Single-particle spectrum for a model of fermions interacting with two-level local excitatio
(完整版)原子核物理专业词汇中英文对照表

(完整版)原子核物理专业词汇中英文对照表原子核物理专业词汇中英文对照表absorption cross-section 吸收截面activity radioactivity 放射性活度activity 活度adiabatic approximation 浸渐近似allowed transition 容许跃迁angular correlation 角关联angular distribution 角分布angular-momentum conservation 角动量守恒anisotropy 各项异性度annihilation radiation 湮没辐射anomalous magnetic moment 反常极矩anti neutrino 反中微子antiparticle 反粒子artificial radioactivity 人工放射性atomic mass unit 原子质量单位atomic mass 原子质量atomic nucleus 原子核Auger electron 俄歇电子bag model 口袋模型baryon number 重子数baryon 重子binary fission 二分裂变binging energy 结合能black hole 黑洞bombarding particle 轰击粒子bottom quark 底夸克branching ration 分支比bremsstrahlung 轫致辐射cascade radiation 级联辐射cascade transition 级联跃迁centrifugal barrier 离心势垒chain reaction 链式反应characteristic X-ray 特征X射线Cherenkov counter 切连科夫计数器collective model 集体模型collective rotation 集体转动collective vibration 集体振动color charge 色荷complete fusion reaction 全熔合反应complex potential 复势compound-nucleus decay 复合核衰变compound-nucleus model 复合核模型compound nucleus 复合核Compton effect 康普顿效应Compton electron 康普顿电子Compton scattering 康普顿散射conservation law 守恒定律controlled thermonuclear fusion 受控热核聚变cosmic ray 宇宙射线Coulomb barrier 库仑势垒Coulomb energy 库伦能Coulomb excitation 库仑激发CPT theorem CPT定理critical angular momentum 临界角动量critical distance 临界距离critical mass 临界质量critical volume 临界体积damped oscillations 阻尼震荡damped vibration 阻尼震荡damped wave 阻尼波damper 减震器damping factor 衰减系数damping 衰减的damp proof 防潮的damp 湿气danger coefficient 危险系数danger dose 危险剂量danger range 危险距离danger signal 危险信号data acquisition and processing system 数据获得和处理系统data base 数据库data communication 数据通信data processing 数据处理data 数据dating 测定年代daughter atom 子体原子daughter element 子体元素daughter nuclear 子核daughter nucleus 子体核daughter nuclide 子体核素daughter 蜕变产物dd reaction dd反应deactivation 去活化dead band 不灵敏区dead time correction 死时间校正dead time 失灵时间deaerate 除气deaeration 除气deaerator 除气器空气分离器deaquation 脱水debris activity 碎片放射性debris 碎片de broglie equation 德布罗意方程de broglie frequency 德布罗意频率de broglie relation 德布罗意方程de broglie wavelength 德布罗意波长de broglie wave 德布罗意波debye radius 德拜半径debye temperature 德拜温度decade counter tube 十进计数管decade counting circuit 十进制计数电路decade counting tube 十进管decade scaler 十进位定标器decagram 十克decalescence 相变吸热decalescent point 金属突然吸热温度decarburization 脱碳decascaler 十进制定标器decatron 十进计数管decay chain 衰变链decay coefficient 衰变常数decay constant 衰变常数decay constant 衰变常量decay energy 衰变能decay factor 衰变常数decay fraction 衰变分支比decay heat removal system 衰变热去除系统decay heat 衰变热decay kinematics 衰变运动学decay out 完全衰变decay period 冷却周期decay power 衰减功率decay rate 衰变速度decay scheme 衰变纲图decay series 放射系decay storage 衰变贮存decay table 衰变表decay time 衰变时间decay 衰减decelerate 减速deceleration 减速decigram 分克decimeter wave 分米波decommissioning 退役decompose 分解decomposition temperature 分解温度decomposition 化学分解decontaminability 可去污性decontamination area 去污区decontamination factor 去污因子decontamination index 去污指数decontamination 净化decoupled band 分离带decoupling 去耦解开decrease 衰减decrement 减少率deep dose equivalent index 深部剂量当量指标deep inelastic reaction 深度非弹性反应deep irradiation 深部辐照deep therapy 深部疗de excitation 去激发de exemption 去免除defectoscope 探伤仪defect 缺陷definition 分辨deflecting coil 偏转线圈deflector 偏转装置deformation energy 变形能deformation of irradiated graphite 辐照过石墨变形deformation parameter 形变参量deformation 变形deformed nucleus 变形核deformed region 变形区域deform 变形degassing 脱气degas 除气degeneracy 简并degenerate configuration 退化位形degenerate gas 简并气体degenerate level 简并能级degenerate state 简并态degeneration 简并degradation of energy 能量散逸degradation 软化degraded spectrum 软化谱degree of acidity 酸度degree of burn up 燃耗度degree of purity 纯度dehumidify 减湿dehydrating agent 脱水剂dehydration 脱水deionization rate 消电离率deionization time 消电离时间deionization 消电离delay circuit 延迟电路delayed alpha particles 缓发粒子delayed neutron 缓发中子delayed proton 缓发质子deliquescence 潮解deliquescent 潮解的demagnetization 去磁denitration 脱硝density gradient instability 密度梯度不稳定性density of electrons 电子密度deoxidation 脱氧deoxidization 脱氧departure from nucleate boiling ratio 偏离泡核沸腾比departure from nucleate boiling 偏离泡核沸腾depleted fuel 贫化燃料deposit dose 地面沉降物剂量deposited activity 沉积的放射性deposition 沉积deposit 沉淀depression 减压depressurization accident 失压事故depressurizing system 降压系统desalinization 脱盐desalting 脱盐descendant 后代desorption 解吸detailed balance principle 细致平衡原理detection of radiation 辐射线的探测detonation 爆炸deuteride 氘化物deuterium alpha reaction 氘反应deuterium 重氢deuton 氘核deviation 偏差dew point 露点dextro rotatory 右旋的diagnostic radiology 诊断放射学diagnostics 诊断diagram 线图diamagnetism 反磁性diameter 直径diamond 稳定区;金刚石diaphragm 薄膜diatomic gas 双原子气体diatomic molecule 二原子分子dielectric 电介质differential control rod worth 控制棒微分价值differential cross section 微分截面diffraction spectrometer 衍射谱仪diffraction spectrum 衍射光谱diffraction 衍射diffuse 扩散diffusion stack 务马堆diffusion theory 扩散理论diffusion time 扩散时间diffusion 扩散dilution 稀释dipole 偶极子dirac equation 狄拉克方程direction 方向discharge 放电discrete 离散的disintegrate 蜕衰disintegration 蜕变dislocation 位错disorder 无序dispersion 分散displacement current 位移电流displace 位移;代替dissociation 离解dissolution 溶解distillation 蒸馏distortion 畸变divergence 发散domain 磁畴Dopper effect 多普勒效应dose albedo 剂量反照率dose build up factor 剂量积累因子dose equivalent 剂量当量dose rate 剂量率dose 剂量down quark 下夸克dry out 烧干duality 二重性duct 管dysprosium 镝endothermic reaction 吸能反应energy conservation 能量守恒even-even nucleus 偶偶核exchange force 交换力excited state 激发态exothermic reaction 放能反应exposure 照射量fatigue 疲劳feedback 反馈fermi age 费米年龄fermion 费米子fermium 镄fermi 费米Feynman diagram 费恩曼图field theory 场论fine structure 精细结构fissile 分裂的fissionable 分裂的fission barrier 裂变势垒fission fragment 裂变碎片fission product yield 裂变产额fission product 裂变产物flattening of neutron flux 中子通量展平fluorescent x rays 荧光x射线fluorine 氟flux 通量forbidden band 禁带force 力francium 钫free electron 自由电子free energy 自由能frenkel defect 弗兰克尔缺陷frictional force 摩擦力fuel assembly grid 燃料集合体栅格fuel assembly 核燃料组件fuel cell 燃料电池fuel depletion 燃料贫化fuel reprocessing 燃料后处理function 函数fusion 核聚变galaxy 星系Gamow-Teller interaction G-T相互作用gauge boson 规范波色子gauge field theory 规范场论Geiger-Mǖller counter 盖革-米勒计数器Geiger-Nuttal law 盖革-努塔尔定律geometrical cross-section 几何截面germanium detector 锗探测器giant resonance 巨共振gluon 胶子grid ionization chamber 屏栅电离室hadron 强子heavy ion 重离子helicity 螺旋性Higgs particle 希格斯粒子Hubble constant 哈勃常量Hubble law 哈勃定理incoming channel 入射道incoming particle 入射粒子independent-particle model 独立粒子模型induced fission 诱发裂变inelastic collision 非弹性碰撞inelastic scattering 非弹性散射inertial confinement 惯性约束internal conversion 内转换intrinsic electric quadrupole moment 内禀电四极矩intrinsic parity 內禀宇称island of isomerism 同核异能素岛island of stability 稳定岛isobaric spin,isospin 同位旋isobar 同量异位素isomer 同核异能素isospin analog state 同位旋相似态isospin multiplet 同位旋多重态isotone 同中异位素isotope 同位素j j coupling j j耦合joule heat 焦耳热jump function 阶跃函数junction particle detector 结型粒子探测器kerma rate 比释动能率kerma 柯玛kernel approximation method 核近似法kernel function 核函数kernel 核kerr cell 克尔盒kerr effect 克尔效应kevatron 千电子伏级加速器key measurement point 关键测量点k factor 增殖系数kinetic theory of gases 气体运动论kirchhoff's radiation law 基尔霍夫辐射定律klein gordon equation 克莱因戈登方程klein nishina formula 克莱因仁科公式knight shift 奈特移位knocking out 原子位移knock on atom 撞出原子knock on 撞击撞出krypton 氪k shell k 层Kurie plot 库里厄图labeled 示踪的labile 不稳定的lag 延迟laminar flow 层流lande g factor 朗德因子lanthanides 镧系lanthanum 镧laplace's operator 拉普拉斯算符laplacian 拉普拉斯算符larmor frequency 回旋频率laser cooling 激光冷却laser enrichment process 激光浓缩法laser isotope separation method 激光同位素分离法laser pulse 激光脉冲laser 激光latent