是多大呢?二、合作探究探究点一:算术平方根的估算【类型一】估算算术平方根的大致范围估算19-2的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间解析:因为42<19<52,所以4<19<5,所以2<19-2<3.故选B.方法总结:本题利用被开方数两边比较接近的完全平方数的算术平方根估计这个数的算术平方根的大小.【类型二】确定算术平方根的整数部分与小数部分已知a是8的整数部分,b是8的小数部分,求(-a)3+(b+2)2的值.解析:本题综合考查有理数与无理数的关系.因为2<8<3,所以8的整数部分是2,即a=2.8是无限不循环小数,它的小数部分应是8-2,即b=8-2,再将a,b代入代数式求值.解:因为2<8<3,a是8的整数部分,所以a=2.因为b是8的小数部分,所以b=8-2.所以(-a)3+(b+2)2=(-2)3+(8-2+2)2=-8+8=0.方法总结:解此题的关键是确定8的整数部分和小数部分(用这个无理数减去它的整数部分即为小数部分).【类型三】用估算法比较数的大小通过估算比较下列各组数的大小:(1)5与1.9; (2)6+12与1.5.解析:(1)估算5的大小,或求1.9的平方,比较5与1.92的大小;(2)先估算6的大小,再比较6与2的大小,从而进一步比较6+12与1.5的大小.解:(1)因为5>4,所以5>4,即5>2,所以5>1.9;(2)因为6>4,所以6>4,所以6>2,所以6+12>2+12=1.5,即6+12>1.5.方法总结:比较两数的大小常用方法有:①作差比较法;②求值比较法;③移因式于根号内,再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值,再比较它与有理数的大小.探究点二:用计算器求算术平方根用计算器计算:(1)1225;(2)36.42(精确到0.001);(3)13(精确到0.001).解析:(1)按键:“”“1225”“=”即可;(2)按键:“”“36.42”“=”,再取近似值即可;(3)按键:“”“13”“=”,再取近似值即可.解:(1)1225=35;(2)36.42≈6.035;(3)13≈3.606.方法总结:取近似值时要看精确到的位数的下一位,再四舍五入.探究点三:算术平方根的实际应用全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,则冰川约是在多少年前消失的?解析:(1)根据题意可知是求当t=16时d的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时t的值,直接把对应数值代入关系式即可求解.解:(1)当t=16时,d=7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径是14厘米;(2)当d =35时,t -12=5,即t -12=25,解得t =37(年). 答:冰川约是在37年前消失的.方法总结:本题考查算术平方根的实际应用,注意实际问题中涉及开平方通常取算术平方根.三、板书设计 1.估算错误!)2.用计算器求一个正数的算术平方根在解决问题的同时引导学生对解决方法进行总结,和学生一起归纳出估算的方法.让学生从被动学习到主动探究,激发学生的学习热情,培养学生自主学习数学的能力.通过独立思考与小组讨论相结合的方式解决新的实际问题,让学生初步体会数学知识的实际应用价值第3课时 平方根1.了解平方根的概念,会用根号表示一个数的平方根;(重点)2.了解开平方与平方是互逆运算,会用开平方运算求非负数的平方根.(难点)一、情境导入填空:(1)3的平方等于9,那么9的算术平方根就是________; (2)25的平方等于425,那么425的算术平方根就是________; (3)展厅的地面为正方形,其面积49平方米,则边长为________米. 还有平方等于9,425,49的其他数吗?二、合作探究探究点一:平方根的概念及性质 【类型一】 求一个数的平方根求下列各数的平方根:(1)12425;(2)0.0001;(3)(-4)2;(4)10-6;(5)81.解析:把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.解:(1)∵12425=4925,(±75)2=4925,∴12425的平方根为±75,即±12425=±75;(2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01; (3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4;(4)∵(±10-3)2=10-6,∴10-6的平方根是±10-3,即±10-6=±10-3; (5)∵(±3)2=9=81,∴81的平方根是±3.方法总结:正确理解平方根的概念,明确是求哪一个数的平方根.如(5)中是求9的平方根.【类型二】 利用平方根的性质求值一个正数的两个平方根分别是2a +1和a -4,求这个数.解析:因为一个正数的平方根有两个,且它们互为相反数,所以2a +1和a -4互为相反数,根据互为相反数的两个数的和为0列方程求解.解:由于一个正数的两个平方根是2a +1和a -4,则有2a +1+a -4=0,即3a -3=0,解得a =1.所以这个数为(2a +1)2=(2+1)2=9.方法总结:一个正数的平方根有两个,它们互为相反数,即它们的和为零.探究点二:开平方及相关运算求下列各式中x 的值: (1)x 2=361; (2)81x 2-49=0;(3)49(x 2+1)=50; (4)(3x -1)2=(-5)2.解析:若x 2=a (a ≥0),则x =±a ,先把各题化为x 2=a 的形式,再求x .其中(4)中可将(3x -1)看作一个整体,先通过开平方求出这个整体的值,然后解方程求出x .解:(1)∵x 2=361,∴开平方得x =±361=±19; (2)整理81x 2-49=0,得x 2=4981,∴开平方得x =±4981=±79; (3)整理49(x 2+1)=50,得x 2=149,∴开平方得x =±149=±17; (4)∵(3x -1)2=(-5)2,∴开平方得3x -1=±5.当3x -1=5时,x =2;当3x -1=-5时,x =-43.综上所述,x =2或-43.方法总结:利用平方根的定义进行开平方解方程,从而求出未知数的值.一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.三、板书设计1.平方根的概念:若x 2=a ,则x 叫a 的平方根,x =±a .2.平方根的性质:正数有两个平方根,且它们互为相反数;0的平方根是0;负数没有平方根.3.开平方及相关运算:求一个数a的平方根的运算叫做开平方,其中a叫做被开方数.开平方与平方互为逆运算.为学生提供有趣且富有数学含义的问题,让学生进行充分的探索和交流.如把正方形的面积不断地扩大为原来的2倍、3倍、n倍,引导学生进行交流、讨论与探索,从中感受学习平方根的必要性。
