第二章 球罐结构设计说课讲解

合集下载

球罐及球罐结构

球罐及球罐结构

球罐及球罐结构1.球罐及球罐结构1.1球罐球形容器在我国的应用领域非常广泛,例如,在石油、化工、冶金、城市煤气等工业总,球型容器被用于储存野花石油气、液氧、液氮、液氢、液氨、氧气、氮气、天然气、城市煤气、压缩空气等物料;在原子能发电站,球形容器用作核安全壳;在造纸厂用作蒸煮球;在化工厂也被用作反应器等。

固我们把用于储存气体或液体介质的球形容器被称作球形储罐(简称“球罐”)。

1.2球罐结构1.2.1 球壳球壳结构形式主要分足球瓣式、桔瓣式和混合式三种。

国内自行设计、制造、组焊的球罐多为桔瓣式。

足球式瓣球罐的球壳划分和足球壳一样,所有球壳板片大小相同,所以又叫均分法。

优点是每块球壳板尺寸相同,下料成型规格化,材料利用率高,互换性好,组装焊缝较短,焊接及检验工作量小,缺点是焊缝布置复杂,施工组装困难,对球壳板得制造精度要求高,由于受钢板规格及自身结构的影响,一般只适用于制造容积小于120m3的球罐。

桔瓣式球罐的球壳划分就像桔瓣,是一种最通用的形式。

优点是焊缝布置简单,组装容易,球壳板制造简单,缺点是材料利用率低。

混合式球罐的球壳组成是:赤道带和温带采用桔瓣式,极板采用足球瓣式。

由于取其桔瓣式和足球瓣式两种结构形式的优点,材料利用率较高,焊缝长度缩短,球壳板数量减少,且特别适用大型球罐。

该结构国外以广泛采用。

随着我国石油、化学、城市煤气等工业的迅速发展,近年来引进了许多混合式结构形式的大型球罐,通过对引进球罐的施工、开发研究,国内已经基本掌握了该种接搜形式球罐的设计、制造、组装和焊接技术。

GB12337—1998对球壳板的最小宽度加以限制,不小于500mm,且球壳板不允许拼接,是为了尽可能的减少焊缝长度。

球壳具体的分带和分块数量参照GB/T17261—1998确定。

1.2.2坡口各施工单位在长期的施工过程中,根据习惯和实际经验,大都制定有本单位的焊缝坡口形式与尺寸,固在GB12337—1998不作硬性规定,根据经验,本次实习采用“X”型坡口。

混合式球罐课程设计

混合式球罐课程设计

概论1.1 球罐简介:随着世界各国综合国力与科技水平的不断提高,球星容器的制造水平也正在飞速发展。

近年来,我国在石油化工、合成氨、城市燃气建设中,大型球罐容器的到广泛应用。

例如,在石油、化工、冶金城市煤气的工程中,球形容器被用于储存液化石油气、液化天然气、液氧、液氨、液氮等物料;在原子能发电站,球形容器被用作核安全壳;在造纸厂被用作蒸煮球等。

由于球形容器多数作为有压储存容器,故又称球形储罐(简称“球罐”)。

总之,随着工业的发展,球形容器的使用范围必将越来越广。

1.1.1 球罐的特点与圆筒形容器相比其主要优点是:(1)受力均匀(2)在同样壁厚条件下,球罐的承载能力最高,在相同内压条件下,球形容器所需要壁厚仅为同直径、同材料的圆筒形容器壁厚的1/2(不考虑腐蚀裕度)(3)在相同容积条件下,球形容器的表面积最小,由于壁厚、表面积小等原因,一般要比圆筒形容器节约30%~40%的钢材其主要缺点是制造施工比较复杂。

1.1.2 球罐的分类球罐的结构是多种多样的,根据不同的使用条件(介质、容量、压力湿度)有不同的结构形式。

通常按照外观形状、壳体构造和支承方式的不同来分类。

(1)按形状分为圆球形和椭球形(2)按壳体层数分为单层壳体和双层壳体(3)按球壳的组合方式分为纯橘瓣式、纯足球瓣式和足球橘瓣混合式(4)按支承结构分为柱式支承和裙式支承,半埋入式支承、高架支承等1.2 1Gr17材料焊接性分析:1Cr17不锈铁标准:GB/T 1220-19921.2.1 特性及适用范围1Cr17不锈铁为耐蚀性良好的通用钢种。

用于建筑内装饰、重油燃烧器部件、家庭用具和家用电器部件等。

S43000(美国AISI,ASTM) 430对应的中国牌号是1 Cr17 。

导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等特点,多用于制造耐大气、水蒸气、水及氧化性酸腐蚀的零部件。