energy 潜能lattice cell 栅元lattice constant 晶格常数lattice defect 点阵缺陷lattice energy 晶格能量lattice parameter 晶格常数lattice 格子laue photograph 劳厄照相lawrencium 铹Lawson criterion 劳森判据lead 铅lepton 轻子level 能级liberation 游离limit 极限liquid metal 液态金属liquid model 液体模型liquid phase 液相lithium 锂load 负荷lorentz force 洛伦兹力lorentz gas 洛伦兹气体lorentz invariance 洛伦兹不变性low activity waste 低放废物lower limit 下限lutetium 镥macroscopic cross section 宏观截面macroscopic state 宏观态magic number 幻数magnesium 镁magnetic dipole 磁偶极子magnetic field 磁场magnetic resonance 磁共振magnetism 磁manganese 锰many body forces 多体力many body problem 多体问题mass abundance 质量丰度mass energy conversion formula 质能换算公式mass excess 质量过剩mass range 质量射程mass spectrometer 质谱仪maximum 最大值maxwell boltzmann distribution 麦克斯韦分布函数mean collision time 平均碰撞时间mean field 平均场mean value 平均值mean 平均melting point 熔点membrane 薄膜memory 存储mendeleev's law 门捷列夫周期律mendelevium 钔mercury 汞meson exchange theory 介子交换理论meson field theory 介子场理论meson 介子meson 介子metamorphose 变形methane 甲烷methanol 甲醇methyl alcohol 甲醇migration 移动mobility 迁移率moderate 减速moderation 减速modulus of elasticity 弹性模数modulus of rigidity 刚性模数modulus of rupture 断裂模数modulus of torsion 扭转模数modulus 刚性模数moisture 湿气molar fraction 克分子分数molecular mass 分子质量molecular orbital 分子轨函数molten salt 熔盐molybdenum 钼monte carlo method 蒙特卡罗法neodymium 钕neon 氖neptunium 镎neutrino 中微子neutron flux 中子通量neutronics 中子物理学neutron 中子nickel 镍niobium 铌nitrogen 氮nobelium 锘nominal value 公称值nuclear fission 核裂变nuclear fission 核裂变nuclear force 核力nuclear fuel 核燃料nuclear spallation 核散裂nucleon 核子nucleus 核nuclide 核素nu factor 每次裂变后的中子产额ood-A nucleus 奇A核ood-ood nucleus 奇奇核optical model 光学模型orbital angular momentum 轨道角动量orbital electron capture 轨道电子俘获pair creation,pair production 对产生pairing correlation 对关联pairing energy 对能parent nucleus 母核parity 宇称partial-wave analysis 分波分析partial-wave cross-section 分波截面particle physics 粒子物理photoelectric effect 光电效应pick-up reaction 拾取反应polarization 极化度potential barrier 势垒prompt neutron 瞬发中子proportional chamber 正比室proton radioactivity 质子放射性proton 质子quark confinement 夸克禁闭quark-gluon plasma 夸克-胶子等离子体quark model 夸克模型quark 夸克radiation damage 辐射损伤radiation dose 辐射剂量radiation protection 辐射防护radiative capture 辐射俘获radioactive dating 放射性鉴年法radioactive equilibrium 放射性平衡radioactive nuclide 放射性核素radioactive series 放射系radioactivity 放射性range 射程reaction channel 反应道reaction cross-section 反应截面reaction energy 反映能reaction product 反应产物reaction yield 反应产额recoilless resonance absorption 无反冲共振吸收residual interaction 剩余相互作用residual nuclease 剩余核resolution 分辨率resolving time 分辨时间resonance cross-section 共振截面resonance energy 共振能量resonance state 共振态rotational energy level 转动能级saddle point 鞍点samarium poisoning 钐中毒samarium 钐scalar 标量scandium 钪scattering 散射scheme 图解Schrodinger equation 薛定谔方程scintillation detector 闪烁探测器scram control 快速停堆控制scram discharge volume 快速停堆排放量scram rod 安全棒selenium 硒self absorption coefficient 自吸收系数self absorption 自吸收self adjoint matrix 自共轭矩阵self adjoint operator 自共轭算子self adjoint 自轭的semiconductor 半导体sensitivity 灵敏度series 系;级数shell model 壳层模型shell structure 壳层结构shim rod 补偿棒shim 补偿shut off rod 安全棒silicon 硅simulation 模拟singularity 奇性slab reactor 平板反应堆slow down 减速slowing down area 慢化面积small angle scattering 小角散射sodium fluoride 氟化钠sodium 钠soft component of cosmic rays 字宙射线的软成分solar cosmic ray 太阳宇宙线solar neutrino 太阳中微子solar x ray 太阳x 射线solenoid 螺旋管solid angle 立体角solid phase 固相solid solution 固溶体soluble 可溶的solute 溶质source data 源数据source strength 源强度space group 空间群space lattice 空间点阵spacing 间距spallation 散裂special relativity 狭义相对论special report 专题报告special theory of relativity 狭义相对论specific activity 比放射性specific binding energy 比结合能specific burn up 比燃耗specific charge 比电荷specific concentration 比浓度specific 比的specimen 试样spectral line 光谱线spectral series 光谱线系spectrum 谱speed 速率spent nuclear material pool 烧过的核材料贮存池sphere 球spherical reactor 球形反应堆spherical wave 球面波spin angular momentum 自旋角动量spin dependent force 自旋相关力spin 自旋splitting of energy levels 能级分裂splitting ratio 分开比spontaneous decay 自发衰变spot 斑sputtering 飞溅square bracket 方括弧stable equilibrium 稳定平衡stainless steel 不锈钢standing wave 驻波stark effect 斯塔克效应statistical error 统计误差statistical fluctuation 统计涨落statistical mechanics 统计力学statistical straggling 统计涨落statistical uncertainty 统计不确定性statistical weight 统计重量statistical 统计的statistic analysis 统计分析statistics 统计学statistics 统计性质steam generator 蒸汽发生器steam void 汽穴steam 蒸汽stefan boltzmann ] constant 斯蒂芬玻尔兹曼常数stern gerlach experiment 斯登盖拉赫实验stochastic process 随机过程stoichiometry 化学计算法stokes'law 斯特克斯定律stopping power 阻止本领strangeness number 奇异数strangeness 奇异性strange particle 奇异粒子strange particle 奇异粒子strange quark 奇异夸克strength function 强度函数strontium 锶structure factor 结构因子subcritical assembly 亚临界装置subcritical 亚临界的subgroup 子群sublimation 升化subprogram 子程序subroutine 子程序subscript 下标subtraction 减法sulfur 硫superconductivity 超导性superconductor 超导体supercooled 过冷的superheated vapor 过热蒸汽superheated 过热的superlattice 超晶格superposition principle 迭加原理superposition 重叠supersaturation 过饱和superscript 上标surface tension 表面张力susceptibility 磁化率suspension colloid 悬浮胶体swelling 膨胀switch 开关symmetry 对称性synchrotron radiation 同步加速辐射synthesis 合成system of atomic units 原子单位制threshold energy 阈能time-of-flight 飞行时间top quark 顶夸克total cross section 总截面track detector 径迹探测器transfer reaction 转移反应transition probability 跃迁概率two-component neutrino theory 二分量中微子理论unclean separation energy 核子分离能unified model 综合模型unique forbidden transition 唯一性禁戒跃迁up quark 上夸克uranium series 铀系vector boson 矢量波色子vibration energy level 振动能级volume energy 体积能weak interaction 弱相互作用yrast line 转晕线yrast state 转晕态。
在海拔5000米以上地区利用单粒子方法探测γ暴实验构想--基于水切伦科夫技术

在海拔5000米以上地区利用单粒子方法探测γ暴实验构想--基于水切伦科夫技术刘茂元;厉海金;扎西桑珠;周毅【摘要】Ground extensive air shower experiment is powerless for detecting cosmic ray particles of tens GeV en⁃ergy renge in the GRBs (Gamma Ray Burst) so far, because of its threshold energy. The experimental altitude needs to be increased in order to achieve more effective observation. In the present paper, setting up a water Che⁃renkov detector array at 5200m altitude in Tibet was proposed and the idea of ground experiments on multi-GRB and tens of GeV photon observing can be achieved by using single-particle technology, and also can supportpre⁃dicting for large-scale experiments.%目前,对于伽玛射线暴(Gamma Ray Burst, GRB)的探测,地面广延大气簇射实验由于阈能原因,对几十GeV能区的宇宙线粒子探测无能为力,只有提高实验海拔才能实现更有效的观测。
文章描述了在海拔5000m以上地区建造水切伦科夫(WCD)探测器阵列,利用单粒子技术,来实现地面实验多GRB几十GeV光子的正观测设想,为大规模实验提供预言支持。
CsI(Tl)闪烁探测器脉冲形状鉴别最优积分条件的探究方法