2023七年级数学下册第六章实数6.1平方根第2课时平方根教案(新版)新人教版

(3)素质方面:学生具备一定的自主学习能力和团队合作精神。他们在解决问题时,能够主动寻求帮助,与同学进行讨论。但部分学生在面对困难时容易放弃,需要教师给予更多的鼓励和支持。
平方根的运算规则包括平方根的乘法、除法、乘方和复合运算。平方根的乘法是指如果y是x的平方根,z是w的平方根,那么yz是xw的平方根。平方根的除法是指如果y是x的平方根,那么y/y = x的平方根。平方根的乘方是指如果y是x的平方根,那么y^2 = x。平方根的复合运算包括平方根的加法、减法、乘法和除法。
六、知识点梳理
1. 平方根的概念:平方根是一个数的二次方根,如果一个数x的平方等于a,即x^2 = = 3,因为3^2 = 9。
2. 平方根的性质:
- 非负性:任何正数的平方根都是非负数,任何负数的平方根都是非正数。
- 唯一性:正数的平方根有两个,互为相反数;0的平方根是0;负数没有实数平方根。
3. 对课程学习的影响:
(1)知识掌握:学生对平方根的概念和性质的理解程度会影响其在解题中的应用。教师需要通过举例、讲解等方法,帮助学生深入理解平方根的概念。
(2)能力培养:学生在逻辑推理、数据分析等方面的能力会影响其在解决问题时的思路和方法。教师需要设计有针对性的练习题,培养学生的逻辑思维和数据分析能力。
同学们,今天我们将要学习的是《平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求一个数的平方根的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。
七年级数学下册6.1平方根学案(新版)新人教版

6.1.3 平方根(课时3) 备课组长审核签名 【学习目标】 1.了解平方根的概念;掌握平方根的特征. 2.能利用开平方与平方互为逆运算的关系,求某些非负数的平方根. 3.通过对平方根的学习,培养学生从多方面、多角度分析问题、解决问 题的思想意识,养成全面分析问题的习惯.【学习重点】平方根的概念和求数的平方根. 【学习难点】平方根和算术平方根的联系与区别. 【学前准备】认真阅读课本P44---P461. 填表:x 8 -8 53 53-2x 16 0.36定义:如果 ,那么这个数就叫做a 的 或二次方根.即:如果a x =2,那么x 叫做a 的 .a 的平方根记为 .求一个数a 的平方根的运算,叫做 ,其中a 叫做 .归纳:平方与开平方互为 运算,如3±的平方是 ;9的平方根是 .练习:2的平方根是 ;25±表示 ,它的值为 .2.试一试,求下列各数的平方根.(注意书写格式)(1)100; (2) 169; (3) 25.0; (4)412; (5)0.解:(1)因为100)(2=,所以100的平方根是 ,即=±100 ;(2)(3)(4)(5)思考:(1)一个正数的平方根有几个?它们有何关系?(2)0的平方根是多少?(3)负数有没有平方根?为什么?3.判断下列说法是否正确,并口述理由.(1)3-的平方9,所以9的平方根是3-; ( ) (2)1的平方根是1; () (3)-1的平方根是-1; ( ) (4)5是25的算术平方根; ( )(5)65是3625的一个平方根;( ) (6)0的平方根与算术平方根都是0. ()【课堂探究】例1说出下列各式的意义,并求它们的值:(1)36; (2)81.0-; (3)949±. 学习小组长评价和签字 完成 订正 签字思考:平方根和算术平方根两者有什么区别和联系呢? 例2 如果一个数的平方根是31-+a a 和,求a 的值及这个数.【随堂检测】1.下列各数有平方根吗?如果有求出它的平方根,如果没有,说明理由. (1)64; (2)49; (3)0.04; (4)-4; (5)2)3(-.2.计算下列各式的值(1)9; (2)49.0-; (3)8164±.3.判断下列各式计算是否正确,并说明理由.(1)24±=; ( ) (2)24±=-. ( ) (3)24±=±; ( )4. 求满足下列各式的x 的值:(1) 92=x ; (2)092=-x ; (3) 0942=-x ; (4)9)1(2=-x .5.如果一个数的平方根是3+a 和152-a ,求a 的值及这个数.【归纳总结】1.正数的平方根有 个,它们互为 ;0的平方根是 ;负数 平方根.课后作业0603--平方根 (课时3)班级: 座号: 姓名:1.2-表示( )A .2的平方根B .2的算术平方根C .2的负的平方根D .将2开平方2.下列说法正确的是( )A .4的平方根是2B .4的算术平方根是-2C .8的平方根是4D .9的平方根是3±3. 9的平方根是( )A .81±B .9C .3±D .34.下列各数中,没.有.平方根的是( ) A .25 B .0 C .-1 D .41 5.7的平方根是( ) A . 7± B .7 C .7±D .7- 6.下列计算中,正确的是( )A .39±=B .43169=C .3)3(2-=-D .24±= 7.144的平方根是 ;算术平方根是 .169的平方根是 ;算术平方根是 . 8.一个数的平方根是412-+m m 和,求=m ,这个数是 .9.如果一个正方形的面积为a ,那么这个正方形的边长为 .10.计算:4= ,=-36.0 ,=±2516 . 11.求下列各数的平方根.(1)49; (2)254; (3)6101; (4)0016.0.12.求满足下列各式的x 的值:(1) 92=x ; (2)092=-x ; (3) 0942=-x ; (4)9)1(2=-x .13.如果一个数的平方根是3+a 和152-a ,求a 的值及这个数.14.(1)22= ,2)3(-= ,25= ,2)6(-= ,27= ,20= .对于任意数a ,2a = .(2)2)4(= ,2)9(= ,2)25(= ,2)36(= ,2)49(= ,2)0(= .对于任意非负数a ,2)(a .*15.阅读: 1.4142≈,所以2的整数部分是1,小数部分是12-.(1)33的整数部分是 ,小数部分是 .(2)已知m 是10的整数部分,n 是10的小数部分,求1)10(--m n 的平方根.16。
