基于单片机智能小车毕业设计

合集下载

基于单片机的智能小车 毕业设计

基于单片机的智能小车 毕业设计

基于单片机的智能小车毕业设计目录摘要 ..................................................................................... 错误!未定义书签。

ABSTRACT ........................................................................ 错误!未定义书签。

目录 (I)第1章绪论 (1)1.1引言 (1)1.2课题研究目的及意义 (1)1.3课题研究现状及发展趋势 (2)1.4本文的主要工作 (3)第2章小车的总体方案设计 (4)2.1设计思路 (4)2.2小车循迹避障传感器的选型 (6)2.3小车循迹避障设计方案 (8)第3章小车的硬件电路设计 (9)3.1单片机的选型 (10)3.2小车的硬件电路设计 (14)第4章小车的软件设计 (18)4.1主程序设计及流程图 (19)4.2避障子程序设计及流程图 (19)4.3循迹子程序设计及流程图 (20)结论 (21)参考文献 (22)致谢 (23)附录1 系统电路图 (24)附录2 智能循迹壁障小车完整程序 (27)第1章绪论1.1引言智能,在科技高速发展的今天,已成为一个引领时尚前沿的代名词,智能手机,智能机器人等等已经在工业,军事中得到广泛的作用,在不为人们所熟知的领域,如深海探测,航空航天,地质勘探,智能也发挥着举足轻重的作用[1]。

智能车是一个集环境感知、规划决策和多等级辅助驾驶等功能于一体的综合系统。

整个系统设计集中运用了自动化控制、传感技术、导航、电子、电气、PC机、机械、人工智能等多个学科的知识[2],是典型的高新技术综合体。

以后智能机器人的应用领域会愈发广泛,如在航天航空技术、海洋能源开发技术、微电子技术、制造与维修技术、农业自动化、生物医学等领域会有很大的突破和进展。

能自动识别道路并完成相关任务是对一类专业机器人的基本要求,本文主要研究的是以Atmel Mega16芯片为核心控制核心的智能车。

毕业设计基于单片机的智能循迹小车

毕业设计基于单片机的智能循迹小车

第1章绪论1.1课题背景目前,在企业生产技术不断提高、对自动化技术要求不断加深的环境下,智能车辆以及在智能车辆基础上开发出来的产品已成为自动化物流运输、柔性生产组织等系统的关键设备。

世界上许多国家都在积极进行智能车辆的研究和开发设计。

移动机器人是机器人学中的一个重要分支,出现于20世纪06年代。

当时斯坦福研究院(SRI)的Nils Nilssen和charles Rosen等人,在1966年至1972年中研制出了取名shakey的自主式移动机器人,目的是将人工智能技术应用在复杂环境下,完成机器人系统的自主推理、规划和控制。

从此,移动机器人从无到有,数量不断增多,智能车辆作为移动机器人的一个重要分支也得到越来越多的关注。

智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航及白动控制等技术,是典型的高新技术综合体。

智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶等功能于一体的综合系统。

它具有道路障碍自动识别、自动报警、自动制动、自动保持安全距离、车速和巡航控制等功能。

智能车辆的主要特点是在复杂的道路情况下,能自动地操纵和驾驶车辆绕开障碍物并沿着预定的道路(轨迹)行进。

智能车辆在原有车辆系统的基础上增加了一些智能化技术设备:(1)计算机处理系统,主要完成对来自摄像机所获取的图像的预处理、增强、分析、识别等工作;(2)摄像机,用来获得道路图像信息;(3)传感器设备,车速传感器用来获得当前车速,障碍物传感器用来获得前方、侧方、后方障碍物等信息。