收稿日期:20221218基金项目:国家自然科学基金资助项目(11875297,U 2032140,12205096);浙江省自然科学基金资助项目(L Q 22A 050001)㊂作者简介:刘 玲(1973 ),女,辽宁沈阳人,沈阳师范大学教授,博士;通信作者:王建松(1972 ),男,浙江宁海人,湖州师范学院教授,博士㊂第41卷 第3期2023年 6月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y (N a t u r a l S c i e n c eE d i t i o n )V o l .41N o .3J u n .2023文章编号:16735862(2023)03026107C s I (T l )闪烁探测器脉冲形状鉴别最优积分条件的探究方法刘 玲1,王凤兰1,2,孙晓慧2,李鹏程2,3,黄年伟2,刘佳丽2,刘顺菊2,刘丝雨2,吴茂盛2,池铭璇2,王建松2(1.沈阳师范大学物理科学与技术学院,沈阳 110034;2.湖州师范学院理学院,浙江湖州 313000;3.兰州大学核科学与技术学院,兰州 730000)摘 要:介绍了脉冲波形分析中用电荷积分法鉴别带电粒子的方法,给出了C s I (T l)脉冲波形粒子鉴别能力的评估方法㊂用VM E (v e r s a m o d u l ee u r o c a r d )数据获取系统的电荷积分插件Q D C 和基于P X I (P C I e x t e n s i o n s f o r I n s t r u m e n t a t i o n )的X I A 获取系统获取C s I (T l )闪烁探测器的脉冲信号波形各有优缺点㊂相较于过去在实验中利用Q D C 电子学插件对闪烁体的脉冲波形做快㊁慢成分的在线积分处理,该研究在X I A 获取系统采集的C s I (T l )闪烁体真实脉冲波形基础上,利用R O O T 数据分析软件,在离线数据处理过程中利用程序调整积分门的延迟和宽度,研究了积分门的延迟和宽度的变化对探测器粒子鉴别能力的影响㊂定义了一种简单㊁明了的判断方法,通过比较2种不同粒子在二维鉴别谱中的分布距离来判断在不同积分门延迟和宽度下粒子的鉴别能力并研究其变化规律,探究该方法的可行性,为以后采用电荷积分插件实验提供参考㊂关 键 词:C s I (T l)闪烁探测器;脉冲形状分析;带电粒子鉴别;积分法中图分类号:O 571.1 文献标志码:A d o i :10.3969/j .i s s n .16735862.2023.03.014A n e x p l o r a t i o nm e t h o do f o p t i m a l i n t e g r a l c o n d i t i o n s f o r p u l s e s h a pe i d e n t if i c a t i o no fC s I (T l )s c i n t i l l a t i o nd e t e c t o r L I U L i ng 1,WA N G F e n g l a n 1,2,S U N X i a oh ui 2,L I P e n g c h e n g 2,3,HU A N G N i a n w e i 2,L I U J i a l i 2,L I U S h u nj u 2,L I U S i y u 2,WU M a o s h e n g 2,C H I M i n g x u a n 2,WA N GJ i a n s o n g 2(1.C o l l e g eo fP h y s i c a lS c i e n c ea n d T e c h n o l o g y ,S h e n y a n g N o r m a l U n i v e r s i t y ,S h e n y a n g 110034,C h i n a ;2.S c h o o l o f S c i e n c e ,H u z h o uU n i v e r s i t y ,Z h e j i a n g Hu z h o u313000,C h i n a ;3.S c h o o l o fN u c l e a rS c i e n c ea n d T e c h n o l o g y ,L a n z h o uU n i v e r s i t y,L a n z h o u730000,C h i n a )A b s t r a c t :T h e p a r t i c l e i d e n t i f i c a t i o n w i t hc h a r g e i n t e g r a lm e t h o di n p u l s ew a v e f o r m a n a l y s i s i s i n t r o d u c e da n dt h ee v a l u a t i o nf o r m u l af o rt h ea b i l i t y o fC s I (T l )p a r t i c l ei d e n t i f i c a t i o nb yp u l s e w a v e f o r ma n a l y s i s i s g i v e n i nt h i s p a p e r .T h e r ea r es o m ea d v a n t a g e sa n dd i s a d v a n t a g e s f o rVM E (v e r s am o d u l e e u r o c a r d )d a t a a c q u i s i t i o n s y s t e mu s i n g c h a r g e i n t e g r a l e l e c t r i cm o d u l eQ D Ca n d t h e X I Aa c q u i s i t i o n s y s t e m b a s e do nP X I (P C Ie x t e n s i o n sf o rI n s t r u m e n t a t i o n )b y r e c o r d i n g th ef u l l p u l s ew a v e f o r m.O t h e r t h a n t h eu s u a lw a y t o i n t e g r a t e t h e c h a r g eo f f a s t a n ds l o wc o m p o n e n t so f t h e s c i n t i l l a t o r p u l s ew a v e f o r mo n l i n e u s i n g Q D C i n t h e e x p e r i m e n t ,a t t h e p r e s e n tw o r k ,t h e d e l a y a n dw i d t ho f t h e i n t e g r a t i n gg a t eh a v eb e e na d j u s t e d t os t u d y t h e i r e f f e c t so n t h e a b i l i t y of p a r t i c l ei d e n t i f i c a t i o nu s i n g t h eR O O Ts o f t w a r e i no f f l i n e a n a l y s i sb a s e do n t h e r e a l p u l s ew a v e f o r mo fC s I(T l)s c i n t i l l a t o r o b t a i n e db y X I Ad a t a a c q u i s i t i o n s y s t e m.I n o r d e r t o e s t i m a t e t h e a b i l i t y o f p a r t i c l ei d e n t i f i c a t i o nw i t h d i f f e r e n t i n t e g r a t i n g g a t e a n d s t u d y t h e r e g u l a r i t y,a c o n c i s e f o r m u l a i s d e f i n e d b yc o m p a r i s o no f t h ed i s t a n ce of t h e t w ok i n d so f p a r t i c l eo n t h e t w o-d i m e n s i o ns p e c t r u mf o r p a r t i c l ei d e n t i f i c a t i o n,e x p l o r e t h ef e a s i b i l i t y o f t h i s m e t h o da n d p r o v i d er e f e r e n c ef o r f u t u r ee x p e r i m e n t su s i n g c h a r g e i n t e g r a t i o n p l u g i n s.K e y w o r d s:C s I(T l)s c i n t i l l a t i o nd e t e c t o r;p u l s es h a p ea n a l y s i s;c h a r g e d p a r t i c l e i d e n t i f i c a t i o n;i n t e g r a t i o nm e t h o dC s I(T l)闪烁探测器的发展已有百余年,其初期一直被用于电离辐射的探测㊂近年来,随着其性能的不断提升和优化,C s I(T l)闪烁探测器被更加广泛应用于放射束物理实验中[14]㊂C s I(T l)晶体的时间响应快㊁易加工储存㊁有较高的阻止本领和抗辐射能力,可用脉冲形状甄别技术甄别不同粒子,并且价格低廉,常用于中能重离子引起的核反应中带电粒子能量和位置的测量[56]㊂C s I(T l)晶体产生的闪烁光包含上升和衰减2个部分,其衰减部分包含快㊁慢2种成分,闪烁光荧光光子经光电转换器件收集㊁转换㊁放大,在阳极输出电脉冲信号,此电脉冲信号为包含快㊁慢成分的脉冲波形[7]㊂脉冲波形分析[813]可实现粒子种类的鉴别,常见的粒子鉴别算法有波形拟合法㊁积分法[14]㊁模糊聚类算法[1516]和矩阵算法㊂在过去的实验中,应用较为成熟的粒子鉴别算法为积分法㊂对于包含快㊁慢2种成分的脉冲波形可以利用积分法鉴别粒子的种类,在脉冲波形上选取快㊁慢成分所对应的时间区间进行积分,得到快㊁慢成分的电荷量,通过画二维谱可以得到分布在不同曲线上的不同粒子,并实现粒子种类的区分㊂积分门的延迟和宽度的变化会得到不同的快㊁慢成分的电荷量,二维谱中的曲线的分布也会随之发生变化,所以积分门的延迟和宽度的选取对探测器的粒子鉴别能力有很大的影响[14]㊂对于传统的VM E数据获取系统,积分法鉴别粒子需要在实验时设定快㊁慢成分的电荷积分门,利用电荷积分插件Q D C对闪烁体的脉冲波形实现快㊁慢成分的积分㊂这种方法对获取系统的数据传输能力和存储能力要求低,便于大规模通道实验,但是如果积分门和延迟时间选择不当,则有可能导致粒子鉴别效果不好,影响整个实验数据的质量㊂基于P X I的X I A获取系统可以将实验中真实的C s I(T l)闪烁探测器输出的每个粒子的脉冲波形完整记录下来,利用数据处理软件R O O T分析,查看每个事件的脉冲波形,逐个事件处理数据,可剔除其中的异常波形,在每一个脉冲波形上设置快㊁慢成分的电荷积分门,编写程序调整电荷积分门的延迟时间和宽度,计算不同的积分门延迟和宽度下探测器的粒子鉴别效果㊂这种方法虽然对数据传输能力和存储能力要求较强,可以通过后期软件处理保证粒子鉴别的效果㊂高辉等已经在文献[14]中利用模拟数据讨论过不同电荷积分门延迟和宽度下的粒子鉴别效果,找到了最佳电荷积分门延迟和宽度的规律㊂本文旨在利用真实实验数据,给出粒子鉴别效果的判断方法,讨论不同积分门延迟和宽度下的粒子鉴别效果,探究该方法的可行性㊂1 C s I(T l)探测器的工作原理C s I(T l)晶体的光输出总量依赖于C s I本身的属性和T l掺杂量,其产生的脉冲波形与入射粒子的能量㊁原子序数和质量数相关㊂不同的带电粒子在探测器中产生的闪烁光脉冲中快㊁慢成分的比例不同,所以得到的脉冲波形也有所差异[17]㊂脉冲波形中包含着带电粒子的A,Z等信息,可以应用脉冲波形分析的方法进行带电粒子种类的鉴别㊂一定能量的带电粒子入射到C s I(T l)晶体表面,激发形成平均电离密度为ρ的闪烁光脉冲由快㊁慢成分组成,t时刻的闪烁光脉冲形式可表示为N(t)ʈN f(ρ)τf e-t/τf+N s(ρ)τs e-t/τs(1)其中:N f(ρ),N s(ρ)分别为一次闪烁光脉冲中快㊁慢成分所包含的光子数;τf,τs分别表示快㊁慢成分的衰减时间;快㊁慢成分包含的光子数的比值N f(ρ)/N s(ρ)随ρ的增加而增加;τs基本与电离密度ρ无关;τf 是电离密度ρ的函数[18]㊂C s I(T l)晶体形成的闪烁光荧光光子经光导被光电转换器件收集㊁转换㊁放大,在阳极输出电脉冲信号,图1所示为本次实验获得的一个典型的脉冲波形,衰减部分的快㊁慢2种发光成分分别用虚线和点262沈阳师范大学学报(自然科学版)第41卷划线表示㊂C s I (T l )闪烁探测器的光输出与时间成指数关系,光输出的脉冲波形表达式如下:L (t )=h f a s t τf a s t e x p -t τæèçöø÷f a s t +h s l o w τs l o w e x p -t τæèçöø÷s l o w -h f r o n t τf r o n t e x p -t τæèçöø÷f r o n t (2)式中:第1项为脉冲波形衰减部分的快成分,称为f a s t ;第2项为衰减部分的慢成分,称为t a i l ;第3项是脉冲的上升部分;h f a s t ,h s l o w 和h f r o n t 是与电离密度相关的发光强度;τf a s t ,τs l o w 是衰减时间常数;τf r o n t 是信号的上升时间常数,一般为10~100n s ㊂因为具有很快的上升时间,而衰减的时间很长,因此,上升部分经常被忽略[14]㊂图1 C s I (T l )晶体的脉冲波形示意图F i g .1 S c h e m a t i cd i a g r a mo f p u l s ew a v e f o r mo f C s I (T l )c r ys t a l 2 实验设置及探测器布局实验中使用8ˑ8单元阵列C s I (T l )闪烁探测器,整个探测器的前表面设计成球面状,由64块C s I (T l )探测器单元构成㊂C s I (T l )晶体单元加工成前表面为21mmˑ21mm ㊁后表面为23.1mmˑ23.1mm ㊁高为50mm 的棱台,读出单元为日本滨松公司生产的R 1213型光电倍增管P MT (ph o t o m u l t i p l i e r t u b e ),其光阴极为φ=19mm 的圆面㊂为了更好耦合晶体与P MT ,用航天有机玻璃加工成光导连接C s I (T l)晶体的后表面与P MT 的光阴极㊂光电倍增管用铁筒屏蔽,晶体前表面用铝箔包裹,晶体侧面及光导用特氟龙膜包裹以增加光收集效率[1920]㊂本次实验是在兰州放射性束流线装置[21](R I B L L 1)上开展的,R I B L L 1的结构如图2所示㊂由H I R F L 提供的58AM e V 的13C 束流,轰击R I B L L 1中T 0处的次级束流产生靶9B e 得到前冲的6H e 粒子束流,4块二级铁设定磁刚度B ρ,经二级铁D 1选择,穿过C 1处的降能片,再经过二级铁D 2的选择纯化进入靶室T 1,穿过飞行时间起始探测器,再经过二级铁D 3,D 4的传输进入靶室T 2,穿过飞行时间停止探测器,得到次级束流6H e ,与大圆靶室内的反应靶发生反应㊂初级束13C 的平均流强为100e n A ,初级靶为厚度6mm 的B e 靶,降能器是厚度2mm 的A l ,在T 2处获得流强>3000p p s ㊁能量为30AM e V 的6H e 次级束流,纯度约为90%㊂相距17m 的T 1与T 2处的飞行时间探测器测量飞行时间(T O F ),用于次级束流的逐个事件鉴别㊂次级束射入真空大圆靶室内,靶室内探测器布局如图3所示,反应靶前放置2个双面硅微条探测器(D S S D ),依次记为S i _1,S i _2,D S S D 的正反面均有16条硅微条,用于测量与P b 靶反应前次级束带电粒子与硅微条作用的能量损失和径迹㊂靶后放置2个D S S D ,记为S i _3,S i _4,其正反面均有32条硅微条,用于测量与P b 靶反应后粒子与硅微条作用的能量损失和径迹㊂最后放置1个8ˑ8单元阵列C s I(T l )闪烁探测器,用于测量反应后带电粒子的能量和位置㊂真空靶室外放置7个B C 501A 液体闪烁体探测器,用于靶后中子的测量㊂数据获取采用VM E +基于P X I 的X I A 获取系统同步获取的方案,由VM E 获取t r i g g e r 给X I A 作为外部t r i g g e r ,VM E 与X I A 用同一脉冲发生器对齐㊂传统的VM E 获取系统直接将电信号经过成型后在A D C 将脉冲波形的峰值读出,记录信号的幅度㊂基于P X I 的X I A 获取系统可以直接处理前置放大信号并且直接获取信号波形,以提供更多更全面的信息㊂在数据处理时,将VM E 获取的数据与X I A 获取的数据组成新的数据文件㊂VM E 获取系统经A D C 读出信号的峰值,记为C s I ;X I A 获取系统获取真实的脉冲波形,并利用R O O T 找到脉冲波形的峰362 第3期 刘 玲,等:C s I (T l )闪烁探测器脉冲形状鉴别最优积分条件的探究方法值,记为p k C s I ㊂新文件中p k C s I 和C s I 为线性关系则说明事件同步匹配㊂图2 兰州放射性束流线F i g .2 R I B L L1图3 真空靶室内探测器布置示意图F i g .3 L a y o u t d i a g r a mo f d e t e c t o r i n v a c u u mt a r ge t r o o m 3 积分法C s I (T l )闪烁探测器输出包含带电粒子信息的脉冲波形,在脉冲波形上对快㊁慢成分设置f a s t g a t e 和s l o w g a t e 电荷积分门,对f a s t g a t e 积分得到的是Q f a s t ,对s l o w g a t e 积分得到的是Q s l o w ㊂做Q f a s t 和Q s l o w 二维谱,在Q f a s t 和Q s l o w 二维谱上不同的带电粒子分布在不同的曲线上,实现带电粒子的鉴别㊂积分门的延迟和宽度的变化会影响粒子的鉴别效果[14]㊂C s I (T l )晶体的光输出的脉冲波形可用式(2)描述,忽略掉上升时间的影响,可将式(2)简化为如下形式:L (t )=h f a s t τf a s t e x p -t τæèçöø÷f a s t +h s l o w τs l o w e x p -t τæèçöø÷s l o w (3)式中:τs l o w 是常数,约为4~7μs ;τf a s t ,h f a s t 与h s l o w 的比值(R )与粒子的种类(A ,Z )和能量E 有关,它们可用如下方程来表达[7]:R (E ,q )=R 0q 1/41-e x p -d q 1/4E æèçöø÷éëêêùûúúQ (4)τf a s t (E ,q )=τ0+τ1q 0.18341-e x p -d q 1/4E æèçöø÷éëêêùûúúQ (5)式(4)和式(5)中τ0,τ1,R 0和d 都是常数,由实验数据拟合而得到,而q =AZ 2(6)并且Q (q )=0.2851-e x p -q 0.