1.2.2 化学成份(质量分数)%碳 C :0.12硅 Si:≤0.75锰 Mn:≤1.00硫 S :≤0.030磷 P :≤0.035铬 Cr:16.00~18.00镍 Ni:允许含有≤0.601.2.3 力学性能抗拉强度σb (MPa):≥450条件屈服强度σ0.2 (MPa):≥205伸长率δ5 (%):≥22断面收缩率ψ (%):≥50硬度:≤183HB1.2.4 焊接工艺要点1)焊前要预热,但必须采用低温预热。

球形储罐图文简介 PPT课件

球形储罐图文简介 PPT课件
所有丁字口应再至少100毫米范围 内满焊,必要时可焊两层。
29
1、焊接前准备 球罐组装完成后经报检合格后开始进行焊
接。首先搭设外侧脚手架,为保证焊接 质量,应球罐外侧搭建整体的防风棚, 并在现场设置湿度计和温度计对施焊环 境进行即时监控。
30
2、焊接材料管理
焊接材料的管理是确保球罐焊接质量的一 个重要因素,焊材库应设专人进行管理,应有 严格的焊材烘干规程和焊材发放、回收制度。 焊材库内应配备温度计和湿度计对室内环境进 行监控,并应配备空气去湿机。焊材库内不准 堆放其它杂物。焊工领取焊条一律用保温筒盛 装并在整个施焊过程中一直存放在保温筒内。 焊条出库后4小时之内未使用完毕应一律退回 进行二次烘干,为确保焊接质量,二次烘干的 焊条不宜用于对接焊缝的焊接,可以在焊接垫 板角焊缝时使用。
19
2
1
3
左图为赤道带安装 的起始工序,先安装 1号和3号带支柱的 赤道板,然后安装2 号赤道板,完成后即 可按顺时针或逆时针 方向依次安装其它赤 道板,直至赤道带合 拢。组装的操作过程 是在专用的梯子上完 成的,梯子需现场绑 制,顶端有两个吊钩 挂在赤道板上,随赤 道板一同起吊。
20
安装第一块赤道板
12
三、球罐组装
1、支柱组对
对于分段到货的支柱,应首先进行支柱下段的现场组装,支柱对接 口通常为承插口,组装时将赤道板平放,支柱下段安装就位后从与赤道 板焊焊接在一起的支柱上段引一条粉线与支柱上段平行,上下调整支柱 下段的位置与粉线平行(见图1),然后测量支柱底座两侧分别到赤道板 两下角的距离,左右调整下段支柱,使两侧的距离相等(见图2),最后 点焊固定,然后进行焊接。组对过程主要应控制上、下支柱的同心度、 直线度和下支柱的焊角高度在规范的允许范围内。

球罐结构设计

球罐结构设计

第二章 球罐结构设计球壳球瓣结构尺寸计算 设计计算参数:球罐内径:D=12450mm []23341-表P几何容积:V=974m 3 公称容积:V 1=1000m 3球壳分带数:N=3 支柱根数:F=8各带球心角/分块数: 上极:°/7 赤道:°/16 下极:°/7图 2-1混合式排板结构球罐混合式结构排板的计算:1.符号说明:R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角° (360/16)0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:图2-2弧长L )=1800βR π =18070622514.3⨯⨯=弦长L =2Rsin(20β)=2x6225×sin(270)=7141mm弧长1B )=N R π2cos(20β)=1614.362252⨯x ×cos 270=弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 25.22=弧长2B )=N R π2=1614.362252⨯x =弦长2B =2Rsin 2α=2x6225×sin(25.22)=弦长D =2R )2(cos )2(cos 1202αβ- =2x6225x )25.22(cos )270(cos 122- = 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x62257413.0) =极板(图2-3)尺寸计算:图2-3对角线弧长与弦长最大间距: H=)2(sin 1212ββ++=)11244(sin 12++ = 弦长1B =H R )2sin(221ββ+=139.1)11244sin(62252+x x =弧长1B )=90R πarcsin(2R B 1)=90622514.3x arcsin(2x62253.5953)=弦长0D =21B )=2×=弧长0D )=90R πarcsin(2R D )=903.14x6225arcsin(2x62258774)=弦长2B =2Rsin(212ββ+)=2x6225xsin(11244+)=弧长2B )=180)2(21ββ+R π=1802x11)(44622514.3+⨯⨯=(1)极中板(图2-4)尺寸计算:图2-4对角线弦长与弧长的最大间距:A=)2(sin )2(sin 121212βββ+-=弧长2B )=1801βR π=弦长2B =2Rsin(21β)= 弧长2L )=180)2(R 21ββ+π=弦长2L =2Rsin(212ββ+)=弦长1L =A )2sin()2cos(2R 211βββ+= 弧长1L )=90R πarcsin(R L 21)=弦长1B =AR )2cos()2sin(2211βββ+=弧长1B )=90R πarcsin(2RB 1)=弦长D =2211B +L =弧长D )=90R πarcsin(2R D )=(2)侧极板(图2-5)尺寸计算:图2-5弦长1L =2Rcos(21β)sin(212ββ+)/A= 弧长1L )=90R πarcsin (R L 21)=弦长 2L =2Rsin(212ββ+)/H=弧长 2L =90Rπarcsin(R L 22)=K=2Rsin(21β)cos(212ββ+)/A= 式中 同前1ε=arcsin(R L 22)-arcsin (2RK )=弧长2B )=1802βR π=弦长2B =2Rsin(22β)=弧长1B )=1801επR =弦长D =21L L 1+B =弧长D )=90R πarcsin(2R D)=4.极边板(图2-6)尺寸计算:图2-6弧长1L )=2R πcos(2β)=弦长1L =2Rcos(2β)=弦长3L =2Rsin(222ββ+)/H=弧长3L )=90R πarcsin(2R L 3)=弧长2B )=1802βR π=弦长2B =2Rsin(22β)=式中 2α=21800β--arcsin(R 2D 0)= M=22Rsin(212ββ+)/H=3α=90°-2β+arcsin(RM2)= 4α=2 arcsin[22sin(23α)]=弧长1B =1802αR π=弦长1B =2Rsin(22α)=弦长D =3112L L B +=弧长D )=90R πarcsin(2R D )=弧长2L =1804απR = 弦长2L =2Rsin(23α)=第四章 强度计算球壳计算设计压力:设计温度:-20 — 40℃试验压力: + H*ρ*g*10-6 = 壳壁厚度球壳材料采用1Gr17,σb =450MPa,常温下许用应力为[σ]t=150MPa.[]14143-表P取焊缝系数:φ=[1]P110腐蚀裕量C2=2mm,钢板厚度负偏差C1=0mm,故厚度附加量C=C1+C2=2mm.[]1363-表P液柱高度H: H=K1R=*6225=9960mm液体的静压力P=ρgH = 6225**9960*10-9 =计算压力:Pc = + =球壳所需壁厚:δ1=CPDPctc+-ϕσ][4[]84691-式P= + 2 =圆整可取δ=38mm4.2接管和法兰的选择接管根据JBM0503-08选用DN25 DN40 DN50接管。