智能车辆技术按功能可分为三层,即智能感知/预警系统、车辆驾驶系统和全自动操作系统团。

上一层技术是下一层技术的基础。

三个层次具体如下:(1)智能感知系统,利用各种传感器来获得车辆自身、车辆行驶的周围环境及驾驶员本身的状态信息,必要时发出预警信息。

主要包括碰撞预警系统和驾驶员状态监控系统。

碰撞预警系统可以给出前方碰撞警告、盲点警告、车道偏离警告、换道/并道警告、十字路口警告、行人检测与警告、后方碰撞警告等.驾驶员状态监控系统包括驾驶员打吨警告系统、驾驶员位置占有状态监测系统等。

(完整版)基于51单片机的智能小车控制源代码(毕业设计)

(完整版)基于51单片机的智能小车控制源代码(毕业设计)

'*************************************************//***************************************************//// 智能小车控制器基于51 单片机实现前进后退转弯与智能采样控制功能#include <reg52.h>#include<intrins.h>unsigned int tata[8];unsigned char flag=0,flag2=0,flag3=0,n,m;unsigned int Angle,q,length,temp1;sbit A仁P3A2;sbit A2=P3A3;sbit B1=P3A4;sbit B2=P3A5;sbit ENA=P3A6;sbit ENB=P3A7;sbit red1=P1A3;sbit red2=P1A6;void InitUART(void) {TMOD = 0x20;SCON = 0x50;TH1 = 0xFD;TL1 = TH1;PCON = 0x00; ES = 1; TR1 = 1;EA = 1;ENA = 1;ENB = 1;}void delay(void) // 直线延时延时函数{unsigned char a,b;for(b=255;b>0;b --) for(a=38;a>0;a--);}void delay1(void) // 转角延时函数{unsigned char w,y,c;for(c=1;c>0;c--) for(y=97;y>0;y--)for(w=3;w>0;w --);void delay3(void) // 避障延时函数{unsigned char a,b,c; for(c=98;c>0;c--) for(b=100;b>0;b --)for(a=40;a>0;a --);}void delay2(void) // 手动控制延时函数{unsigned char a,b,c;for(c=98;c>0;c--) for(b=15;b>0;b --) for(a=17;a>0;a --) { if(m){ break;}}}void qianjin() // 前进{unsigned char f;A1=1;A2=0;B1=1;B2=0;for(f=0;f<155;f++){A1=0;A2=0;B1=0;B2=1;} // 直线校准语句A1=1;A2=0;B1=1;B2=0;}void zuozhuan() // 左转{A1=1;A2=0;B1=0;B2=1;}void youzhuan() // 右转A1=0;A2=1;B1=1;B2=0;}void houtui(){A1=0;A2=1;B1=0;B2=1;}void tingzhi(){A1=0;A2=0;B1=0;B2=0;}void main(){unsigned char temp;InitUART();while(1){if(flag){flag=0;for(temp=2;temp<8;temp++) // 字符型转成整型函数{tata[temp]=tata[temp]%16;}// 执行转角指令Angle=10*(tata[2]*100+tata[3]*10+tata[4]);m=0;if(Angle<10) // 地面小角度摩擦校正函数{Angle++;}if(tata[1]=='L'){for(q=0;q<Angle;q++){zuozhuan();delay1();if(m){break;}}}else if(tata[1]=='R'){for(q=0;q<Angle;q++){ youzhuan(); delay1(); if(m) { break;}}} tingzhi();delay(); for(temp=2;temp<8;temp++) // 字符型转成整型函数{ tata[temp]=tata[temp]%16;}// 执行前进指令length=100*(tata[5]*100+tata[6]*10+tata[7]);// m=0;if(!m){ for(q=0;q<length;q++){ qianjin(); delay(); delay(); if(m) { break;} if(!red1){ delay1(); if(!red1) { youzhuan(); delay3();while(!red1);}if(!red2){delay1(); if(!red2){zuozhuan(); delay3();while(!red2);}}if((!red1)||(!red2)){houtui();delay3();while((!red1)||(!red2));}}}}if(flag3){m=0;flag3=0;if(tata[1] =='W'){qianjin(); }else if(tata[1]=='A'){A1=0;A2=0;B1=0;B2=1;} elseif(tata[1]=='S'){houtui();}else if(tata[1]=='D'){A1=0;A2=1;B1=0;B2=0;}else if(tata[1]=='T'){tingzhi(); }delay2();}tingzhi();}}void UARTInterrupt(void) interrupt 4 {if(RI) m=1;RI = 0;if(SBUF=='$'){flag2=1;}if(flag2){tata[n]=SBUF;n++;if(n==9&&tata[8]=='*'){n=0;flag=1;flag2=0;}if(n==3&&tata[2]=='#'){n=0;flag3=1;flag2=0;}}。