æèçöø÷éëêêùûúú611q 0.102(7)由此知道h f a s t /h s l o w 是关于E ,A ,Z 的函数,也就是C s I (T l )晶体光输出包含了粒子的能量E 和种类(A ,Z )的信息㊂对式(3)积分可得到总的光输出:ʏɕ0L (t )d t =h f a s t +h s l o w (8)总的光输出有一个近似的公式[22]:L (E )=a 0+a 1E -a 2A Z 2l n E +a 2A Z 2a 2A Z æèçöø÷éëêêùûúú2(9)式中:a 0,a 1和a 2为常数;由式(4)和式(8)可以确定h f a s t 和h s l o w 的值㊂对式(3)用不同的时间区间进行积分就可以得到Q f a s t 和Q s l o w 的值,在Q f a s t 和Q s l o w 二维谱上不同粒子分布在不同的曲线上,由此实现粒子的鉴别㊂式(9)是总的光输出与粒子能量及种类的关系,可以用来刻度不同粒子的不同光输出总量所对应的能量㊂4 脉冲波形最优积分条件的研究R O O T 是一种面向对象的数据分析处理软件,是用C++编写的一种界面化的分析程序,它可以方便快捷地进行高能物理与核物理方面大数据量的分析和处理,其提供了柱状图㊁拟合工具㊁二维谱等常用的工具㊂R O O T 平台能够兼容C ++语言,用户可以根据自己的要求编写分析程序或再次开发㊂462沈阳师范大学学报(自然科学版) 第41卷本实验采用的基于P X I 的X I A 获取系统会记录下C s I (T l )闪烁探测器输出的每个事件的脉冲波形,在R O O T 环境下编写程序逐个事件分析脉冲波形,在脉冲波形上设置图1所示的快㊁慢成分的电荷积分门,做积分得到电荷量Q f a s t 和Q s l o w ,以Q f a s t 为横坐标,Q s l o w 为纵坐标,做Q f a s t -Q s l o w 二维谱,不同的带电粒子分布在不同的曲线上,实现反应靶后带电粒子种类的鉴别㊂次级束粒子的种类B ρ+(ΔE -T O F )方法鉴别㊂次级束粒子在R I B L L 1中经过二级铁时做圆弧运动,此时粒子所受的洛伦兹力提供向心力,即公式(10),其中ρ为圆弧轨道半径㊂B q v =m v 2ρ(10)简化得公式(11):B ρ=m q v (11)粒子经T 1到T 2的飞行时间T O F 与粒子的速度v 的关系由公式(12)计算㊂L =v t (12) 实验时4块二级铁的磁刚度B ρ均设置为定值,实验中T 1到T 2的距离L =17m ,飞行时间T O F 可测得,由公式(12)确定速度v ,已知B ρ和速度v 可确定粒子的质量和电荷的比值m /q ㊂粒子在D S S D 上的能量损失ΔE 可鉴别粒子的电荷数Z ㊂结合4块二级铁的磁刚度B ρ㊁探测器S i _1上次级束粒子的能损ΔE 和粒子经T 1至T 2的飞行时间(T O F ),就可以鉴别粒子的质量数A 和电荷数Z ,得到T O F -ΔE 二维谱,在T O F-ΔE 二维谱上便可以鉴别靶前带电粒子的种类,如图4所示㊂在T O F -ΔE 二维谱上对每种粒子卡窗,对于经过反应靶大部分未发生反应的粒子,可与Q f a s t -Q s l o w 二维谱上所鉴别的粒子种类进行比较[23],如图5所示㊂图4 T O F -ΔE 二维谱F i g .4 T O F -ΔE t w o -d i m e n s i o n a l s p e c t r u m 图5 Q f a s t -Q s l o w 二维谱F i g .5 Q f a s t -Q s l o w t w o -d i m e n s i o n a l s pe c t r u m 因粒子与硅微条作用时存在沟道效应或打偏的情况,导致一条硅微条读出的能量值小,故在T O F -ΔE 二维谱上6H e 可能与氚(t )落在同一区域,在卡窗选择t 粒子时就包含这部分6H e 粒子,所以在Q f a s t -Q s l o w 二维谱中出现t 中包含着6H e ,比照6H e 正常位置可以认定图5中所示位置为t ㊂在Q f a s t -Q s l o w 二维谱上定义一条过6H e 的直线A x +B y +C =0,选取t 和部分6H e ,应用公式(13)求出所选中粒子到该直线的距离:d =A x +B y +C A 2+B2(13) 利用R O O T 分析得图6所示的粒子距离分布的一维谱,对图6中的t 和6H e 两峰高斯拟合,得到两峰的中心值d 1,d 2和表征峰的宽度的参数σ1和σ2㊂将拟合得到的两峰的中心值的差值与两峰表征宽度的参数之和的比值定义为R ,即为公式(14),R 值的大小可反映粒子鉴别效果,与品质因子定义类似㊂R =d 2-d 1σ1+σ2(14) 为验证这种鉴别方式的可行性,选定一个f a s t g a t e 区间进行计算(以f a s t g a t e :0~50n s 为例)㊂计562 第3期 刘 玲,等:C s I (T l )闪烁探测器脉冲形状鉴别最优积分条件的探究方法算过程中改变s l o w g a t e区间的延迟和宽度,得到不同s l o w g a t e积分门延迟和宽度下的R值㊂将计算得到的R值在图7中表现出来,可以看出,随着s l o w g a t e积分门的改变,R值的变化有一定的规律㊂结果表明,将s l o w g a t e积分门的起点选在峰值后+300n s~+400n s,终点选在峰值后+1500n s~+1 800n s均可得到较优的鉴别效果㊂图6粒子距离分布一维谱F i g.6O n e-i m e n s i o n a l s p e c t r u mo f p a r t i c l ed i s t a n c ed i s t r i b u t i o n图7粒子鉴别效果比较图F i g.7C o m p a r i s o nd i a g r a mo f p a r t i c l ei d e n t i f i c a t i o ne f f e c t5结语在R O O T环境下,对X I A获取系统获取的闪烁光脉冲波形应用脉冲波形分析的积分法鉴别带电粒子,利用点到直线的距离公式计算粒子分布的距离,计算得到可反映鉴别效果的R值,随着s l o w g a t e 积分门的延迟和宽度的变化,R值显现出明显的变化规律㊂足以说明用这种方法研究粒子鉴别效果是可行的㊂本文讨论了该方法的可行性,在后续的工作中应用该方法计算可得到积分法鉴别带电粒子时积分门的最佳区间范围,为以后利用Q D C插件做脉冲形状粒子鉴别的实验提供了参考㊂参考文献:[1]李松林,诸永泰,靳根明,等.中能重离子核反应产物测量装置4π带电粒子探测设备的研制[J].核电子学与探测技术,2002,22(6):485488.[2]S W E A N YS,L Y N C H W G,B R OWN K,e t a l.R e a c t i o nl o s s e so f c h a r g e d p a r t i c l e s i nC s I(T l)c r y s t a l s[J].N u c lI n s t r u m M e t h o d sP h y sR e sS e c tA,2021,1018:165798.[3]L IG,L O UJL,Y E Y L,e t a l.P r o p e r t y i n v e s t i g a t i o no f t h ew e d g e-s h a p e dC s I(T l)c r y s t a l s f o rac h a r g e d-p a r t i c l e t e l e s c o p e[J].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA,2021,1013:165637.[4]MA W H,P A T E L D,Y A N G Y Y,e ta l.O b s e r v a t i o no f6H e+t c l u s t e rs t a t e s i n9L i[J].P h y sR e vC,2021, 103(6):L061302.[5]MA S T I N U PF,M I L A Z Z OP M,B R U N O M,e t a l.C a l i b r a t i o no fC s I(T l)s c i n t i l l a t o r s f o rh e a v y i o n s(3-Z-54)i naw i d e e n e r g y r a n g e(E u-60M e V/u)[J].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA,1994,338(2/3):419424.[6]S T R A C E N E R D W,S A R A N T I T E S D G,S O B O T K A L G,e t a l.D w a r f b a l l a n d d w a r f w a l l:D e s i g n,i n s t r u m e n t a t i o n,a n dr e s p o n s ec h a r a c t e r i s t i c so fa4πC s I(T l)p l a s t i c p h o s w i c h m u l t i d e t e c t o rs y s t e m f o rl i g h tc h a r g ed p a r t i c le a n d i n t e r m e d i a t em a s sf r ag m e n t s p e c t r o m e t r y[J].N u c l I n s t r u m M e th o d sP h y sR e sS e c tA,1990,294(3):485503.[7]K AMA N I N D V,WA G N E R W,O R T L E P P H G.A m e t h o df o r t h e i n t r i n s i cc a l i b r a t i o no fC s I(T l)d e t e c t o r s[J].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA,1998,413(1):127137.[8]A V D E I C H I K O V V,G H E T T IR,G O L U B E V P,e ta l.E n e r g y c a l i b r a t i o no fC s I(T l)s c i n t i l l a t o ri n p u l s e-s h a p ei d e n t i f i c a t i o n t e c h n i q u e[J].N u c l I n s t r u ma n d M e t h o d sP h y sR e sS e c tA,2003,501(2/3):505513.[9]K R E U T ZP,KÜHM I C H E L A,P I N K E N B U R G C,e ta l.P h o t o d i o d er e a d o u ta n d p u l s es h a p ea n a l y s i so fC s I(T l) s c i n t i l l a t o r s i g n a l s[J].N u c l I n s t r u ma n d M e t h o d sP h y sR e sS e c tA,1987,260(1):120123.662沈阳师范大学学报(自然科学版)第41卷[10]G O N G W G ,K I M Y D ,P O G G IG ,e t a l .R e s o l u t i o nt e s t so fC s I (T l )s c i n t i l l a t o r s r e a do u tb ypi nd i o d e s [J ].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA ,1988,268(1):190199.[11]S A R A N T I T E S D G ,HU A P F ,D E V L I N M ,e ta l . T h e m i c r o b a l l d e s i g n ,i n s t r u m e n t a t i o n a n d r e s p o n s e c h a r a c t e r i s t i c s o f a4π-m u l t i d e t e c t o re x i t c h a n n e l -s e l e c t i o nd e v i c e f o rs p e c t r o s c o p i ca n dr e a c t i o n m e c h a n i s m s t u d i e s w i t hG a mm a s p h e r e [J ].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA ,1996,381(2/3):418432.[12]A I E L L O S ,A N Z A L O N E A ,C A R D E L L A G ,e ta l .L i g h t r e s p o n s ea n d p a r t i c l e i d e n t i f i c a t i o n w i t hl a r geC s I (T I )c r y s t a l s c o u p l e d t o p h o t o d i o d e s [J ].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA ,1996,369(1):5054.[13]A L D E R I G H IM ,A N Z A L O N E A ,B A S S S I N IR ,e t a l .P a r t i c l e i d e n t i f i c a t i o nm e t h o d i n t h eC s I (T l )s c i n t i l l a t o ru s e df o r t h eC H I M E R A4πd e t e c t o r [J ].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA ,2002,489(1/3):257265.[14]高辉,高启,肖国青,等.阵列C s I (T l )探测器鉴别轻带电粒子[J ].核电子学与探测技术,2008,28(6):11061109.[15]W I R T H R ,F I O R IE ,L O E H E R B ,e ta l .P a r t i c l ei d e n t i f i c a t i o n u s i ng c l u s t e r i n g a l g o r i th m s [J ].N u c lI n s t r u m M e t h o d sP h y sR e sS e c tA ,2013,717:7782.[16]S A V R A N D ,L ÖH E R B ,M I K L A V E C M ,e ta l .P u l s es h a p ec l a s si f i c a t i o ni nl i q u i ds c i n t i l l a t o r su s i n g t h e f u z z y c -m e a n s a l g o r i t h m [J ].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA ,2010,624(3):675683.[17]L A R O C H E L L EY ,B E A U L I E U L ,D J E R R O U DB ,e t a l .E n e r g y -l i g h t r e l a t i o n f o rC s I (T 1)s c i n t i l l a t o r s i nh e a v y i o n e x p e r i m e n t s a t i n t e r m e d i a t e e n e r g i e s [J ].N u c l I n s t r u m M e t h o d sP h y sR e sS e c tA ,1994,348(1):167172.[18]王高昇,诸永泰,王晓明,等.C s I (T I )闪烁探测器用于粒子鉴别[J ].高能物理与核物理,1989,13(5):440444.[19]姚向武,杨彦云,王建松,等.8ˑ8单元C s I (T l )探测阵列研制[J ].原子能科学技术,2010,44(3):358361.[20]金仕纶,王建松,王猛,等.ΔE -E 望远镜在9C 碎裂反应上的应用[J ].原子能科学技术,2012,46(4):385389.[21]Z HA N W L ,G U OZY ,L I U G H ,e t a l .R a d i o a c t i v e i o nb e a ml i n e i nL a n z h o u [J ].S c iC h i n aS e rA ,1999,42(5):528536. [22]F OM I C H E V AS ,D A V I DI ,L U K Y A N O VSM ,e t a l .T h e r e s p o n s e o f a l a r g eC s I (T l )d e t e c t o r t o l i g h t pa r t i c l e s a n d h e a v y i o n s i n t h e i n t e r m e d i a t e e n e r g y r a n g e [J ].N u c l I n s t r u m M e t h o d s P h ysR e s S e c tA ,1994,344(2):378383. [23]朱金涛,刘国福,杨云,等.带电粒子鉴别方法的发展与现状[J ].核电子学与探测技术,2014,34(2):194199.762 第3期 刘 玲,等:C s I (T l )闪烁探测器脉冲形状鉴别最优积分条件的探究方法。