人教版七年级数学下册第六章6.1平方根(教案)

4.应用平方根解决实际问题:运用所学的平方根知识解决一些简单的实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力:通过平方根的定义和性质的探究,让学生理解数学知识之间的内在联系,提高逻辑推理能力。
2.提升解决问题的能力:通过求平方根的方法学习和实际问题的应用,培养学生运用数学知识解决实际问题的能力。
举例:在解释负数没有平方根时,可以借助数轴,说明实数范围内无法找到一个数的平方等于负数;在讲解迭代法时,以√2为例,展示迭代法的步骤,让学生通过实际操作感受方法的可行性;在解决实际问题中,如计算正方形的对角线长度,指导学生先将问题转化为求边长的平方根,进而求解。
四、教学流程
(一)导入新课(用时5分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是指一个数乘以自身等于另一个数的运算。它是解决许多实际问题的关键,如在几何中求解边长、面积等。
2.案例分析:接下来,我们来看一个具体的案例。通过求解一个正方形的边长,展示平方根在实际中过程中,我会特别强调平方根的定义和求法这两个重点。对于难点部分,如负数没有平方根、迭代法的应用,我会通过举例和比较来帮助大家理解。
课堂上,我尝试通过实际案例引入平方根的应用,让学生们感受到数学知识在生活中的重要性。这种做法激发了学生的兴趣,他们积极参与讨论和实验操作,这让我感到很欣慰。但同时我也注意到,在小组讨论中,个别学生参与度不高,可能是因为他们对问题不够了解或者缺乏自信。我需要在以后的课堂中更加关注这些学生,鼓励他们大胆表达自己的想法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平方根相关的实际问题,如求解不同形状的面积。
七年级数学下册 第6章 实数 6.1 平方根(第2课时)学案

6.1平方根(第二课时)班级:姓名:学习目标:1、了解平方根的概念,会用根号表示数的平方根2、了解开方与乘方互为逆运算3、会用平方求百以内整数的平方根学习过程:一、复习回顾,引入新课:想一想:(相信你能行)(1)9的算术平方根是____。
(2)平方等于9的数是_____ .平方等于0.64的数是____(3)一对互为相反数的平方有什么关系?总结:由以上问题可知平方得一个正数的数有个,并且。
二、自主学习,合作探究探究一:平方根的概念仔细阅读教材,标注重点,完成教材中的表格。
并思考并回答下列问题:1.举例说明平方根的概念。
并与算术平方根概念区别。
2.什么叫开平方?通过预习课本知道平方与开平方互为逆运算。
3.正数的平方根有什么特点?负数有平方根吗?0有平方根吗?自主小结:1、一般地, 如果一个数x的平方等于a,即,那么这个数x就叫做a 的,记为,读作。
例如和是9的平方根,也就是说是9的平方根。
2、求一个数a的的运算,叫做开平方;与开平方互为逆运算;探究二:求一个非负数的平方根2、根据上面的计算,思考回答:(1)正数有几个平方根?他们有什么关系?(2)0 的平方根是多少?(3)负数有平方根吗?3、归纳:探究三:开平方的应用三、巩固练习 拓展提高1、2-有意义吗?a 何时才有意义?为什么?2、议一议:平方根与算术平方根有什么异同?3、求下列各数中的x 值:①225x = ②2810x -= ③2449x = ④225360x -=四、总结归纳 ,反思提升【课堂小结】:本节课你有什么收获?【课后反思】本节课我最大的收获是我还存在的疑惑是我对学案的建议是【学习评价】学案答案一、(1)3(2)3,-3;0.8,-0.8(3)相等总结:2个,互为相反数二、探究二例题1答案:(1)±10(2)±3/4(3)±0.5(4)±3/2(5)0探究三例题:(1)求36的算术平方根,6(2)求0.81的算术平方根的相反数,-0.9(3)求49/9的平方根,±7/3三、3(1)x=±5(2)x=±9(3)x=±7/2(4)x=±6。
七年级数学下册 第六章 实数 6.1.3 平方根(三)备课资料教案 (新版)新人教版

第六章 6.1.3平方根(三)那么这个数.的平方等于的算术平方根写成的平方根写成±只有一个一负数没有平方根和算术平方根的双重非负性算术平方根本身是非负数即≥【例1】若x、y为有理数,且满足|x-3|+=0,则的值是.答案:1点拨:两个非负数之和等于零,必定每个数都等于零,由此可求出x和y的值,进而求得答案.∵|x-3|+=0,∴x-3=0,y+3=0,∴x=3,y=-3,所以=(-1)2 012=1.考点2:平方根的性质应用【例2】已知一个正数的平方根是3x-2和5x+6,则这个数是.答案:点拨:由条件得(3x-2)+(5x+6)=0,解之得x=-,从而3x-2=-,5x+6=,于是由=知,所求的数为.总结:解决此类问题的关键是利用一个正数有两个平方根,它们互为相反数这个特性.考点3:平方根的计算【例3】下列各数有没有平方根?如果有,求出它的平方根与算术平方根;如果没有,请说明理由.(1)25;(2)0.008 1;(3)(-7)2;(4)-0.36.解:(1) ∵25>0, ∴25有平方根. ∵(±5)2=25,∴25的平方根是±5,即±=±5. 25的算术平方根是5,即=5.(2)∵0.008 1>0, ∴0.008 1有平方根.∵(±0.09)2=0.008 1,∴0.008 1的平方根是±0.09, 即±=±0.09. 0.008 1的算术平方根是0.09, 即=0.09.(3)∵(-7)2=49>0, ∴(-7)2有平方根. ∵(±7)2=49,∴(-7)2的平方根是±7,即±=±7.(-7)2的算术平方根是7,即=7.(4)∵-0.36<0, ∴-0.36没有平方根.点拨:25、0.008 1、(-7)2都是正数,所以它们都有平方根与算术平方根,而-0.36是负数,它没有平方根.2。
七年级初一数学下册第6章实数6.1平方根第1课时学案新版新人教版

6.1平方根(第一课时)班级: 姓名:【学习目标】1.理解算术平方根的意义,会用根号表示正数的算术平方根,会求一个非负数的算术平方根,掌握算术平方根的非负性。
2. 培养逆向思维能力。
重点难点:理解算术平方根的意义。