基于单片机的智能电动小车设计毕业设计

基于单片机的智能电动小车设计毕业设计

目录1绪论 (1)1.1智能小车设计背景 (1)1.2智能小车的意义 (1)2智能电动小车的总体设计方案 (3)2.1总体方案论证与比较 (3)2.2探测轨迹模块 (4)2.3检测金属铁片模块 (5)2.4 避障模块 (6)2.5寻找光源模块 (6)2.6显示模块 (7)2.7测量里程模块 (7)2.8 电动机驱动模块 (8)3系统的硬件电路设计 (9)3.1检测轨迹电路 (9)3.2 检测金属片电路 (11)3.3 检测障碍物电路 (11)3.4检测光源电路 (16)3.5显示电路 (16)3.6测量里程电路 (18)3.7电动机驱动电路 (19)4 系统的软件设计 (21)4.1 程序设计 (21)4.2主程序设计 (21)4.3 探测金属程序设计 (23)4.4 测量里程程序设计 (23)4.5躲避障碍物子程序设计 (24)结束语 (25)参考文献 (26)附录A 源程序 (27)附录B 总硬件图 (33)致谢 (34)毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:摘要80C51单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。

基于单片机的智能小车毕业设计

基于单片机的智能小车毕业设计

基于单片机的智能小车毕业设计目录1 引言 (1)2总体方案设计 (2)3硬件设计 (3)3.1 硬件各单元方案设计与选择 (3)3.2 单元电路设计 (6)3.3 特殊元件介绍 (11)4软件设计 (16)4.1 主程序流程图 (16)4.2 传感器信息处理子程序 (17)5预期结果和创新成果 (18)6总结 (19)参考文献 (21)谢辞 (22)附录 (24)1引言随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。

全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究[1]。

可见其研究意义很大。

本题目是结合科研项目而确定的设计类课题,主要实现小车的自动寻迹功能。

本设计采用MCS-51系列中的80C51单片机。

以80C51为控制核心,控制小车实现自动寻迹。

80C51是一款八位单片机,它的易用性和多功能性受到了广大使用者的好评。

它是第三代单片机的代表。

第三代单片机包括了Intel公司发展MCS-51系列的新一代产品,如8xC152﹑80C51FA/FB ﹑80C51GA/GB﹑8xC451﹑8xC452,还包括了Philips﹑Siemens﹑ADM﹑Fujutsu﹑OKI﹑Harria-Metra﹑ATMEL等公司以80C51为核心推出的大量各具特色﹑与80C51兼容的单片机。

新一代的单片机的最主要的技术特点是向外部接口电路扩展,以实现Microcomputer完善的控制功能为己任,将一些外部接口功能单元如A/D﹑PWM﹑PCA(可编程计数器阵列)﹑WDT(监视定时器)﹑高速I/O口﹑计数器的捕获/比较逻辑等。

这一代单片机中,在总线方面最重要的进展是为单片机配置了芯片间的串行总线,为单片机应用系统设计提供了更加灵活的方式。

Philips公司还为这一代单片机80C51系列8xC592单片机引入了具有较强功能的设备间网络系统总线----CAN(Controller Area Network BUS)[2]。