Freeze-Out Parameters in Central 158AGeV Pb+Pb Collisions

a r X i v :n u c l -e x /9901009v 2 9 J u l 1999Freeze-Out Parameters in Central 158·A GeV208Pb+208Pb CollisionsM.M.Aggarwal,1A.Agnihotri,2Z.Ahammed,3A.L.S.Angelis,4V.Antonenko,5V.Arefiev,6V.Astakhov,6V.Avdeitchikov,6T.C.Awes,7P.V.K.S.Baba,8S.K.Badyal,8A.Baldine,6L.Barabach,6C.Barlag,9S.Bathe,9B.Batiounia,6T.Bernier,10K.B.Bhalla,2V.S.Bhatia,1C.Blume,9R.Bock,11E.-M.Bohne,9Z.K.B¨o r¨o cz,9D.Bucher,9A.Buijs,12H.B¨u sching,9L.Carlen,13V.Chalyshev,6S.Chattopadhyay,3R.Cherbatchev,5T.Chujo,14A.Claussen,9A.C.Das,3M.P.Decowski,18H.Delagrange,10V.Djordjadze,6P.Donni,4I.Doubovik,5S.Dutt,8M.R.Dutta Majumdar,3K.El Chenawi,13S.Eliseev,15K.Enosawa,14P.Foka,4S.Fokin,5V.Frolov,6M.S.Ganti,3S.Garpman,13O.Gavrishchuk,6F.J.M.Geurts,12T.K.Ghosh,16R.Glasow,9S.K.Gupta,2B.Guskov,6H.˚A .Gustafsson,13H.H.Gutbrod,10R.Higuchi,14I.Hrivnacova,15M.Ippolitov,5H.Kalechofsky,4R.Kamermans,12K.-H.Kampert,9K.Karadjev,5K.Karpio,17S.Kato,14S.Kees,9H.Kim,7B.W.Kolb,11I.Kosarev,6I.Koutcheryaev,5T.Kr¨u mpel,9A.Kugler,15P.Kulinich,18M.Kurata,14K.Kurita,14N.Kuzmin,ngbein,11A.Lebedev,5Y.Y.Lee,11H.L¨o hner,16L.Luquin,10D.P.Mahapatra,19V.Manko,5M.Martin,4G.Mart´ınez,10A.Maximov,6R.Mehdiyev,6G.Mgebrichvili,5Y.Miake,14D.Mikhalev,6Md.F.Mir,8G.C.Mishra,19Y.Miyamoto,14D.Morrison,20D.S.Mukhopadhyay,3V.Myalkovski,6H.Naef,4B.K.Nandi,19S.K.Nayak,10T.K.Nayak,3S.Neumaier,11A.Nianine,5V.Nikitine,6S.Nikolaev,6P.Nilsson,13S.Nishimura,14P.Nomokonov,6J.Nystrand,13F.E.Obenshain,20A.Oskarsson,13I.Otterlund,13M.Pachr,15A.Parfenov,6S.Pavliouk,6T.Peitzmann,9V.Petracek,15F.Plasil,7W.Pinganaud,10M.L.Purschke,11B.Raeven,12J.Rak,15R.Raniwala,2S.Raniwala,2V.S.Ramamurthy,19N.K.Rao,8F.Retiere,10K.Reygers,9G.Roland,18L.Rosselet,4I.Roufanov,6C.Roy,10J.M.Rubio,4H.Sako,14S.S.Sambyal,8R.Santo,9S.Sato,14H.Schlagheck,9H.-R.Schmidt,11Y.Schutz,10G.Shabratova,6T.H.Shah,8I.Sibiriak,5T.Siemiarczuk,17D.Silvermyr,13B.C.Sinha,3N.Slavine,6K.S¨o derstr¨o m,13N.Solomey,4S.P.Sørensen,20P.Stankus,7G.Stefanek,17P.Steinberg,18E.Stenlund,13D.St¨u ken,9M.Sumbera,15T.Svensson,13M.D.Trivedi,3A.Tsvetkov,5L.Tykarski,17J.Urbahn,11E.C.v.d.Pijll,12N.v.Eijndhoven,12G.J.v.Nieuwenhuizen,18A.Vinogradov,5Y.P.Viyogi,3A.Vodopianov,6S.V¨o r¨o s,4B.Wys l ouch,18K.Yagi,14Y.Yokota,14G.R.Young 7(WA98Collaboration)1University of Panjab,Chandigarh 160014,India2University of Rajasthan,Jaipur 302004,Rajasthan,India 3Variable Energy Cyclotron Centre,Calcutta 700064,India 4University of Geneva,CH-1211Geneva 4,Switzerland 5RRC “Kurchatov Institute”,RU-123182Moscow,Russia 6Joint Institute for Nuclear Research,RU-141980Dubna,Russia 7Oak Ridge National Laboratory,Oak Ridge,Tennessee 37831-6372,USA8University of Jammu,Jammu 180001,India 9University of M¨u nster,D-48149M¨u nster,Germany 10SUBATECH,Ecole des Mines,Nantes,France11Gesellschaft f¨u r Schwerionenforschung (GSI),D-64220Darmstadt,Germany 12Universiteit Utrecht/NIKHEF,NL-3508TA Utrecht,The Netherlands13Lund University,SE-22100Lund,Sweden 14University of Tsukuba,Ibaraki 305,Japan15Nuclear Physics Institute,CZ-25068Rez,Czech Rep.16KVI,University of Groningen,NL-9747AA Groningen,The Netherlands17Institute for Nuclear Studies,00-681Warsaw,Poland18MIT Cambridge,MA 02139,USA19Institute of Physics,751-005Bhubaneswar,India20University of Tennessee,Knoxville,Tennessee 37966,USA(Draft 2.0,February 8,2008)Neutral pion production in central 158·A GeV 208Pb+208Pb collisions has been studied in the WA98experiment at the CERN SPS.The π0transverse mass spectrum has been analyzed in terms of a thermal model with hydrodynamic expansion.The high accuracy and large kinematic coverage of the measurement allow to limit previously noted ambiguities in the extracted freeze-out parameters.The results are shown to be sensitive to the shape of the velocity distribution at freeze-out.25.75.Dw,24.10.Pa1Heavy ion reactions at sufficiently high energies pro-duce dense matter which may provide the necessary con-ditions for the transition from a hadronic state to a de-confined phase,the Quark-Gluon Plasma.Since afinite thermalized system without external containment pres-sure will necessarily expand,part of the thermal excita-tion energy will be converted into collective motion which will be reflected in the momentum spectra of thefinal hadrons.The dynamics of the expansion may depend on the presence or absence of a plasma phase.The strongly interacting hadrons are expected to decouple in the late stages of the collision.Their transverse momentum spec-tra should therefore provide information about the con-ditions of the system at freeze-out,in particular about the temperature and collective velocity of the system,if the thermal assumption is valid.The application of a thermal description is non-trivial. There is no reason to believe neither that chemical and kinetic freeze-out should be identical,nor that there should be unique thermal freeze-out temperatures for all hadrons,nor unique chemical freeze-out temperatures for allflavour changing reactions.It is likely that chemical equilibrium is not fully attained(see e.g.[1]),implying that chemical parameters will also influence momentum spectra through contributions from decays of heavier res-onances.Furthermore,it is not obvious that this problem should have a stationary solution since particle emission will occur throughout the full time evolution of the colli-sion and so,in principle,would require a full space-time integration with varying parameters.Most attempts to extract freeze-out parameters from experiment assume local thermal equilibrium andfit pa-rameterizations of hydrodynamical models to the exper-imental distributions[2–7].Already the earliest analy-ses[2]noted ambiguities infitting the hadron transverse mass spectra due to an anti-correlation between thefitted temperature,T,and transverseflow velocity,βT.Two-particle interferometric(HBT)measurements provide information on the spatial and temporal extent of the emission volume,but are also sensitive to the col-lective motion of the source(see e.g.