球罐讲义

球罐讲义

球罐制造讲义中国石油天然气第七建设公司装备制造分公司2011年4月13日1.球罐结构形式球罐各部分名称2.材料2.1.球壳板材料钢板应逐张检查验收。

凡检验合格的钢板按炉批号的质量证明书应包括以下几项主要内容:钢板牌号、规格;化学成分;拉伸、冲击、弯曲试验结果;正火状态;超声检测结果;产品号(钢板号);钢板厚度不得出现负偏差;球罐主体板不允许拼接。

2.2锻件锻件外形质量应符合订货图样的要求,锻件不允许补焊。

凡检验合格的锻件,应逐件提供产品质量证明书,质量证明书应包括:材料牌号、规格及冶炼方法;热处理规范;化学成分分析报告;力学性能检验报告;超声检测报告;检验编号等,并按《固定式压力容器安全技术监察规程》要求进行复验。

锻件应满足定货技术要求。

2.3 焊材焊接材料必须有质量证明书,并应符合设计技术条件的有关规定。

并根据质量证明书对焊条进行扩散氢含量复验,按GB/T3965执行,气相色谱法测定,扩散氢含量满足标准要求。

3.工艺流程图纸会审→编制各种工艺技术文件→材料入库、检验、复验→钢板表面预处理→喷防锈面漆→毛料切割、打磨→冲压成型→净料切割→坡口加工→矫形、边缘探伤→支柱预制→赤道带板组焊支柱、极板组焊人孔接管、探伤检查→矫形→涂防锈漆→产品包装→发运4.球壳板的制造4.1 球壳板板材进行表面预处理4.2 毛料球壳板下料、标记移植毛料切割(示意)4.3 球壳板冲压采用多点冷成型工艺成形,成形时缓慢压制到规定的曲率,曲率应均匀,冲压时每个压点重合率不得小于2/3,球壳板成型在环境温度0℃以上进行。

冲压成型后,用规定样板(样板弦长≥2m)检查球壳板曲率,球壳板应放置在专用检查胎架上检查。

毛料冲压(示意)4.4 划净料线净料样板的数据应用我公司自行开发研制的《球罐计算专用软件》运算得出,样板精度应定期检定认可,未经检定认可的样板不得使用。

4.5 坡口切割切割球壳板坡口采用三嘴头火焰切割机。

点火后,调整切割火焰,使其达到满足切割坡口光洁度要求的理想稳定状态后,方可正式切割。

低温双层球罐结构设计

低温双层球罐结构设计

(3-20)
对角线:
= 2



+ sin ( ) ×
2
2

2
+


2
(3-21)
=1430.37
c.赤道板板几何尺寸计算
弦长:
= 2

50
= 2 × 5750 sin
= 4860.11
2
2
弧长:
12
(3-22)
=


=
× 50 × 5750 = 5015.28
( − )
( − )
(2-9)
式中, 为保冷层外径,mm; 为球罐内球壳外直径,mm;
为单层保冷层材料使用温度下的导热率, W/(m·K);
为保冷层外侧环境温度,℃; 为保冷层外表面温度,℃;
为介质温度,℃。
经计算外层球罐内直径为: = 12700。
(3-13)
π
αR = 3.14 ÷ 180 × 38 × 5750 = 3811.6mm
180°
(3-14)
a = 21
2
= 2 × 5750 ×
2
弧长:
a =
11
b.上、下温带板几何尺寸计算
上弦长:
= 2