【学习过程】一、【自主预习】:(阅读课本40页的内容,完成以下题目)(一)算术平方根的定义表中的问题,实际上是已知一个正数的 ,求 的问题。
2. 算术平方根的定义 一般的,如果一个正数..x 的 等于a ,即a x =2,那么这个正数....x 叫做 算术平方根.....。
a 的算术平方根记为 ,读作“ ”, a 叫做 。
规定:0的算术平方根是 .(二)算术平方根的性质=2)4( ;=2)91( ;2)2(= ;=2)31( 。
一个非负数的算术平方根一定是 ,一个非负数的算术平方根的平方一定等于 。
a 要有意义,a 的取值范围是三、【合作探究】:例: 求下列各数的算术平方根:(1)100 (2)4964; (3) 0.0001. 精练1.填空:(1)因为_____2=64,所以64的算术平方根是______=______;(2)因为_____2=0.25,所以0.25的算术平方根是____________;(3)因为_____2=1649,所以1649的算术平方根是____________.2.求下列各式的值:=______;=______;=______;______;=______;=______.3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:_______,=_______,=_______,_______,_______,_______,_______,_______,_______4.辨析题:小欧认为,因为(-4)2=16,所以16的算术平方根是-4.你认为小欧的看法对吗?为什么?四、【总结升华】:本节课我的收获:我的疑问:【学习评价】答案:精练的答案:1、(1)8,8,8 (2)0.5,0.5,0.5 (3)4/7 4/7 4/72、9, 10, 1, 3/5, 0.1, 33、11,12,13,14,15,16,17,18,194、不正确,负数没有算术平方根七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,下列条件能判断a ∥b 的是( )A .∠1=∠2B .∠3=∠4C .∠2+∠3=180°D .∠1+∠3=180°【答案】B 【解析】利用平行线判定定理即可解答.【详解】解:当∠3=∠4时,可根据内错角相等两直线平行判断a//b,故选B.【点睛】本题考查平行线判定定理,熟悉掌握是解题关键.2.下列四幅图中,1∠和2∠不是同位角的有( )A .①②③B .②③④C .①②D .③④【答案】D 【解析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可.【详解】解:根据同位角的定义可知:图①②中,∠1和∠2是同位角;图③④中,∠1和∠2不是同位角;故选:D.【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.3.如图,下列推理正确的是()A.因为∠BAD+∠ABC=180°,所以AB∥CDB.因为∠1=∠3,所以AD∥BCC.因为∠2=∠4,所以AD∥BCD.因为∠BAD+∠ADC=180°,所以AD∥BC【答案】B【解析】根据平行线的判定定理分析即可.【详解】A、错误.由∠BAD+∠ABC=180°应该推出AD∥BC.B、正确.C、错误.由∠2=∠4,应该推出AB∥CD.D、错误.由∠BAD+∠ADC=180°,应该推出AB∥CD,故选:B.【点睛】考核知识点:平行线的判定.理解判定是关键.4.小亮解方程组2317x yx y+=⎧⎨-=⎩●的解为5*xy=⎧⎨=⎩,则于不小心滴上两滴墨水,刚好遮住了两个数●和*,则这两个数分别为()A.4和6-B.6和4 C.2-和8 D.8和2-【答案】D【解析】将5x=代入方程组第二个方程求出y的值,即可确定出●和*表示的数.【详解】将5x =代入317x y -=中得:2y =-,将5x =,2y =-入得:21028x y +=-=,则●和*分别为8和2-.故选:D .【点睛】此题考查了二元一次方程组的解,解题关键在于方程组的解即为能使方程组中两方程成立的未知数的值.5.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种B .3种C .2种D .1种 【答案】B【解析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得.【详解】设购买篮球x 个,排球y 个,根据题意可得120x+90y=1200,则y=4043x -, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程. 6.下列调查中,调查方式选择合理的是( )A .了解灯泡的寿命,选择全面调查B .了解某品牌袋装食品添加剂情况,选择全面调查C .了解神舟飞船的设备零件的质量情况,选择抽样调查D.了解介休绵山旅游风景区全年游客流量,选择抽样调查【答案】D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A. 了解灯泡的寿命,有破坏性,易采用抽样调查,故不合理;B. 了解某品牌袋装食品添加剂情况,有破坏性,易采用抽样调查,故不合理;C. 了解神舟飞船的设备零件的质量情况,比较重要,应采用普查的方式,故不合理;D. 了解介休绵山旅游风景区全年游客流量,工作量比较大,易采用抽样调查,故合理;故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如图,CO⊥AB于点O,DE经过点O,∠COD=50°,则∠AOE为()A.30ºB.40ºC.50ºD.60º【答案】B【解析】由已知条件和观察图形可知∠COD与∠DOB互余,∠DOB与∠AOE是对顶角,利用这些关系可解此题.【详解】∵CO⊥AB,∴∠COB=90°,又∵∠COD=50°,∴∠DOB=90°-50°=40°,∴∠AOE=∠DOB=40°,故选B.【点睛】本题利用垂直的定义,对顶角性质计算,要注意领会由垂直得直角这一要点.8.下列命题中,真命题有()①同旁内角互补;②长度为2、3、5的三条线段可以构成三角形;③平方根、立方根是它本身的数是0和1|﹣2|互为相反数;⑤45;⑥在同一平面内,如果a∥b,a⊥c.