基于单片机的红外遥控智能小车设计

基于单片机的红外遥控智能小车设计

基于单片机的红外遥控智能小车设计引言:随着科技的不断发展,智能物联网已经走进了我们的生活。

智能小车作为一种智能化的产品,能够实现远程遥控、自动避障等功能,受到了广大消费者的青睐。

本文就基于单片机的红外遥控智能小车设计进行详细介绍。

一、设计目标本设计的目标是通过红外遥控,实现对智能小车的远程控制,小车能够根据收到的指令进行行驶、避障等操作。

二、设计原理1.主控芯片:本设计使用单片机作为主控芯片,常用的单片机有51系列、AVR系列等,可根据实际需求选择合适的芯片型号。

2.红外遥控模块:红外遥控模块是实现红外通信的设备,可以将遥控器发出的红外信号解码成数据,实现遥控操作。

3.电机驱动模块:电机驱动模块可将单片机的PWM信号转化为电机的动力驱动信号,控制小车的行驶方向和速度。

4.超声波传感器:超声波传感器可以感知到小车前方的障碍物距离,根据测得的距离,进行相应的避障操作。

5.电源模块:小车需要使用适当的电源,通常是锂电池或者直流电源供应。

三、系统设计1.硬件设计:(1)搭建小车底盘:根据所选择的底盘,搭建小车结构,并安装好电机驱动模块、电源模块等硬件设备。

(2)连接电路:将红外遥控模块、超声波传感器等硬件设备与主控芯片进行连接,确保每个模块正常工作。

2.软件设计:(1)红外遥控程序设计:通过红外遥控模块接收红外信号,并解码成相应的指令。

根据指令控制电机驱动模块,实现小车的行驶方向和速度控制。

(2)超声波避障程序设计:根据超声波传感器测得的距离,判断是否有障碍物,如果有障碍物就停止或者转向。

四、实验结果和讨论经过实验验证,本设计的红外遥控智能小车能够准确接收红外信号,并根据指令控制小车的行驶方向和速度。

同时,超声波传感器能够及时感知到前方的障碍物,并进行相应的避障操作。

然而,该设计仍然存在一些不足之处,比如超声波传感器的测距范围有限,可能无法感知到较小的障碍物。

此外,红外遥控信号的传输距离也有一定限制,需要保持遥控器与小车之间的距离不过远。

基于单片机的智能小车设计_毕业设计论文

基于单片机的智能小车设计_毕业设计论文

摘要AT89C51单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。

本系统以设计题目的要求为目的,采用AT89C51单片机为控制核心,利用超声波传感器检测道路上的障碍,控制电动小汽车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。

整个系统的电路结构简单,可靠性能高。

实验测试结果满足要求,本文着重介绍了该系统的硬件设计方法及测试结果分析。

在智能小车控制系统的设计中,以AT89C51为核心,用L293D驱动两个直流电机,当产生信号驱动小车前进时,是通过寻迹模块里的红外对管是否寻到黑线产生的电平信号通过LM393再返回到单片机,单片机根据程序设计的要求做出相应的判断送给电机驱动模块,让小车来实现前进、左转、右转、停车等基本功能。