180
38
180

= 2 × 5750 × sin
sin
1.0
0.1
设计温度(℃)
-196
-20/50
腐蚀裕量(mm)
0
焊接接头系数
1.0
无损探伤RT
100%
球壳材质
S30408
设计压力(MPa)

第二章球罐结构设计

第二章 球罐结构设计球壳球瓣结构尺寸计算 设计计算参数:球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3球壳分带数:N=3 支柱根数:F=8各带球心角/分块数: 上极:°/7 赤道:°/16 下极:°/7图 2-1混合式排板结构球罐混合式结构排板的计算:1.符号说明:R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角° (360/16)0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:图2-2弧长L =1800βR π =18070622514.3⨯⨯=弦长L =2Rsin(20β)=2x6225×sin(270)=7141mm弧长1B =N R π2cos(20β)=1614.362252⨯x ×cos 270=弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 25.22=弧长2B =N R π2=1614.362252⨯x =弦长2B =2Rsin 2α=2x6225×sin(25.22)=弦长D =2R )2(cos )2(cos 1202αβ- =2x6225x )25.22(cos )270(cos 122- = 弧长D =90R πarcsin(2R D )=903.14x6225arcsin(2x62257413.0) =极板(图2-3)尺寸计算:图2-3对角线弧长与弦长最大间距: H=)2(sin 1212ββ++=)11244(sin 12++ = 1B=L =1B=2B = 0D =弦长1B =H R )2sin(221ββ+=139.1)11244sin(62252+x x =弧长1B =90R πarcsin(2R B 1)=90622514.3x arcsin(2x62253.5953)=弦长0D =21B=2×=弧长0D =90R πarcsin(2R D )=903.14x6225arcsin(2x62258774)=弦长2B =2Rsin(212ββ+)=2x6225xsin(11244+)= 弧长2B =180)2(21ββ+R π=1802x11)(44622514.3+⨯⨯=(1)极中板(图2-4)尺寸计算:图2-4对角线弦长与弧长的最大间距: A=)2(sin )2(sin 121212βββ+-=弧长2B =1801βR π=弦长2B =2Rsin(21β)= 弧长2L =180)2(R 21ββ+π=弦长2L =2Rsin(212ββ+)=弦长1L =A )2sin()2cos(2R 211βββ+= 弧长1L =90R πarcsin(R L 21)=1B =2B =2L = 1L =弦长1B =AR )2cos()2sin(2211βββ+=弧长1B =90R πarcsin(2RB 1)=弦长D =2211B +L =弧长D =90R πarcsin(2R D )=(2)侧极板(图2-5)尺寸计算:图2-5弦长1L =2Rcos(21β)sin(212ββ+)/A= 弧长1L =90R πarcsin (R L 21)=弦长 2L =2Rsin(212ββ+)/H=弧长 2L =90Rπarcsin(R L 22)=K=2Rsin(21β)cos(212ββ+)/A= 式中 同前1ε=arcsin(R L 22)-arcsin (2RK )=弧长2B =1802βR π=弦长2B =2Rsin(22β)=1B=2B =2L= 1L =弧长1B =1801επR =弦长D =21L L 1+B =弧长D =90R πarcsin(2R D)=4.极边板(图2-6)尺寸计算:图2-6弧长1L =2R πcos(2β)=弦长1L =2Rcos(2β)=弦长3L =2Rsin(222ββ+)/H=弧长3L =90R πarcsin(2R L 3)=弧长2B =1802βR π=弦长2B =2Rsin(22β)=式中 2α=21800β--arcsin(R 2D 0)= M=22Rsin(212ββ+)/H=3α=90°-2β+arcsin(RM2)= 4α=2 arcsin[22sin(23α)]=弧长1B =1802αR π=弦长1B =2Rsin(22α)=弦长D =3112L L B +=1B=2B = 3L =1L=弧长D =90R πarcsin(2R D )=弧长2L =1804απR = 弦长2L =2Rsin(23α)=第四章 强度计算球壳计算设计压力:设计温度:-20 — 40℃试验压力: + H*ρ*g*10-6 = 壳壁厚度球壳材料采用1Gr17,σb =450MPa ,常温下许用应力为[σ]t =150MPa.[]14143-表P 取焊缝系数:φ=[1]P110腐蚀裕量C 2=2mm ,钢板厚度负偏差C 1=0mm , 故厚度附加量C=C 1+C 2=2mm.[]1363-表P 液柱高度H : H=K 1R=*6225=9960mm液体的静压力P=ρgH = 6225**9960*10-9 = 计算压力:Pc = + = 球壳所需壁厚: δ1=CP D P ctc +-ϕσ][4[]84691-式P = + 2 =圆整可取δ=38mm4.2 接管和法兰的选择接管根据JBM0503-08选用DN25 DN40 DN50接管。