那么b⊥c.A.0个B.1个C.2个D.3个【答案】C【解析】根据平行线的性质、三角形三边关系定理、平方根、立方根、绝对值以及无理数估算分别判断即可【详解】解:①两直线平行,同旁内角互补,故原命题是假命题;②∵2+3=5,∴不能构成三角形,故原命题是假命题;③平方根是它本身的数是0,立方根是它本身的数是±1和0,故原命题是假命题;=-,﹣|﹣2|=-2,它们相等,故原命题是假命题;2⑤∵16<19<25,∴45,是真命题;⑥在同一平面内,如果a∥b,a⊥c.那么b⊥c,是真命题,所以真命题有2个,故选:C.【点睛】本题考查了判断命题真假,正确的命题叫真命题,错误的命题叫假命题,任何一个命题非真即假,判断命题真假的关键是掌握相关的性质定理.9.六边形的内角和为( )A.720°B.360°C.540°D.180°【答案】A【解析】根据多边形内角和公式2180()n -⨯︒ ,即可求出.【详解】根据多边形内角和公式2180()n -⨯︒,六边形内角和(62)180720=-⨯︒=︒ 故选A.【点睛】本题考查多边形内角和问题,熟练掌握公式是解题关键.10.如图,,,则点到所在直线的距离是线段 的长.A .B .C .D .以上都不是【答案】B【解析】根据点到线的距离是垂线即可判断. 【详解】∵, 点到所在直线的距离是线段CD 的长.【点睛】此题主要考查垂线的定义,解题的关键是熟知点到线的距离就是垂线段的长.二、填空题题11.在平面直角坐标系中,如果对任意一点(a ,b ),规定两种变换:(,)(,)f a b a b =--,(,)(,)g a b b a =-,那么[](1,2)g f -= _________.【答案】(2,1).【解析】∵()(),,f a b a b =--,()(),,g a b b a =-,∴()1,2g f ⎡⎤-⎣⎦=() 1,2g -= (2,1).故答案为(2,1).12.分解因式:29a -=__________.【答案】()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.13.已知关于x 的不等式组52112x x a ->-⎧⎪⎨->⎪⎩无解,请写出符合题意的一个整数值a 是_____________.【答案】2(1a ≥即可) 【解析】先将52112x x a ->-⎧⎪⎨->⎪⎩变形得到6212x x a >⎧⎨->⎩,化简得到32+1x x a >⎧⎨>⎩,再结合题意得到2+13a ≥,计算即可得到答案. 【详解】52112x x a ->-⎧⎪⎨->⎪⎩变形得到6212x x a >⎧⎨->⎩,化简得到32+1x x a >⎧⎨>⎩,因为关于x 的不等式组52112x x a ->-⎧⎪⎨->⎪⎩无解,所以2+13a ≥,解得1a ≥,故可取a=2. 【点睛】本题考查解一元一次不等式组,解题的关键是掌握解一元一次不等式组的方法. 14.若(x+2019)(x+2018)=1009,则(x+2019)2+(x+2018)2=________.【答案】2019【解析】设x+2019=m,x+2018=n,可得mn=1009,m-n=1,原式可转化为m2+n2=(m-n)2-2mn 的形式,代入即可得答案.【详解】设x+2019=m,x+2018=n,∵(x+2019)(x+2018)=1009,∴mn=1009,m-n=1,∴(x+2019)2+(x+2018)2=m2+n2=(m-n)2+2mn=12+2×1009=2019.故答案为:2019【点睛】本题考查了完全平方公式,熟记完全平方公式的结构形式并灵活运用“整体”思想是解题关键.15.将一直角三角板与两边平行的纸条如图放置,已知∠2﹣∠1=30°,则∠2的度数为______.【答案】60°【解析】根据平行线的性质得∠2=∠3,再根据互余得到∠2+∠1=90°,进而得出答案.【详解】解:如图所示:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°-∠1=∠2,∴∠2+∠1=90°,∵∠2-∠1=30°,∴∠2=60°.故答案为:60°.【点睛】本题考查了平行线性质:两直线平行,同位角相等,是基础题,熟记性质是解题的关键. 16.如图,已知AB CD =,使ABO CDO △≌△,还需要添加一个条件,你添加的条件是_____.(只需一个,不添加辅助线)【答案】A C ∠=∠(或B D ∠=∠)(填写出一组即可)【解析】根据全等三角形的判定定理求解即可.【详解】已知AB CD =,AOB COD ∠=∠要使ABO CDO △≌△可通过AAS 来证明即添加的条件是A C ∠=∠(或B D ∠=∠)(填写出一组即可)故答案为:A C ∠=∠(或B D ∠=∠)(填写出一组即可).【点睛】本题考查了全等三角形的问题,掌握全等三角形的判定定理是解题的关键.17.已知23730x x -+=,则221x x +=__________. 【答案】319.【解析】先对已知方程进行变形,求出1x x +的值,再对分式221x x +进行变形,将1x x +的值代入即可.【详解】∵23730x x -+=, ∴2713x x +=, ∴173x x +=, ∵22211()2x x x x+=++, ∴222211731()2()239x x x x +=+-=-=. 故填319. 【点睛】本题考查求分式的值和完全平方公式.在本题中主要用到整体思想,在代入值时不需要求出x 的值,只需要求出1x x+即可. 三、解答题18.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【答案】(1)七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.【解析】试题分析:(1)设七年级(1)班有x 人、七年级(2)班有y 人,根据如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元建立方程组求出其解即可;(2)用一张票节省的费用×该班人数即可求解.试题解析:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得 12101118{8()816x y x y +=+=, 解得:49{53x y ==.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12-8)×49=196元, 七年级(2)班节省的费用为:(10-8)×53=106元. 考点:二元一次方程组的应用.19.先化简,再求值:()()()2232a b ab bb a b a b --÷-+-,其中12a =,1b =-. 【答案】2ab -,1.