寻白线时,外部环境光线的强弱对小车的运动会产生很大的影响,基于此原因,本实验中的寻迹是指在白色地板上寻黑线。

寻迹是指通过红外发射管和接收管识别路径。

采用的技术主要有:(1)通过编程来控制小车的速度;(2)传感器的有效应用;(3)新型显示芯片的采用;该设计报告共分为五章:第一章是智能小车总体概况。

介绍了小车的功能及展示了小车模型。

第二章是系统要求。

介绍了小车设计的要求及原理。

详细阐述了各功能模块的方案比较与论证,最后得出最终方案。

第三章是硬件实现及单元电路实现。

详细阐述了各部分电路的设计,并给出了原理图。

第四章是软件设计。

介绍了设计思想、程序流程图及具体程序设计。

第五章是系统调试。

介绍了调试软件WAVE ,以及软件调试过程;硬件测试及测试仪器和设备等。

最后是参考文献和附录。

关键词: AT89C51单片机;光电传感器;PWM调速;电动小车Smart cars designtheAT89C51 microcontroller is one of eight, his versatility and usability is the user high praise. This system to design for the purpose of the topic request, AT89C51 microcontroller as control core, ultrasonic sensor detection road barriers, the automatic control of electric car obstacle-avoidance, speed, and speed, and can be automatically stop recording time,mileage and speed, automatic tracing and light function. The whole system of the circuit structure is simple, reliable performance. The test results, this paper introduces the hardware design method of system analysis and test results.In the design of the control system of intelligent car, USES AT89C51 as the core, with L293D drive two dc motor driving car, when the signal generation, is going through tracing module of the infrared tubes are found by the black level signal generated LM393 single-chip microcontroller, return again according to the requirement of design procedure of judgment for motor driver module, let the car to achieve progress, left, right, the basic function such as parking. Find the white line, and the external environment of the strength of the light of sports car produce very big effect, this based on the experiments of tracing refers to the white striped floor found. Tracing is through infrared tubes and receive tube recognition path. Using the technology mainly include:(1) through programming to control the speed of the car,(2) sensor effective application,(3) new display chip USES,This design report is divided into five chapters:The first chapter is intelligent car overview. Introduces thefunction and the car show car model.Chapter 2 is the system requirements. Introduces the design requirement and the principle of car. Expounds the functional modules of the scheme comparison and argumentation, the final solution.The third chapter is hardware realization and unit circuit implementation. Expounds each part of the circuit design, and gives the principle diagram.Chapter four is a software design. Introduces the design idea and program flow chart and design program.The fifth chapter is debugging systems. Introduces the WAVE, and software testing software debugging process, Hardware testing and testing instruments and equipment, etc.The references and appendix.Keywords:AT89C51, photoelectric sensors, PWM control, electric cars目录绪论........................................................ (5)第一章智能小车总体概况 (6)1. 1 概况 (6)1. 2 总体结构图 (6)第二章系统方案设计 (7)2. 1 方案论证 (7)2.1.1 系统原理图 (7)2.1.2 路面情况检测方案的选择 (8)2.1.3 电动机的选择 (9)2.1.4 电动机驱动方案的选择 (9)2.1. 5 路程检测方案的选择 (9)2.1.6 障碍物探测方案的选择 (10)2.1.7 供电电源方案的选择 (10)第三章系统硬件电路设计 (11)3.1 系统硬件设计 (11)3.1.1 路面黑线检测设计与实现 (11)3.1.2 电动机驱动电路设计与实现 (11)3.1.3 车轮检速与路程计算 (13)3.1.4 红外避障电路 (15)3.1.5 电源电路 (15)第四章主控芯片介绍 (16)4.1. 1 AT89C51主控芯片介绍 (16)4.1. 2 电动机驱动芯片L293D (18)4.1. 3 串口电路芯片MAX232 (19)第五章软件设计 (19)5.1. 1 软件设计思想 (19)5.1. 2 主程序设计 (20)5.1. 3 显示子程序设计 (24)5.1. 4 避障子程序设计 (25)5.1. 5 寻迹模块软件程序设计 (26)第六章系统调试与结论 (29)6. 1 硬件调试 (29)6.1. 1 测试方法与仪器 (29)6.1. 2 软件程序调试 (30)6.1. 3 测试经验总结 (31)参考文献........................................................31致谢........................................................ . (31)附录A ........................................................ .33附录B......................................................... .34绪论随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。

(完整版)基于单片机智能循迹小车毕业设计

(完整版)基于单片机智能循迹小车毕业设计

沈阳理工大学课程名称:基于单片机智能循迹小车姓名:魏玉柱指导教师:程磊催宁海摘要本文论述了基于单片机的智能循迹小车的控制过程。

智能循迹是基于自动引导机器人系统,用以实现小车自动识别路线,以及选择正确的路线。

智能循迹小车是一个运用传感器、单片机、电机驱动及自动控制等技术来实现按照预先设定的模式下,不受人为管理时能够自动实现循迹导航的高新科技。

该技术已经应用于无人驾驶机动车,无人工厂,仓库,服务机器人等多种领域。

本设计采用STC89C52单片机作为小车的控制核心;采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号;采用驱动芯片L298N构成双H桥控制直流电机,其中软件系统采用C程序,本设计的电路结构简单,容易实现,可靠性高。