球罐设计_精品文档

球罐设计第一章确定设计参数、选择材料一、确定设计参数(一)设计温度储罐放在室外,罐的外表面用150mm的保温层保温。

在吉林地区,夏季可能达到的最高气温为40℃。

最低气温(月平均)为-20℃。

(二)设计压力罐内储存的是被压缩且被冷却水冷凝的液氨。

氨蒸汽被压缩到0。

9,1、4MPa,被冷却水冷凝。

液氨40℃时的饱和蒸汽压由[1]查得为:P汽=1、55MPa(绝对压力)。

为保证安全,在罐顶装有安全阀,故球罐设计压力为安全阀的启动压力,即:P=(1、05-1、1)P汽=(1、05-1、1)1、45=1、523,1、595MPa取设计压力P=1、6MPa(三)焊缝系数球罐采用坡口,双面对接焊,并进行100%的无损探伤,由[2]知=1、0(四)水压试验压力由[4]知水压试验压力为:PT=1、25Pt球壳材料为16MnDR,初选板厚为36mm,由[3]表3查得=157MPa,PT=1、25P157、157=1、251、61=2、06MPat=157MPa则试验时水温不得低于5℃。

(五)球罐的基本参数球罐盛装量为170吨/台。

液氨-20℃的密度为0。

664吨/M3,40℃时0。

58吨/M3。

球罐所需容积(按40℃计)为:V=1700。

58=293、1M31700。

5已给盛装系数为0。

5,即不得装满,故实际所需容积为:V==340M3,其小于400M3,余容较大,足够用,相差17。

6%,符合标准要求。

按公称容积4003设计,由[2]附录一P41查得球罐基本参数如表一1-1公称容积内径㎜几何容积m支座型式支柱根数分带数3表,1-1球罐基本参数400各上极带9200408赤道正切式85带球心角45°/345°/1645°/1645°/1645°/3上温带赤道带下温带各带下极带分块数1二.材料的选择按操作条件要求及各种材料的性能特点,分别选择如下。

(一)球壳钢板操作最低气温为-20℃。

储罐的结构专题培训课件


5.2 储罐的结构
13
过程设备设计
图5-4 支撑 式锥顶罐简 图
1-锥顶板 2-中间支柱 3-梁 4-承压圈 5-罐壁 6-罐底
锥顶荷载主要 靠梁或檀条(桁 架)及柱来承担
5.2 储罐的结构
14
过程设备设计
图5-5 自支撑拱顶罐简图
1-拱顶 2-包边角钢 3-罐壁 4-罐底
可承受较高的饱和蒸气 压,蒸发损耗较少。它 与锥顶罐相比耗钢量少 罐顶气体空间较大,制 作时需用模具,是国内 外广泛采用的一种储罐 结构
5.2 储罐的结构
过程设备设计
地面卧式储罐 地下卧式储罐
区别
管口的开设位置 接管集中安放
9
5.2 储罐的结构
5.2.2 立式平底筒形储罐
过程设备设计
固定式储罐属于大型仓储式常压或低压储存设备,主 要用于储存压力不大于0.1MPa的消防水、石油、汽油等 常温条件下饱和蒸气压较低的物料。
10
5.2 储罐的结构
5.2.3 球形储罐
罐体 支座 人孔和接管 附件
21
过程设备设计
5.2 储罐的结构
5.2.3 球形储罐
过程设备设计
分类
22
外观
球形 椭球形
壳体构造方式
球壳层数 球壳组合方案
单数 多数
桔瓣式 足球瓣
支撑方式
支柱式支座 筒形或锥形裙式支座
混合式
5.2 储罐的结构
典型结构示例
圆球形单层纯桔瓣式 赤道正切球罐
5.2 储罐的结构
过程设备设计
与外浮顶储罐相比,内浮顶储罐可大量减少储液的蒸发损耗, 降低内浮盘上雨雪荷载,省去浮盘上的中央排水管、转向扶 梯等附件,并可在各种气候条件下保证储液的质量,因而有 “全天候储罐”之称,特别适用于储存高级汽油和喷气燃料 以及有毒易污染的液体化学品。