【解析】先用平方差公式和用多项式除以单项式的法则进行计算,然后去括号,合并同类项化简,最后代入求值.【详解】解:()()()2232a b ab b b a b a b --÷-+-,()22222a ab b a b =----,22222a ab b a b =---+,2ab =-,当12a =,1b =-时, 原式()12112=-⨯⨯-=. 【点睛】本题考查整式的化简求值,掌握多项式除以单项式法则及平方差公式,正确计算是本题的解题关键.20.已知实数a ,b 2(b 1)0【答案】2【解析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】由题意得,a−3=0,b+1=0,解得a=3,b=−1,所以, =2.故答案为2【点睛】此题考查非负数的性质:偶次方,解题关键在于掌握运算法则.21.某商店进行店庆活动,决定购进甲、乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元. (1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6300元,同时又不能超过6430元,则该商场共有几种进货方案? (3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?【答案】(1)购进甲乙两种纪念品每件各需要80元和40元;(2)共有3种进货方案;(3)则购进甲种纪念品60件,购进乙种纪念品40件时,可获最大利润,最大利润是2280元.【解析】试题分析: (1)设购进甲乙两种纪念品每件各需要x 元和y 元,根据购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元列出方程,求出x ,y 的值即可;(2)设购进甲种纪念品a 件,则乙种纪念品(100-a )件,根据购进甲乙两种纪念品100件和购买这些纪念品的资金不少于6300元,同时又不能超过6430元列出不等式组,求出a 的取值范围,再根据a 只能取整数,得出进货方案;(3)根据实际情况计算出各种方案的利润,比较即可.试题解析:(1)设购进甲乙两种纪念品每件各需要x 元和y 元,根据题意得:2160 23280x y x y +⎧⎨+⎩== 解得80?40x y ⎧⎨⎩== 答:购进甲乙两种纪念品每件各需要80元和40元;(2) 设购进甲种纪念品a 件,则乙种纪念品(100-a )件,根据题意得:()()8040100630080401006430a a a a ⎧+-≥⎪⎨+-≤⎪⎩解得:57.560.75a ≤≤,所以a=58或59或60.所以共有三种方案,分别为方案1:购进甲种纪念品58件,则购进乙种纪念品42件;方案2:购进甲种纪念品59件,则购进乙种纪念品41件;方案3:购进甲种纪念品60件,则购进乙种纪念品40件;(3) 因为甲种纪念品获利最高,所以甲种纪念品的数量越多总利润越高,因此选择购进甲种纪念品60件,购进乙种纪念品40件利润最高,总利润=60×30+40×12=2280(元) 则购进甲种纪念品60件,购进乙种纪念品40件时,可获最大利润,最大利润是2280元.【点睛】此题考查了一元一次不等式组的应用和二元一次方程组的应用,读懂题意,找到相应的关系,列出式子是解题的关键,注意第二问应求得整数解.22.如图,三角形A′B′C′是三角形ABC经过某种变换后得到的图形.(1)分别写出点A和点A′,点B和点B′,点C和点C′的坐标;(2)观察点A和点A′,点B和点B′,点C和点C′的坐标,用文字语言描述它们的坐标之间的关系;(3)三角形ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点M′,则点M′的坐标为.【答案】解:(1)A(-2,4),A′(2,4),B(-4,2),B′(4,2),C(-1,-1),C′(1,-1);(2)横坐标互为相反数,纵坐标相等;(3)(-x,y)【解析】(1)根据点的位置写出坐标即可;(2)探究规律,利用规律解决问题即可;(3)利用(2)中结论解决问题即可.【详解】解:(1)A(-2,4),A′(2,4),B(-4,2),B′(4,2),C(-1,-1),C′(1,-1);(2)观察可知:横坐标互为相反数,纵坐标相等故答案为:横坐标互为相反数,纵坐标相等;(3)三角形ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点M则点M的坐标为(-x,y).'故答案为:(-x,y).【点睛】本题考查几何变换类型,坐标与图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.某电器超市销售每台进价分别为160元,200元的A、B两种型号的电风扇,表中是近两周的销售情况:(1)A、B两种型号的电风扇的销售单价是多少?(2)若该超市准备用不多于5400元的金额再次采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?【答案】(1)A种型号电风扇的销售单价为200元/台,B种型号电风扇的销售单价为240元/台;(2)该超市最多采购A种型号的电风扇1台.【解析】(1)设A种型号电风扇的销售单价为x元/台,B种型号电风扇的销售单价为y 元/台,根据题意可列出二元一次方程组即可求解;(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30﹣a)台,根据题意可列出不等式,即可进行求解.【详解】解:(1)设A种型号电风扇的销售单价为x元/台,B种型号电风扇的销售单价为y元/台,根据题意得:351800 4103200 x yx y+=⎧⎨+=⎩,解得:200240 xy=⎧⎨=⎩.答:A种型号电风扇的销售单价为200元/台,B种型号电风扇的销售单价为240元/台.(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30﹣a)台,根据题意得:160a+200(30﹣a)≥5400,解得:a≤1.答:该超市最多采购A种型号的电风扇1台.【点睛】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程或不等式进行求解.24.学校为数学竞赛准备了若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为竞赛的奖品.若购买2支钢笔和3本笔记本需62元,购买5支钢笔和1本笔记本需90元.