[3,8,9]).Within a hydrodynamical parameterization of the source at freeze-out,the transverse two-particle correlations have been shown to be sensitive only to the ratioβ2T/T[3].Hence HBT analyses have aβT−T ambiguity which is roughly orthogonal to that resulting fromfits to the single par-ticle spectra.This fact has recently been used by the NA49collaboration to constrain the freeze-out param-eters to lie within the region βT =0.55±0.12and T=120±12MeV for central Pb+Pb collisions[6].Al-ternatively,a recent analysis ofπ+,K+,and K−distri-butions andπ+andπ−two-particle correlations mea-sured by the NA44collaboration for central Pb+Pb col-lisions using a9-parameter hydrodynamical modelfit[10] gave freeze-out parameters of βT =0.443±0.023and T=95.8±3.5MeV.These analyses suggest that a sin-gle set of freeze-out parameters can describe the hadron single particle distributions and two-particle correlations, with moderate temperature and large transverseflow ve-locity.On the other hand,various thermal model analyses of particle production ratios,especially strangeness pro-duction(see e.g.Ref.[11]for a recent summary),have indicated rather high chemical freeze-out temperatures.Use of integrated yields in these analyses allows to obtain conclusions on the temperature which are insensitive to the amount of transverseflow.In a recent analysis of re-sults at SPS energies,including Pb+Pb collisions,good agreement is obtained if partial strangeness saturation is assumed with a chemical freeze-out temperature of about 180MeV[12].A successful thermal interpretation of relativisticheavy ion collisions must provide an accurate descrip-tion of the pion spectra since pions provide the“thermal bath”of the late stages the collision.In this letter we discuss the extraction of thermal freeze-out parameters from the neutral pion transverse mass distribution for central158·A GeV208Pb+208Pb collisions.These data provide important constraints due to their accuracy and coverage in transverse mass.The analysis of theπ0spec-trum,within a particular hydrodynamical model,reveals the importance of the shape of the velocity distribution at freeze-out.The default shape,derived from a Gaus-sian spatial distribution,favors a large thermal freeze-out temperature,similar to temperatures extracted for chemical freeze-out,but in contradiction to conclusions obtained based on analyses of limited coverage particle spectra and HBT results[6,10,13].The CERN experiment WA98[14–16]consists of large acceptance photon and hadron spectrometers together with several other large acceptance devices which allow to measure various global variables on an event-by-event basis.The results presented here were obtained from an analysis of the data taken with Pb beams in1995 and1996.The10%most central reactions(σcentral≈630mb)have been selected using the transverse energyE T measured in the MIRAC calorimeter.Neutral pions are reconstructed via theirγγde-cay branch using the WA98lead-glass photon detector, LEDA,which consisted of10,080individual modules with photomultiplier readout.The detector was located ata distance of21.5m from the target and covered thepseudorapidity interval2.35<η<2.95.The general analysis procedure,described in[16],is similar to that used in the WA80experiment[7].The momentum dis-tributions are fully corrected for geometrical acceptance and reconstruction efficiency.The systematic error on the absolute yield is≈10%and increases sharply below p T=0.4GeV/c.An additional systematic error origi-nates from the uncertainty on the momentum scale of1%.The influence of this rises slowly for large p T and leads to an uncertainty on the yield of15%at p T=4GeV/c. 210101010110101010101010m T -m 0 (GeV/c 2)E d 3σ/d p 3 (m b c 3/G e V 2)FIG.1.Transverse mass spectra of neutral pions in cen-tral collisions (10%of min.bias cross section)of 158A GeV Pb+Pb.The invariant cross section of neutral pions is com-pared to a fitusinga hydrodynamicalmodel [5]including transverse flow and resonance decays,with the direct produc-tion and the contribution of ρdecays and all other resonances shown separately.The ratio of the fit to the data is shown in the inset.m 0is the π0mass.The measured neutral pion cross section from central Pb+Pb reactions as a function of m T −m 0is shown in Fig.1.Included is a fit with a hydrodynamical model [5]including transverse flow and resonance decays.This computer program calculates the direct production and the contributions from the most important resonances having two-or three-body decays including pions (ρ,K 0S ,K ⋆,∆,Σ+Λ,η,ω,η′).The code,originally intended for charged pions,has been adapted to predict neutral pion production.The model uses a gaussian transverse spatial density profile truncated at 4σ.The transverse flow rapidity is assumed to be a linear function of the radius.For all results presented here,a baryonic chemical potential of µB =200MeV has been used.The results are not very sensitive,however,to the choice of µB for the m T −m 0region considered here.This model provides an excellent description of the neutral pion spectra with a temperature T =185MeV and an average flow velocity of βT =0.213.These values are very similar to the parameters obtained with similar fits to neutral pion spectra in central reactions of160180200220240260280300320340T 0T l o c a l (M e V )FIG.2.The local inverse slope of the transverse mass spectrum of neutral pions in central collisions of 158A GeV Pb+Pb.The measured results (solid points)are compared to the hydrodynamical model best fit result (solid line;T =185MeV and βT =0.213,also shown in Fig.1)and to the other results given in table I.32S+Au [7].The 2σlower limit 1on the temperature is T low =171MeV and the corresponding upper limit onthe flow velocity is βuppT =0.253.The observed curvature at low m T is largely a result of resonance decay contributions.Performing a fit with only the direct contribution leads to T =142MeV and βT =0.301,with corresponding 2σlimits of T low =135MeVand βuppT =0.318,similar to other analyses which have neglected decay contributions [6,17].The larger average velocity which results in this case is due to the fact that all of the observed curvature must now be accounted for by transverse flow.The high statistical accuracy and large transverse mass coverage of the present π0measurement reveals the con-cave curvature of the π0spectrum over a large m T range,which constrains the parameters significantly.This is further demonstrated by studying the local slope at each m T .The local (inverse)slope is given byT −1local=− Ed 3σdm TEd 3σ1All limits given use the data for m T −m 0>2GeV /c 2as upper limits only to allow for additional hard-scattering contributions.3βTd N /d βT (a r b . u n i t s )FIG.3.Unnormalized multiplicity distributions as a func-tion of the transverse source velocity for the parameter sets given in table I.been fixed to larger values comparable to those obtained by Refs.