SNM-球罐讲义

9/136
足球瓣式是将球体沿径纬 方向切割,每块球壳板的结构 尺寸完全相同,互换性好,下 料成型规格化,材料利用率高, 拼装焊缝长度短,相应检测工 作量亦小。
缺点是球壳板交接处有Y型 焊缝,焊缝布局复杂,施工组 装困难,对球壳板的精度要求 高。
10/136
混合式兼备了桔瓣式和足 球瓣式两者的特点,是将球壳 除极板采用足球瓣式外,其余 均用桔瓣式球壳板。相对桔瓣 式而言,混合式的优点是材料 利用率较高,焊缝长度有所缩 短,球壳板数量减少,故特别 适用于大型球罐。缺点是因具 有两种型式的球壳板,组装校 正较麻烦,仍有Y型接缝,制造 精度要求高。
12/136
表1 1000m3桔瓣式与混合式球罐比较表
型式 球壳分带数 支柱根数 总块数
引 桔瓣式 5

球 罐
混合式
3
8
54
10
28
GB/T17261
桔瓣式 5
8
54
10
66
混合式 3 4
8
30
10
54
各带分块数 焊缝长度 3+16+16+16+3 352
6+14+7
ห้องสมุดไป่ตู้
272
3+16+16+16+3 3+20+20+20+3
TSG R0004-2009《固定式压力容器安全技术监察规程》 规定了储存液化气体的压力容器应当规定设计储存量,装量 系数不得大于0.95。
球罐装量系数与装量高度关系: 装量系数K系球缺体积V´与球壳
体积V之比值:
K

V
'

H
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 球罐结构设计2.1 球壳球瓣结构尺寸计算 2.1.1 设计计算参数:球罐内径:D=12450mm []23341-表P几何容积:V=974m 3 公称容积:V 1=1000m 3球壳分带数:N=3 支柱根数:F=8各带球心角/分块数: 上极:112.5°/7 赤道:67.6°/16 下极:112.5°/7图 2-1混合式排板结构球罐2.1.2混合式结构排板的计算:1.符号说明:R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角22.5° (360/16)0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:图2-2弧长L )=1800βR π =18070622514.3⨯⨯=7601.4mm弦长L =2Rsin(20β)=2x6225×sin(270)=7141mm弧长1B )=N R π2cos(20β)=1614.362252⨯x ×cos 270=2001.4mm弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 25.22=1989.6mm弧长2B )=N R π2=1614.362252⨯x =2443.3mm弦长2B =2Rsin 2α=2x6225×sin(25.22)=2428.9mm弦长D =2R )2(cos )2(cos 1202αβ-=2x6225x )25.22(cos )270(cos 122- = 7413.0mm 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x62257413.0) = 7936.4mm极板(图2-3)尺寸计算:图2-3对角线弧长与弦长最大间距: H=)2(sin 1212ββ++=)11244(sin 12++ = 1.139mm 1B ) = 2001.4L )= 7601.41B )= 6204.12B )=7167.1 0D )=9731.7弦长1B =H R )2sin(221ββ+=139.1)11244sin(62252+x x =5953.3mm弧长1B )=90R πarcsin(2R B 1)=90622514.3x arcsin(2x62253.5953)=6204.1mm弦长0D =21B )=2×6204.1=8774.0mm弧长0D )=90R πarcsin(2R D )=903.14x6225arcsin(2x62258774)=9731.7mm弦长2B =2Rsin(212ββ+)=2x6225xsin(11244+)=6780.8mm 弧长2B )=180)2(21ββ+R π=1802x11)(44622514.3+⨯⨯=7167.1mm(1)极中板(图2-4)尺寸计算:图2-4对角线弦长与弧长的最大间距: A=)2(sin )2(sin 121212βββ+-=0.979mm弧长2B )=1801βR π=4778.0mm弦长2B =2Rsin(21β)=4663.9mm 弧长2L )=180)2(R 21ββ+π=7167.1mm弦长2L =2Rsin(212ββ+)=6780.8mm弦长1L =A )2sin()2cos(2R 211βββ+=6421.9mm 弧长1L )=90R πarcsin(R L 21)=6744.0mm1B )= 4065.22B )=4663.92L )=7167.1 1L )=6744.0弦长1B =AR )2cos()2sin(2211βββ+=3995.3mm弧长1B )=90R πarcsin(2RB 1)=4065.2mm弦长D =2211B +L =7563.3mm弧长D )=90R πarcsin(2R D )=8124.5mm(2)侧极板(图2-5)尺寸计算:图2-5弦长1L =2Rcos(21β)sin(212ββ+)/A=6421.9mm 弧长1L )=90R πarcsin (R L 21)=6744.0mm弦长 2L =2Rsin(212ββ+)/H=5953.3mm弧长 2L =90Rπarcsin(R L 22)=6204.0mmK=2Rsin(21β)cos(212ββ+)/A=3995.3mm 式中 A.H 同前1ε=arcsin(R L 22)-arcsin (2RK )=9.85mm弧长2B )=1802βR π=1194.5mm弦长2B =2Rsin(22β)=1193.3mm1B )= 1069.62B )=1194.52L )=5953.3 1L )=6744.0弧长1B )=1801επR =1069.6mm弦长D =21L L 1+B =6183.5mm弧长D )=90R πarcsin(2R D)=6467.7mm4.极边板(图2-6)尺寸计算:图2-6弧长1L )=2R πcos(2β)=8005.8mm弦长1L =2Rcos(2β)=7210.3mm弦长3L =2Rsin(222ββ+)/H=5953.3mm弧长3L )=90R πarcsin(2R L 3)=6204.1mm弧长2B )=1802βR π=1194.5mm弦长2B =2Rsin(22β)=1193.3mm式中 2α=21800β--arcsin(R 2D 0)=10.2 M=22Rsin(212ββ+)/H=8419.23α=90°-2β+arcsin(RM2)=97.55 4α=2 arcsin[22sin(23α)]=64.25弧长1B =1802αR π=1107.6mm弦长1B =2Rsin(22α)=1106.7mm弦长D =3112L L B +=4600.2mm1B )= 1107.62B )=1194.5 3L )=6204.11L )=8005.8弧长D )=90R πarcsin(2R D )=4709.4mm弧长2L =1804απR =6977.0mm 弦长2L =2Rsin(23α)=6621.3mm第四章 强度计算4.1球壳计算设计压力:1.6MPa设计温度:-20 — 40℃试验压力:1.6 + H*ρ*g*10-6 = 1.76MPa 壳壁厚度球壳材料采用1Gr17,σb =450MPa ,常温下许用应力为[σ]t =150MPa.[]14143-表P 取焊缝系数:φ=1.0[1]P110腐蚀裕量C 2=2mm ,钢板厚度负偏差C 1=0mm , 故厚度附加量C=C 1+C 2=2mm.[]1363-表P液柱高度H : H=K 1R=1.6084*6225=9960mm液体的静压力P=ρgH = 6225*9.8*9960*10-9 =0.061MP 计算压力:Pc = 1.76+0.061 = 1.821MP 球壳所需壁厚:δ1=CP D P ctc +-ϕσ][4[]84691-式P =35.2 + 2 = 37.2mm圆整可取δ=38mm4.2 接管和法兰的选择接管根据JBM0503-08选用DN25 DN40 DN50接管。