(1)购买一支钢笔和一本笔记本各需多少钱?(2)若学校准备购买钢笔和笔记本共80件奖品,并且购买的费用不超过1100元,则学校最多可以购买多少支钢笔?【答案】(3)一支钢笔36元,一本笔记本30元.(3)学校最多可以购买3支钢笔.【解析】试题分析:(3)根据相等关系“购买3支钢笔和3本笔记本共需63元,购买5支钢笔和3本笔记本共需90元”,列方程组求出未知数的值,即可得解;(3)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过3300元,列出不等式解答即可.试题解析:(3)设一支钢笔需x元,一本笔记本需y元,由题意得:,解得:;答:一支钢笔需36元,一本笔记本需30元;(3)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得:36x+30(80﹣x)≤3300,解得:x≤3.答:工会最多可以购买3支钢笔.考点:3.一元一次不等式的应用;3.二元一次方程组的应用.25.(1)把下面的证明补充完整:如图,已知直线EF分别交直线AB、CD于点M、N,AB∥CD,MG平分∠EMB,NH 平分∠END.求证:MG∥NH证明:∵AB∥CD(已知)∴∠EMB=∠END()∵MG平分∠EMB,NH平分∠END(已知),∴∠EMG=12∠EMB,∠ENH=12∠END(),∴(等量代换)∴MG∥NH().(2)你在第(1)小题的证明过程中,应用了哪两个互逆的真命题?请直接写出这一对互逆的真命题.【答案】(1)见解析;(2)两直线平行,同位角相等;同位角相等,两直线平行.【解析】(1)先利用平行线的性质得∠EMB=∠END,再根据角平分线的定义得到∠EMG=12∠EMB,∠ENH=12∠END,则∠EMG=∠ENH,然后根据平行线的判定方法可得到MG∥NH.(2)由(1)可以得到答案.【详解】证明:∵AB∥CD(已知)∴∠EMB=∠END(两直线平行,同位角相等)∵MG平分∠EMB,NH平分∠END(已知)∴∠EMG=12∠EMB,∠ENH=12∠END(角平分线定义),∴∠EMG=∠ENH(等量代换)∴MG∥NH(同位角相等,两直线平行).(2)两直线平行,同位角相等;同位角相等,两直线平行【点睛】本题考查平行线的判定和性质,解题的关键是掌握平行线的判定方法和性质.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩【答案】A【解析】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.2.下列说法错误的是()A.半圆是弧B.所有内角都相等的多边形是正多边形C.三角形的三个外角中,最多有三个钝角D.三角形的三条角平分线交于一点【答案】B【解析】根据圆的有关概念对A进行判断,根据正多边形的定义对B进行判断,根据三角形的有关概念对C,D进行判断即可.【详解】A. 半圆是弧,此说法正确,不符合题意;B.各边都相等且各内角都相等的多边形是正多边形,此说法错误,符合题意;C. 锐角三角形的三个外角中,有三个钝角;直角三角形的三个外角中有两个钝角;钝角三角形的三个外角中有两个钝角;故此说法正确,不符合题意;D. 三角形的三条角平分线交于一点,此说法正确,不符合题意.故选B.【点睛】本题考查了圆的有关概念,多边形的概念以及三角形的有关概念,熟练掌握这些概念是解决此题的关键.3.一个长方体的长为0.02米,宽为0.016米,则这个长方形的面积用科学记数法表示为( )A .224.810m -⨯B .323.210m -⨯C .423.210m -⨯D .320.3210m -⨯【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:面积是0.00032=3.2×10-4m 2, 故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知是一个完全平方式,则的值可能是( ) A . B . C .或 D .或 【答案】D【解析】利用完全平方公式的特征判断即可得到结果.【详解】解:是一个完全平方式, ∴=或者=∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.我们探究得方程x+y=2的正整数解只有1组,方程x+y=3的正整数解只有2组,方程x+y=4的正整数解只有3组,……,那么方程x+y+z=10的正整数解得组数是()A.34 B.35 C.36 D.37【答案】C【解析】先把x+y看作整体t,得到t+z=10的正整数解有8组;再分析x+y分别等于2、3、4、……9时对应的正整数解组数;把所有组数相加即为总的解组数.【详解】令x+y=t(t≥2),则t+z=10的正整数解有8组(t=2,t=3,t=4,……t=9)其中t=x+y=2的正整数解有1组,t=x+y=3的正整数解有2组,t=x+y=4的正整数解有3组,……t=x+y=9的正整数解有8组,∴总的正整数解组数为:1+2+3+……+8=36,故选C.【点睛】本题考查了不定方程的正整数解,规律题,将三元一次方程里的两个未知数看作一个整体,再根据题中给出的规律求解是解题的关键.6.如图,AB∥CD ,AF交CD于点E,DF⊥AF于点F,若∠A=40°,则∠D=()A.40°B.50°C.60°D.70°【答案】B【解析】先根据两直线平行,同位角相等求出∠DEF=∠A,再根据三角形的内角和定理列式进行计算即可求解.【详解】解:∵AB∥CD,∠A=40°,∴∠DEF=∠A=40°,∵DF⊥AF,∴∠D=180°-90°-40°=50°.故选:B.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.7.下列说法正确的是()A.经过一点有无数条直线与已知直线平行B.在同一平面内,有且只有一条直线与已知直线平行C.经过直线外一点,有且只有一条直线与已知直线平行D.以上说法都不正确【答案】C【解析】根据经过直线外一点有且只有一条直线与已知直线平行即可解题.【详解】解:A. 经过直线外一点有且只有一条直线与已知直线平行,所以错误,B. 在同一平面内,(经过直线外一点)有且只有一条直线与已知直线平行,所以错误,C. 经过直线外一点,有且只有一条直线与已知直线平行,正确.故选C.【点睛】本题考查了平面内平行线的性质,属于简单题,熟悉概念是解题关键.8.