[10]and NA49[6](sets 2and 3).The corre-sponding fit parameters are given in Table I.The com-parison demonstrates that while the large transverse flow velocity fits can provide a reasonable description of the data up to transverse masses of about 1GeV,they sig-nificantly overpredict the local slopes at large transverse mass.While application of the hydrodynamical model at large transverse mass is questionable,the model cannot overpredict the measured yield.The observed overpre-diction therefore rules out the assumption of large trans-verse flow velocities,or points to a deficiency in the model assumptions used in these fits.The curvature in the π0spectrum at large transverse mass is a result of the distribution of transverse veloci-ties.Although the spectrum is not directly sensitive to the spatial distribution of particle emission,within this model it is dependent indirectly on the spatial distribu-tion due to the assumption that the transverse rapidity increases linearly with radius.The large curvature at large transverse mass is due to high velocity contribu-tions which result from the tail of the assumed gaussian density profile [18].Figure 3shows the transverse source velocity distributions dN/dβT for the different parameter sets.2The curves labelled 1-3correspond to the calcu-lations in figure 2using a gaussian spatial profile.In addition,velocity profiles are shown for a uniform den-sity profile (set 4)and for a Woods-Saxon distribution:ρ(r )=12More precisely these are source emission functions inte-grated over all variables except the transverse velocity and the rapidity,i.e.they are weighted with the produced parti-cle multiplicity.with ∆/r 0=0.02(set 5).These are included in figures 2and 3.It is seen that the uniform density assumption truncates the high velocity tail resulting in less curvature in the pion spectrum,while the Woods-Saxon has a more diffuse edge at high βT .While the gaussian and uniform density assumptions have very different velocity profiles,it is interesting that both can provide acceptable fits to the pion spectrum with best fit results with similar βT and T parameters,which give similar effective temperatures,and which have similar velocity widths,βRMS ,as shown in Table -pared to the gaussian profile result,the best fit result us-ing the uniform profile gives a lower temperature of 178MeV and would lead to weaker limits of βuppT =0.42and T low=134MeV.Limits cannot be set using the Woods-Saxon profile due to increased fit ambiguity.If the data for m T −m 0>2GeV /c 2is used only as up-per limits,as explained above,a best fit result with T =129MeV and βT =0.42is obtained.The data presented here can be well described with high thermal freeze-out temperatures,similar to temper-atures which have been extracted for chemical freeze-out [12],and small transverse flow velocities.3On the other hand,if the larger velocities obtained in other analyses which have considered limited particle spectra together with HBT results [6,10,13]persist,then the present anal-ysis suggests much lower thermal freeze-out tempera-tures.For example,none of the different velocity profile assumptions used in this analysis allowed to reproduce the results of ref.[6]–all profiles studied require a tem-perature of 90MeV or less,if βT =0.55is assumed.The present data obviously provide important informa-tion on the shape of the freeze-out velocity distribution.A more extensive systematic study would require further guidance from full hydrodynamical calculations,which is beyond the scope of this paper.Recent hydrodynamical model calculations [19,20]have found reasonable agree-ment with transverse mass spectra within a broad range of assumptions.However,in these studies it was not at-tempted to limit the model parameters or assumptions by a rigorous comparison to the data.In summary,we have argued that hydrodynamical models which attempt to extract the thermal freeze-out parameters of relativistic heavy ion collisions must pro-vide an accurate description of the pion spectra,since pions most directly reflect the thermal evironment in the late stage of the collision.In particular,models,or parameter sets,which overpredict the observed pion yields,even at large transverse mass,can immediately be ruled out.We have demonstrated that the high accuracy neutral pion spectra with large transverse mass cover-TABLE I.Parameters for different hydrodynamical model fits to the neutral pion spectrum shown infigures2and3. The temperature T,average and RMS transverseflow ve-locity βT andβRMS are given together with the effective temperature T ef f=T/Set TβRMSχ2/dof(MeV)Gauss0.213±0.020230275±10.199386/19 Gauss0.527884178±130.09333.3/18214WS0.365+0.056−0.069age can constrain the thermal freeze-out parameters and model assumptions.Within the context of the hydro-dynamical model of Ref.[5],the default velocity profile favors large thermal freeze-out temperatures similar to the chemical freeze-out temperature determined for the same system[12].Only special choices of the velocity profile allow large average freeze-out velocities similar to those extracted from other recent analyses which consider also HBT results[6,10,13].On the other hand,the cor-responding freeze-out temperatures are then≈90MeV, significantly lower than other estimates.The present re-sults indicate that the determination of the freeze-out parameters remains an open question.It will be impor-tant to determine whether full hydrodynamical models can reproduce the high precision pion data and thereby constrain the assumed freeze-out hypersurface.We wish to thank Urs Wiedemann for assistance with the model calculations and valuable discussions.This work was supported jointly by the German BMBF and DFG,the U.S.DOE,the Swedish NFR and FRN,the Dutch Stichting FOM,the Stiftung f¨u r Deutsch-Polnische Zusammenarbeit,the Grant Agency of the Czech Repub-lic under contract No.202/95/0217,the Department of Atomic Energy,the Department of Science and Tech-nology,the Council of Scientific and Industrial Research and the University Grants Commission of the Govern-ment of India,the Indo-FRG Exchange Program,the PPE division of CERN,the Swiss National Fund,the INTAS under Contract INTAS-97-0158,ORISE,Grant-in-Aid for Scientific Research(Specially Promoted Re-search&International Scientific Research)of the Min-istry of Education,Science and Culture,the University of Tsukuba Special Research Projects,and the JSPS Re-search Fellowships for Young Scientists.ORNL is man-aged by Lockheed Martin Energy Research Corporation under contract DE-AC05-96OR22464with the U.S.De-partment of Energy.The MIT group has been supported by the US Dept.of Energy under the cooperative agree-ment DE-FC02-94ER40818.。
凝聚态物理学

凝聚态物理学52ChineseScienceAbstracts(ChineseEdition)2008V o1.14,No.3 式.Taylor模型和Agrawal模型其实是对同一个解的不同描述, 由于Agrawal模型比Taylor模型相对简单,因此在实际应用时可以采用Agrawal模型或频域解析解公式进行求解.应用频域解析解公式和Fourier变换与逆变换技术,可以求得终端电压或电流的瞬时响应解.图2参15关键词:传输线;解析解;耦合模型;电磁激励08030401140?40无线电物理轴对称渐变型类周期慢波结构的色散特性=Dispersioncharac—teristicsofarbitraryaxial?-symmetrictaperedquasi?-periodicslow?- wavestructure[刊,中]/董烨(北京应用物理与计算数学研究所,北京100088),董志伟,周海京,杨温渊∥强激光与粒子束.一2007,19(9).--1526~1532运用场匹配法和傅里叶级数理论,提出一种原则上可数值求解任意轴对称渐变型类周期慢波结构色散特性的方法.采用该方法编制了计算渐变型波纹波导和渐变型盘荷波导色散曲线的Matlab程序,详细分析并讨论了这两类典型渐变型类周期慢波结构的色散特性.数值计算结果与多维全电磁模拟软件模拟结果的数据吻合度较高,验证了该数值算法的可靠性.另外,该方法具有较强的普适性和扩展性,也可退化到任意轴对称周期慢波结构色散特性的求解,为慢波结构的设计提供一种简单有效的途径.图2O表2参1O关键词:高功率微波;渐变型类周期慢波结构;色散特性;场匹配法;傅里叶级数;数值计算08030402140?45电子物理学Wiggler聚焦带状注速调管电子光学系统的设计=DesignofsheetbeamklystronelectronopticssystemwithWigglerfocusing styrle[刊,中]/王树忠(中国科学院电子学研究所,北京100080),王勇,丁耀根,阮存军∥强激光与粒子束.一2007,19(9).一1517~1520带状注速调管可以在高频段实现高功率微波输出,电子光学系统是带状注速调管的关键部件.阐述了Wiggler双平面聚焦理论,设计了新型椭圆形柱面阴极和椭圆形聚焦极结构,阴极曲率半径为17mill,长轴10mm,短轴4IIIlTI;聚焦极长轴28.8mill,短轴1O.4mil1.采用这种结构可以直接产生椭圆形带状电子注,且阴极发射电流密度较为均匀.设计了周期长度为8mill,总长度为108mm,中间带有凹槽并可以实现双平面聚焦的Wiggler结构,模拟显示电子注填充因子在75%左右,通过率达到100%.设计了新型的菱形收集极结构,电子轨迹在收集极内发散均匀.图9参lO关键词:高功率微波;带状注速调管;Wiggler聚焦:电子光学系统;电子枪08030403140?50凝聚态物理学磁性杂质对量子点内电子态密度Kondo峰的影响-----Effectofa magneticimpurityontheKondospliaingofDOSinaquantumdot[刊,中]/陈江(北京大学物理学院,北京100871)∥北京大学(自然科学版).一20HD7,43(5).--609~613讨论了一个耦合于量子点的磁性杂质,当两边是铁磁性导线时量子点上电子的态密度Kondo峰的变化情况.用格林函数运动方程的方法和特定的自洽方法得到了态密度的解析表达式.杂质与量子点上电子的耦合使得原本简并的电子能级分裂.数值计算结果表明当两边的铁磁导线极化反平行时,态密度的Kondo 峰几乎不随着磁性杂质方位角的变化而变化.当极化平行时,会出现3个Kondo峰,并且峰之间的间隔随着杂质的方位角的增大而增大.如果选取适当极化率的铁磁导线,由导线的铁磁性引起的Kondo峰的分裂可以被杂质的耦合作用抵消掉.