法兰由JBT 81—1994选择。

4.3人孔尺寸 组合如下图所示:4.4 盘梯近似球面的螺旋形盘梯的设计计算R 1 = R + δ + t R1---假想圆球的半径;R = 6225mm----球罐的内半径δ= 38mm---球甲壁板厚度t = 200 —梯子或者顶平台与球面最小距离R1=6225 + 38 + 200 = 6463mmR2max = (R12-(R+δ1– b1)2)0.5δ1= 5mm——顶平台板厚度b1= 180mm——梯子侧板宽R2max=2273mmR 2 <= R2max选R2=2000mmR2——顶部平台半径Z 1 = b1+ (R12-R22)0.5 = 6325.7mmb = 1500mm ——梯子宽度r = R12 + R1b + (b2)2 - R222R1+ b= 3329.2mm ——梯子中心回转半径|X0| =R12 + R1b + (b2)2 + R222R1+ b= 3883.8mm ——盘梯圆柱中心轴线与球心的距离 X0在坐标中的值为负t = 200R1= 6463R2=2000r = 3329.2α终=149.0α终 = arccos(rX) = 149.04.5 洒水孔1000m3以上的中型球罐可设置内部转梯,本球罐采用内部转梯淋水管的洒水孔径为4mm以上球罐直径: Df= 12450mm壁厚 t = 38mm设计压力P = 1.821Mpa球罐外表面: A = 4πR2 = 486.7m2洒水量 2 L/min*m2水流速度 v = 2m/s = 120m/min水压: 0.1Mpa所需撒水量 Q = 486.7 * 2 = 980L/min*m2所需管径: D = 2d = 3.162 * (4Qπv)0.5 = 10.20mm ≈ 11mm洒水孔数:算的N = 80.98≈ 82个保冷措施:4.6 压力表压力表的最大刻度为正常运转压力的1.5倍以上(不要超过3倍)取:最大刻度 3.6 Mpa压力表表面直径应大于150mm压力表前应安装截止阀,以便于在仪表标校时可以取下压力表4.7支柱拉杆Q=980 D=11N = 82个球罐支座是球罐中用以支承本体质量和储存物料质量的结构部件,为了对付各种影响因素,结构形式比较多,设计计算也比较复杂。

支撑主要可分为柱式支撑和裙式支撑,此外,还有 V型柱式支撑,三桩合一型柱式支撑,裙式支撑,锥底支撑,钢筋混凝土连续基础支撑,半埋式支撑,高架式支撑,可胀缩的支撑赤道正切柱式支座设计a)赤道正切柱式支座必须能够承受作用于球罐的各种载荷,支柱构建要由足够的强度和稳定性b)拉杆结构:拉杆是作为承受风载荷以及地震载荷的部件,增加球罐的稳定性而设置的,栏杆结构可分为可调式和固定式。