如图是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.3 B.27 C.9 D.1【答案】A【解析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,12×81=27,第2次,12×27=9,第3次,12×9=3,第4次,12×3=1,第5次,1+2=3,第6次,12×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2019是奇数,∴第2019次输出的结果为3,故选:A.【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.9.不等式3x-2>-1的解集是()A.x>B.x<C.x>-1 D.x<-1【答案】A【解析】由移项、合并同类项、系数化为1即可解答.【详解】移项得,3x>-1+2,合并同类项得,3x>1,把x的系数化为1得,x>.故选A.【点睛】本题考查了一元一次不等式的解法,熟知解一元一次不等式的基本步骤是解决问题的关键.10.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【答案】D【解析】试题分析:根据三角形的高线的定义可得,则D选项中线段BE是△ABC的高. 考点:三角形的高二、填空题题11.对于平面直角坐标系xOy 中的点P(a,b) ,若点P'的坐标为(a + kb,ka + b) (其中k 为常数,且k ≠ 0) ,则称点P'为点P 的“ k 属派生点”,例如:P(1,4) 的“2 属派生点”为P'(1+ 2 ⨯ 4,2 ⨯1+ 4). 即P'(9,6) 若点P 在x 轴的正半轴上,点P 的“ k 属派生点”为P'点,且线段PP'的长度为线段OP 长度的3 倍,则k 的值_____.【答案】±1.【解析】设P(m,0)(m>0),由题意可得:P′(m,mk),根据PP′=1OP,构建方程即可解决问题;【详解】解:设P (m ,0)(m >0),由题意可得:P′(m ,mk ),∵PP′=1OP ,∴|mk|=1m ,∵m >0,∴|k|=1,∴k=±1.故答案为±1. 【点睛】本题考查坐标与图形的性质、“k 属派生点”的定义,解题的关键是灵活运用所学知识解决问题.12.如图,已知//a b ,一块含30角的直角三角板如图所示放置,245∠=,则1∠等于______度.【答案】1【解析】先过P 作PQ //a ,则PQ //b ,根据平行线的性质即可得到3∠的度数,再根据对顶角相等即可得出结论.【详解】如图,过P 作PQ //a ,a //b ,PQ //b ∴,BPQ 245∠∠∴==,APB 60∠=,APQ 15∠∴=,3180APQ 165∠∠∴=-=,1165∠∴=,故答案为1.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补. 13.如图,在ABC ∆中,D 、E 、F 分别是AC 、BD 、CE 的中点,BCE ∆的面积为1,则ACF ∆的面积为_____.【答案】1【解析】根据三角形的中线的性质即可求解.【详解】∵BCE ∆的面积为1,EC 为△BCD 的中线,∴BCD ∆的面积为2∵BD 是△ABC 的中线,∴ABC ∆的面积为4连接AE,∵E 点是BD 的中点,△ABC 与△ACE 都是以AC 为底,∴△ABC 以AC 为底的高是△ABC 高的一半∴△ACE 的面积为2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1.3平方根
【学习目标】
1.了解开方与乘方互为逆运算,能熟练地求某些非负数的平方根、算术平方根(学习重点)。
2.利用平方根、算术平方根定义解决问题(学习难点)。
01自主学习案
知识回顾:
⑴ 1:一个正数的平方根有____个,它们互为_____;0只有_____个平方根,它是________;
负数没有_____。
(2)求解下列两个题目
1:若,求(x+2)2的平方根.
【解析】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键2:己知+(x﹣2)2=0,求x﹣y的平方根.
【解析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
02课堂探究案
(一)合作交流,探求新知
1.问题导入
256.00 259.21 262.44 265.69 268.96 272.25 275.
(2)≈_________ .
(3)在哪两个数之间?为什么?
(4)表中与最接近的是哪个数?
2.求下列各式的值:
; .
3.若(a-1)2+│b-9│=0,则b
a
的算术平方根是下列哪一个( )
A.1
3
B.±3
C.3
D.-3
【解析】本题考查了算术平方根,观察表格发现规律是解题关键
2.总结,思考:
通过本节课的学习可知,并不是所有的正数的算术平方根都是有理数,这时我们既可以
用的形式表示,,•于是可用计算器算出这
个数,但实际上,当a不能写成一个有理数的平方时,.
(二)应用举例
1.计算:
(1)= ,= ;
(2)= ;
(3)= ,= .
仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)
【思路导航】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键
2.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值.
【思路导航】分别列式,求解a,b,注意算术平方根必须是非负数.
03课堂达标案
表示25的平方根
有平方根,而没有平方根
3.若2x﹣4与1﹣3x是同一个数的平方根,则x的值为.
4.已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x= .
5.解方程:
(1)x2﹣=0;(2)(x﹣1)2=36.
6.解方程:0.25(3x+1)2﹣15=0.
课堂小结
平方根是学习实数的准备知识,是以后学习一元二次方程等知识的必备基础,也是中考的必考内容之一,所以请同学们加强练习
学习反思
___________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ ______________________________________________________________。