关键词:STC89C52 智能循迹小车TCRT5000传感器电机驱动目录1引言 (4)2 需求分析 (4)2.2 循迹小车的发展历程回顾 (5)2.3智能循迹小车的应用 (5)2.4 智能循迹小车研究中的关键技术 (8)3系统设计 (9)4详细设计 (8)4.1 硬件设计 (8)4.1.1电路原理图 (9)4.1.2 器件选择 (10)4.1.2.1 智能循迹小车的主控芯片的选择 (10)4.1.2.2 智能循迹小车电源模块的选择 (10)4.1.2.3 智能循迹小车电机驱动电路的选择 (11)4.1.2.4 智能小车循迹模块的选择 (11)4.1.3 模块设计 (12)4.1.3.1电机驱动模块电路 (12)4.1.3.2光电传感器模块 (12)4.2 软件设计 (14)4.2.1程序流程图 (14)4.2.2实现主要代码 (14)5 实验结果 (16)5.1设计实现 (16)5.2出现的问题和解决的方法 (17)6 结束语 (18)7.参考文献 (19)1引言随着控制技术及计算机技术的发展,寻迹小车系统将在未来工业生产和日常生活中扮演重要的角色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机智能小车毕业设计目录摘要 .......................................... 错误!未定义书签。

ABSTRACT ............................................... 错误!未定义书签。

目录........................................... 错误!未定义书签。

第1章绪论........................................ 错误!未定义书签。

1.1 智能小车的意义和作用......................... 错误!未定义书签。

1.2 智能小车的现状 (1)第2章方案设计与论证 (2)2.1 主控系统 (2)2.2 电源模块 (2)2.3 电机驱动模块 (3)2.3.1 电机模块选择与论证 (3)2.3.2 电机驱动模块选泽与论证 (3)2.4 循迹模块 (4)2.5 测速模块 (5)2.6 显示模块 (6)2.7 壁障模块 (7)第3章硬件设计 (8)3.1 总体设计 (8)3.2 驱动电路 (8)3.3 信号检测电路................................. 错误!未定义书签。

3.4 测速电路..................................... 错误!未定义书签。

3.5 显示电路..................................... 错误!未定义书签。

3.6 主控电路..................................... 错误!未定义书签。

第4章软件设计 (17)4.1 主程序模块设计 (17)4.1.1 主程序流程图 (17)4.1.2 主程序的设计 (17)4.2 电机驱动程序的设计 (19)4.2.1 电机驱动程序流程图 (19)4.2.2 电机驱动程序的设计.......................................................................... . (20)4.3 循迹模块程序的设计 (22)4.3.1 循迹模块流程图 (22)4.3.2 循迹模块程序的设计 (22)4.4 测距壁障模块程序的设计 (24)4.4.1 超声波测距模块流程图 (24)4.4.2 超声波测距模块程序的设计 (25)4.5 显示模块程序的设计 (26)4.5.1 显示模块流程图 (26)4.5.2 显示模块程序的设计 (26)第5章系统软硬件的调试 (29)5.1 软件程序的调试 (29)5.2 硬件电路的焊接与调试 (30)参考文献 (31)附录1 原理图 (32)附录2 源程序 (33)附录3实物图 (43)致谢..................................................................... . (44)作品(软件)使用说明书.............................................. ..45第1章绪论1.1智能小车的意义和作用智能的出现,为我们的生活和生产带来了很大的便利,同时也是以后的发展方向,智能就是可以在一个特定的环境中按照我们前面设定好的模式去自动的运作,它并不需要我们去人为的管理,就可以达到我们前面设定的目标,它的应用领域很广,如可以应用于工业控制、科学勘探、智能家居等领域。