目前,国内自行建造的球罐和引进球罐的大部分采用可调式拉杆,本球罐的支承结构采用单层可调式拉杆结构,如图(3-13)1 -支柱2 - 支耳3 –长拉杆4 –调节螺母5 –段拉杆支柱外直径d= 526mm;内直径 d1=506mm支柱计算长度L=8000mm支柱金属横截面积 A:648096mm2支柱横截面的惯性矩:π64(d4-d14) = 5.4*108mm4基本雪压值q:550N/m2支柱材料:Q235A支柱材料屈服极限σs:235Mpa支柱数目n: 8 根支柱载荷计算静载荷球壳质量计算:球壳平均直径:D=12450+42=12492mmM1 =πD2*δ*ρ=3.14*124922x38x10-9x7900Kg/m3 ≈162.6 (吨) d= 526d1=506 L=8000 N = 8φ = 30液体NH 3 质量(装满0.9) M2 = 1000 x 625kg/m 3 x10-9x 0.9 ≈ 562.5(吨) 液压实验时液体的质量:M3=1000*1000Kg/m 3 *0.9=900吨 雪压质量 M4=(π/4g )D 2 qCs*10-6= 4.55(吨) 保温层质量M5=π(D+ t)2 t ρ*10-9 +400 = 1.5吨 支柱和拉杆的质量:M6=11.103吨 附件的质量:M7=9.750吨 操作状态下的球罐质量:M0 = M1+M2+M4+M5 +M7=740.8吨 液压状态下的球罐的质量:Mf = M1+ M3+ M6+M7 = 1083.5吨 球罐最小质量Mmin = M1+M6+M7=183.45吨 球罐每根支柱承受的静载荷:G 0 =m 0g n = (162.6+562.5+4.55+1.5+9.750)*103*9.88 = 907480N液压试验条件下:液压实验时液体的质量:M3=1000*1000Kg/m 3 *0.9=900吨 Mt = M1+M3+M6+M7Gt = m t g n = (162.6+900+11.103+9.750)*103*9.88 = 1327吨动载荷地震水平载荷拉杆影响系数:λ = 1 – (L 1L )2 (3-2L 1L ) = 1- (52009000 )2 (3-2x52009000 ) = 0.384球罐中心处单位力引起的水平位移v = λL 12nEJ *103 =0.384*800012*8*192000*5.4*108 *103= 2.3*10-8 基本自震周期T= 2πv m 0 = 0.82 S设计地震烈度为7度,按表4-2,地震影响系数的最大值αmax = 0.23, α= (T gT)0.9αmax = 0.093地震水平力Q z = C z αm 0g = 0.45*0.093*740800*9.8 = 303824N 风载荷球罐建造的基本风压值: q 0 = 600N/m 2查表4-9,风压值高度变化系数f 1 = 1.00, 查表4-10,动载荷系数ξ= 1.58,故风振系数k 2 = 1+m ξ=1.553 水平风力:Q f = 14π(D 0 + 2t)2 k 1k 2q 0f 1f 2*10-8=14*3.14*(12450 + 2*65)2 0.4*1.553*600*1.0*1.1*10-6 = 50933N Q z > Q f 取水平载荷F = Q z = 303824N 推到弯矩形成的支柱垂直力 推到弯矩:M=FL 2 = 303824* 2500 = 7.6×108 N*mm 由M 对各支柱产生的垂直力 F i =Mcos θi ηR η= n2Fa = 7.6×108 cos0 4*6225 = 30522NFb = 7.6×108 cos45 4*6225 = 21579NFc = 7.6×108 cos90 4*6225= 0N剪切力形成的支柱垂直载荷 如图4-8, 水平力F 的方向为A 向,拉杆构架的方为角θAB=22.5,θAC=67.5 于是:C ij =L2FsinθijnRsin180nC ab =5500* 303824*sin22.58*6225sin1808= 33555NC bc =5500* 303824*sin66.58*6225sin1808=80410NTijmax =Cijmaxcosα=80410N55006225= 91009.5N拉杆直径:d=2(Tijmaxπ[α])0.5+C = 2(91009.5π2351.5)0.5 + 2 =29.2mm取拉杆直径为φ30mm连接部位强度计算支柱与拉杆,支柱与球壳以及支柱底座等结构图4-13 图4-15相同4.8 销钉、耳板销钉直径的计算销钉材料选用Q235-A钢d销 =(2Tijmaxπ[τ])0.5 = (2*91009.5π*0.6*2351.5)0.5 = 24.8mm取销钉直径为φ25mm耳板和翼板厚度计算耳板和翼板都选用Q235-A钢。

相关文档
最新文档