而智能小车就是智能的一个简单的应用,智能小车就是智能化玩具中的一种,由于这类智能玩具具有较好的交互性,可控性,能够按照人们设定的模式去自动运作也深受人们的喜欢。

另外,智能小车还可以应用于危险搜索、机器人等许多方面,尤其在机器人方面具有很好的发展前景。

因此,智能化小车的研究不仅具有很大的现实意义,还具有极为广阔的应用前景和市场价值。

1.2智能小车的现状智能小车的研究、开发和应用涉及传感技术、电气技术、电气控制技术、智能控制等学科,智能控制技术是一门跨科学的综合性技术,当代研究十分活跃,应用日益广泛的领域[1]。

众所周知机器人技术的发展是一个国家高科技水平和工业自动化程度的重要标志和体现。

因此目前世界各国都在开展对机器人技术的研究。

机器人由于有很高的灵活性、可以帮助人们提高生产率、改进产品质量等优点,在世界各地的生产生活领域得到了广泛的应用[2]。

智能小车正是模仿机器人的一种尝试。

它是一种以汽车电子为背景,涵盖多学科的科技创新性设计,一般主要由路径识别、速度采集、角度控制以及车速控制等模块组成。

这种智能小车能够自动搜寻前进路线,还能爬坡,感知前方的障碍物,并自动寻找前进方向,避开障碍物。

另外如果加入相关声光讯号后,更能体现出智能化和人性化的一面。

第2章方案设计与论证2.1 主控系统由于单片机具有价格低廉,资源丰富、有较为强大的控制功能,故本次设计采用STC89C52单片机作为整个系统的核心,用其控制行进中的小车以实现其既定的性能指标。

STC89C52是一个超低功耗的增强型51单片机,和标准51系列单片机相比较它的运算速度更快,有超强的抗干扰能力,同时还支持ISP在线编程,片上集成了512字节的随机存取数据存储器(RAM),并且片含8k字节空间的可以反复擦写1000次的Flash只读存储器, 32个I/O口,以及3个16位可编程定时计数器。

其指令系统和传统的8051系列单片机指令系统完全兼容,降低了系统软件设计的难度,电路设计简单、价格低廉,在后来的实验中我们发现,STC 89C52精确度和运算速度也都完全符合我们系统的要求。

2.2 电源模块由于本系统需要给整个智能小车系统供电,考虑了以下几种方案:方案一:采用4节1.2V可充电电池组。

在电充满时4节电池电压可以达到5v且可充电电池组具有较强的电流驱动能力及稳定的电压输出性能,但是直流电机工作时会对LCD1602显示造成干扰,使其显示不稳定。

故放弃此方案。

方案二:使用双电源供电,将9v可充电方块电池电压降压、稳压到5V后给单片机系统和LCD1602及其它芯片供电。

另外采用4节1.2V可充电电池组为直流电机供电,经测试在用此种供电方式下,单片机和传感器工作稳定,直流电机工作良好,LCD显示也很稳定,小车也能长时间工作。

综上考虑,我们选择了方案二来完成智能小车整个系统的供电。

2.3 电机驱动模块2.3.1电机模块选择与论证方案一:使用步进电机作为智能小车系统的驱动电机,因为步进电机的转动角度可以精确的定位,这样就可以比较精确的定位小车的前进距离和位置。

但是由于步进电机的输出力矩偏低,并且会随着电机转速的升高而下降,在达到较高的转速时其输出的力矩会急剧下降,因此不适于小车等对速度有着一定要求的系统。

经过综合分析比较决定放弃此方案。

方案二:使用直流减速电机作为智能小车系统的驱动电机。

直流减速电机的转动力矩比较大,而且体积较小,重量也很轻,使用方便。

另外小车电机部还装有减速齿轮组,所以并不需要去考虑调速的功能,可以很方便的通过单片机来控制直流减速电机的正传、反转、停止操作。

综合以上考虑选择方案二的直流减速电机作为整个智能小车的驱动电机。

2.3.2电机驱动模块选择与论证方案一:采用继电器对电动机进行控制,通过切换电动机的开关来调整小车的速度。

这个方案的优点是电路相对比较简单,但是它的缺点也比较多,如:继电器的响应时间偏慢, 寿命较短,容易损坏,可靠性也不是很高。

故决定放弃此方案。

方案二:采用专用的电机驱动芯片L298N来控制直流减速电机, L298N芯片(如图2-3)是一个具有高电压大电流的全桥驱动芯片,一片L298N芯片可以分别的控制两个直流减速电机,在6~46V的电压下,可以提供2A的额定电流,并且具有过热自动关断和电流反馈检测功能,安全可靠。

该芯片是利用TTL电平进行控制的。

通过单片机的IO口输出高低电平来改变芯片控制端的输入电平,即可以实现对电机进行正转、反转和停止操作。

另外为了保证L298N的正常工作,我还安装了8个续流二极管1N4007。

用该芯片作为电机驱动,驱动能力大、操作方便、稳定性好、性能优良。

综合以上分析与论证我们选择方案二的驱动芯片L298N作为整个智能小车系统的电机驱动电路。

图2-3L298N2.4 循迹模块方案一:用光敏电阻来探测。

光敏电阻的阻值会随着周围环境光线的变化而变化[6]。

因此当光敏电阻在黑色轨迹的上方和白色轨迹的上方时,阻值会发生较为明显的变化。

将阻值的变化值输入到电压比较器就可以输出高低电平。

单片机就可以根据反馈来的不同的电平信号,发出相应的控制操作命令来控制小车的左转,右转,前进或者停止。

但实际效果并不理想,误测几率偏大、容易受外界的光线环境的影响,不能够稳定的工作。

因此考虑其它更加稳定的方案。

方案二:采用红外反射式光电管完成系统循迹[3]。

TCRT5000(如图2-4)是一种一体化反射型光电探测器,传感器采用高发射功率红外光电二极管和高灵敏度光电晶体管组成,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管。

它是利用了光的反射原理,当光线照射在白纸上,反射量会比较大,反之,当光照射在黑色物体上,反射回去的量比较少,因为黑色会吸收光,这样就可以判断黑胶带带轨道的走向。

采用红外线发射,外面可见光对接收信号的影响较小,利用红外对管对黑线边界进行检测,再用LM393对检测信号进行比较,取反,送单片机进行处理。

此光电对管电路简单,工作性能稳定。

经测试方案二不论是在黑暗或者是强光照射下,智能小车系统均可以很稳定的工作,对外界环境的适应能力比较强。

因此我们选择方案二。

图2-4 TCRT50002.5 测速模块方案一:采用霍尔传感器检测轮子上的小磁铁从而给单片机中断脉冲,通过单位时间对脉冲的计数通过公式就可以算出实时的车速,达到测量速度的作用。

霍尔元件具有体积小,动态特性好,频率响应宽度大,对外围电路要求简单,使用寿命长,安装方便,价格低廉等特点。

但是需要和磁钢配对使用比较麻烦。

方案二:采用光电码盘,即透射式光电传感器(凹槽型如图2-5)进行测速。

槽型光耦是由红外发光管和光敏三极管构成的,工作时红外发光管发出红外光线透过光耦的槽投射到光敏三极管上,光敏三极管导通,集电极输出低电平。

当红外光线被检测物遮断时,光敏三极管截止,集电极输出高电平。

遮挡一次槽型光耦输出一个脉冲,因此脉冲的个数就是被检测物的数量。

车轮转动时带动码盘转动,单片机部计时可测出给定的时间通过的脉冲数,从而测出小车的实时速度。

使用方便,抗干扰性较强。

通过比较方案一和方案二的优缺点,综合多方面因素决定选用方案二。

图2-5 槽型光电传感器2.6 显示模块方案一:采用LED数码管显示。

相关文档
最新文档