图5 参16关键词:量子点系统;Keldysh格林函数;Kondo效应08030404140?50MgB2超导材料的薄膜制备及其超导器件的实现=Filmfabri—cationandelectronicdevicesofMgB2superconductor【刊,中]/吴克(北京大学物理学院,北京100871),余增强,张解东,聂瑞娟,王福仁∥北京大学(自然科学版).一2007,43(5).一614~619报道了采用电子束蒸发技术实现MgB,薄膜制备的实验工作. 通过蒸镀B膜和Mg/B多层膜两种前驱体,分别经高温区(~900℃)和中温区(~700℃)退火处理后成功获得了高质量的MgB2薄膜样品.对样品的超导性能,晶体结构和表面形貌进行了详细的测量和表征,并对两类样品性质上所表现出的差异进行了分析.此外,还报道了在薄膜制备基础上利用微加工技术实现的超导微波谐振器的结果.图6参22关键词:MgB2;超导薄膜;电子束蒸发;退火处理;微波谐振器140?50关于纳米尺度体系中单粒子分布函数的一些严格结果=Onthe single-particledistributionfunctioninthesystemsofnanometer scale:somerigorousresul~[刊,中]/龙贤哲(北京大学物理学院,北京100871),杨凯华,何培松,田光善∥北京大学(自然科学版).一2【x】7,43(5).--630~638利用变分原理,首先证明在零温下,量子点系统和超导小颗粒系统的单粒子分布函数对于单粒子能量是非增的.然后利用Klein不等式证明,在非零温下,这一结论仍然正确.这些结果明确地显示,这一分布函数随单粒子能量的非增行为是由这些纳米系统的量子稳定性条件决定的.参3O关键词:纳米体系;单粒子分布函数;严格结果0803O406140?50高压下岩盐矿和单斜结构AgC1的电子行为一Electronicbe—haviorsoftherocksaltandmonoclinicAgC1underpressure[刊,中]/王佐成(白城师范学院物理系,白城137000),车立新,李岩,崔田,张淼,牛英利,马琰铭,邹广田∥高压物理.一2【x】7,21(3).一225~23O利用基于密度泛函理论的赝势平面波方法,计算了AgC1在高压下的结构行为和电子性质,交换关联函数采用广义梯度近似(GGA).通过比较焓随压力的变化关系,从理论上确定了AgC1 从岩盐矿结构相变到单斜结构的转变压强.预测了这两种结构在布里渊区中的价带顶和导带底的位置,结果表明:盐岩矿和单斜结构的AgC1都是具有间接带隙的半导体.还计算了这两种结构的带隙和电子态密度随压强的变化情况,发现在这两种结构相变之前都不会发生金属化转变.电荷转移研究发现,随着压强的增加,Ag原子和Cl原子之间成键的共价性增强,离子性减弱.图6表2参24关键词:密度泛函理论;能带结构;金属化0803O407140?50球形钨合金破片空气阻力系数实验研究-----Experimentalstudies onairdrcoefficientofsphericaltungstenfragments[刊,中J/谭多望(中国工程物理研究院流体物理研究所,绵阳621900),王广军,龚晏青,高宁∥高压物理.一2OO7,2l(3).一231~236实验研究了理想球形钨合金破片和经历爆轰驱动的球形钨合金破片长距离飞行时的速度衰减规律.实验结果表明:(1)对于理想球形钨合金破片,在同一初始速度条件下,衰减系数为常数,空气阻力系数与初始速度有关,两者成线性关系;(2)对于经历爆轰驱动的球形钨合金破片,由于有轻微的质量损失和变形,速度衰减规律与理想球形钨合金破片有明显的区别,空2008年14卷第3期中国学术期刊文摘53气阻力系数与飞行速度有关,两者成线性关系.图7表1参7 关键词:球形钨合金破片;衰减系数;空气阻力系数;破片战斗部08030408140?50六角相硼碳氮化合物的合成研究=Synthesisandcharacteriza- tionofh-BCNNanocrystalliteunderhigh--pressureandhigh-- temperature[刊,中]/李雪飞(吉林大学超硬材料国家重点实验室,长春130012),张剑,沈龙海,杨大鹏,崔启良,邹广田∥高压物理.一2o07,21(3).--237~241以三聚氰胺和氧化硼为原料,利用真空热处理和高温高压技术,对BCN化合物的形成及结构进行了研究.在真空条件下, 原料经1100K热处理得到非晶BCN的前驱物,将前驱物在5,0GPa,1500K条件下高温高压热处理30min,合成出了单相的六角BCN晶体.采用MaterialsStudio软件的Reflex模块对样品的x射线衍射图谱进行分析,结果表明,得到的样品为纯的六角相,晶格常数为a-----0.2505am,c=0.6659am.对样品进行了透射电镜(TEM)分析,得到了样品的形貌和电子衍射, 同样证实了样品为六角BCN晶体,晶粒尺寸约200am.对样品进行了XPS表征,确定了样品中存在C—C,C—N,C.一B, N—B键,表明B,C,N三元素之间达到了原子级化合,样品的组分含量通过EDX进行标定.图5表1参10关键词:高温高压;h—BCN;前驱物08030409140?50卵形头部弹丸侵彻混凝土的研究=Studyonpenetrationofcon—cretetargetsbyogive—nosesteelprojectile[刊,中]/周宁(中国科学技术大学力学与机械工程系,合肥230026),任辉启,沈兆武,何祥,刘瑞朝∥高压物理.一2o07,21(3).一242~248用头部曲率半径为4.0,直径100mm,质量为25k譬的卵形弹丸对混凝土进行侵彻实验,并测试了炮膛内和侵彻过程中弹丸的加速度时程曲线.实验用混凝土靶的抗压强度为35MPa,密度为2.450kg/m,有3m×3m×3m和2m×2m×2m两种尺寸.测试弹丸发射和侵彻过程加速度的记录系统刚性固结于弹丸内部.弹丸侵彻初速在310m/s~632m/s之间,弹丸的峰值过载在12000~22000g之间.实验后将测试的侵彻深度,侵彻过程弹丸的加速度时程曲线与用Forrestal的理论模型计算得到的结果进行了比较分析.实验结果对认识侵彻的整个过程和相关弹药的设计有重大意义.图7表1参8关键词:爆炸力学;侵彻;混凝土靶;卵形头部弹丸;加速度时程曲线测试08030410140?50高压烧结法合成致密纳米BaTiO3陶瓷结构和铁电性能研究= Structureandferroelectricpropertiesofdensenanocrystalline BaTiO3ceramicspreparedbyhighpressuresinteringmethod[刊, 中]/李鹏飞(北京科技大学物理系,北京100083),靳常青,肖长江,潘礼庆,王晓慧∥高压物理.一2007,21(3).~249~252在6GPa压力,1000℃温度条件下制备了致密的纳米BaTiO陶瓷,合成样品的平均晶粒尺寸为50am,理论密度在97%以上.通过介电测量,观察到了样品宽化的相变峰,它与粗晶陶瓷的相变峰大不相同.由于90.电畴的减少和退极化场的存在,观察到了细长的电滞回线,它是样品铁电性存在的有力证据,表明钛酸钡陶瓷的临界尺寸在50am以下.图4参11关键词:高压烧结;铁电;纳米晶BaTiO陶瓷;电畴O8O3O411140?50一种超高速发射实验装置的改进及其数值模拟=Animproved ofexperimentalhypervelocitylauncherandsimulation[刊,中]/柏劲松(中国工程物理研究院流体物理研究所,绵阳621900), 唐蜜,华劲松,李平,谭华∥高压物理.一2007,21(3).一253~258以流体比容方法和三阶PPM方法为基础,给出了适用于三级气炮超高速发射过程数值模拟的多流计算方法和计算代码MFPPM,利用Sandia实验室一系列的实验装置及其结果对计算代码进行了验证和确认,获得了较好的数值模拟结果(其中最大相对误差为1.o7%),同时对冲击波物理与爆轰物理实验室设计的实验装置进行了数值模拟,计算结果与实验结果相差1.o4%.为了更好地满足超高压下材料状态方程的测量,提出了一种带汇聚型的改进装置设计,并给出了相应的数值模拟结果.图8表1参5关键词:超高速发射;多流体计算方法;数值模拟0803O412140?50PbMoO4原位高压拉曼光谱和电导率的研究=Investigationof /n-SituRamanspectrumandelectricalconductivityofPbMoO4at highpressure[刊,中]/于翠玲(吉林大学超硬材料国家重点实验室,长春130012),于清江,高春晓,刘鲍,贺春元,黄晓伟,郝爱民,张冬梅,崔晓岩,刘才龙,王明,邹广田∥高压物理.~2o07,21(3).--259~263钼酸铅(PbMoO4)具有高的声光品质因数,低的声损耗,良好的声阻抗匹配等性质,被广泛应用于声光偏转器,调制器,可调滤光器,声表面波器件等各类声光器件,其优异的低温闪烁性能亦引起人们的注意,具有在核设备方面的应用潜力.为探讨其晶体结构和物理性质,在金刚石对顶砧上原位测量了PbMoO的拉曼光谱,并测量了其在几个不同压力点下电导率随温度的变化.实验发现,压力在12.5GPa时,拉曼峰完全消失,说明压力在10.8~12.5GPa之间PbMoO样品出现了非晶态转变.当从26.5GPa卸压到9.4GPa时,PbMoO4的拉曼谱在低波数出现无序化,而在2.4GPa压力下858cm峰又重新出现,说明样品结构由无序向晶化回复.压力在10.8GPa以上时,电导率随着温度的增加而显着增加,且随着压力的增加也明显增加.图5参19关键词:高压高温;钼酸铅;电导率0803O413140?50斜锆石(21"O2)高温高压相变的Raman光谱研究=Invesligalionof phasewansitionsofZIO2underhigh--pressureandhign-?temperature conditionsbyRamanspectroscopy[刊,中]/张红(中国科学院广州地球化学研究所,广州510640),肖万生,谭大勇,罗崇举,李延春,刘景∥高压物理.一20o7,21(3).--264~268以Ar作压力介质,在0~23GPa压力范围内,利用金刚石压腔装置(DAC)和激光加温技术,采用显微拉曼光谱进行原位测试,对处于准静水压力条件下的斜锆石开展高温高压相变研究. 研究结果表明:室温下斜锆石ZrO2于3.4GPa时开始发生相变, 到10.4GPa时其明显转变成一个空间群为Pbca的斜方相.该新相随着压力升高,直到15.3GPa,仍稳定存在.通过研究,首次获得了Pbca相的拉曼谱图.随后在15.3GPa压力下进行了激光加温后淬火,结果发现,加热前的Pbca相又转变成了空间群为Pnam的PbC1结构类型的高压相,该相直到实验最高压力23GPa仍稳定存在.图4表1参9关键词:斜锆石;高温高压相变;拉曼光谱;Pbca相;Pnam相0803O414140?50对爱因斯坦模型的修正及考虑热效应的三个通用状态方程= ModifiedEinsteinmodeltoconsiderthermaleffectandappliedto threeuniversalequationsofstate[干U,中]/张超(电子科技大学应用物理系,成都610054),孙久勋,田荣刚,李明∥高压物理.一2007,2l(3).--269~278对固体考虑热效应的爱因斯坦模型进行了修正.指出考虑热54ChineseScienceAbstracts(ChineseEdition)2008V o1.14,No.3效应的通用状态方程中不应该包含零点振动项,方程参数不应该直接取为参考温度下的实验值vR,,曰R和7,:,而应该取为零温下的数值v0,曰0,曰0和7,;提出了一种从vR,,曰R和7,求解v0,,B0和7,的方法.将提出的方法应用于三个典型的通用状态方程,包括Baonza,mMNH和Vinet方程,数值结果表明,利用相同的实验参数对三个方程解出的参数,以及预测的零压和低压下的热物理性质差异很小,而且都与实验数据符合很好.这些结果表明,在零压和低压下预测热物理性质的精确度不足以用来判断各种通用状态方程的适用性.图6表2参21关键词:状态方程:高压:热物理性质:热膨胀o8o3041514o?5O高压下天然顽火辉石能量色散x射线粉末衍射研究=Energy dispersiveX—raypowderdiffractionofnaturalenstatiteunderhigh pressureconditions[刊,中]/马麦宁(中国科学院研究生院计算地球动力学实验室,北京100049),周文戈,刘景,李延春,李晓东∥高压物理.一2007,21(3).--279~282在北京同步辐射装置(BSRF)高压站对采自于河北大麻坪的天然顽火辉石,在室温高压(0~31.64GPa)下,利用金刚石压腔装置(DAC),进行了能量色散x射线粉末衍射(EDXD)原位测量,得到了顽火辉石在不同压力下的衍射图谱,并利用UnitCell 软件进行解谱,获得了其晶胞参数a,b,C和晶胞体积y及其随压力的变化,最后利用Murnaghan等温方程得到了天然顽火辉石的体积模量0):172GPa,压缩系数及P.V状态方程,发现沿a,b,C三方向的压缩系数存在明显的各向异性,结果与斜方辉石的弹性波速各向异性完全一致.图3表2参10关键词:顽火辉石;金刚石压腔装置;能量色散x射线粉末衍射;状态方程;压缩系数o8o3041614o?5O高温高压下冲击波淬火的锆基大块金属玻璃的相演化过程研究=PhaseevolutionofZr-basedbulkmetallicglasspreparedby shock-wavequenchingunderhightemperatureandhighpressure [刊,中]/杨超(华南理工大学金属新材料制备与成型广东省重点实验室,广州510640),陈维平,战再吉,蒋建中∥高压物理.一2007,21(3).一283~288采用同步辐射能散x射线衍射技术,研究了高温高压下利用冲击波淬火技术制备的Zr4lTil4Cu5Ni1oBe225大块金属玻璃的相演化过程.研究结果发现:在实验压力范围内,在不同压力下试样具有相同的初始析出相2Be17,但是随后的相演化过程是不同的,根据应用压力的不同,试样的相演化过程可以分为3个不同的区域:另外,试样的晶化温度随着压力的增大而升高, 但是在6.0GPa存在一个突然的下降,在此压力点试样具有不同于其它压力点的相演化过程.相演化过程的不同和晶化温度的突然下降,可能归因于在不同压力下试样具有不同的原子构型,图6参12关键词:大块金属玻璃;高温高压;相演化:同步辐射:x射线衍射o8O3O41714O?5O高应变率下硅橡胶的本构行为研究=Constitutivebehaviorsofa siliconerubberathighstrainrates[刊,中]/林玉亮(国防科学技术大学理学院技术物理研究所,长沙410073),卢芳云,卢力∥高压物理.一2oo7,21(3).--289~294硅橡胶是一种高分子聚合物,可以承受大变形,用途广泛.利用改进的分离式霍普金森压杆(SHPB)实验技术,对硅橡胶试样进行了不同应变率下的冲击压缩实验,基于实验数据,利用应变能函数构建了考虑应变率效应的材料本构形式.同时,实验过程中发现,在高应变率加载条件下,材料在压缩变形后出现了损伤线区,线区直径与加载应变率及试样尺寸之间存在一定的定量关系.图6表2参7关键词:硅橡胶;分离式霍普金森压杆;本构关系:高应变率;应变能函数0舳3O418140?50片状h-BCN化合物的高温高压化学合成与表征=Chemical synthesisandcharacterizationofflakyh-BCNbyHPHT[刊,中]/杨大鹏(吉林大学超硬材料国家重点实验室,长春130012), 李英爱,杜勇慧,苏作鹏,吉晓瑞,杨旭昕,宫希亮,张铁臣∥高压物理.一20o7,21(3).--295~298以高温烧结三聚氰胺制得的CNH化合物为C,N源,与分析纯单质硼粉以一定比例混合,在5.0~5.5GPa,140o~1500℃高温高压条件下,经化学反应合成了六角硼碳氮(h—BCN)晶体. 用傅立叶变换红外光谱(FTLR)和x射线光电子能谱(XPS)对产物进行了表征,结果表明,得到了含碳量较高的六方结构Bol8Co66Nol6化合物,成分接近于BC4N,硼,碳,氮是以原子化合的形式存在;XRD分析确定该合成产物具有六角网状结构;SEM测量结果表明,B.c—N晶体具有片状六角形貌,尺寸在1grn左右.图5参18关键词:高温高压;片状BCN;合成与表征O8o3O419140?50高压下氧化镉弹性性质,电子结构和光学性质的第一性原理研究=Firstprinciplesstudyoftheelastic,electronicandoptical propertiesofCdOunderpressure[刊,中]/何开华(中国地质大学数学与物理学院,武汉430074),郑广,陈刚,吕涛,万淼,向东,姬广富∥高压物理.一20o7,21(3).--299~304运用基于密度泛函理论的平面波赝势方法(PWP),计算研究了氧化镉NaCI结构(B1结构)和CsCI结构(B2结构)在不同压力条件下的几何结构,弹性性质,电子结构和光学性质.交换关联能分别采用广义梯度近似(GGA)和局域密度近似(LDA).通过比较计算和实验得到的晶格常数和体模量不难发现,LDA的计算结果更符合实验值.在高压的作用下,两种结构的导带能级有向高能级移动的趋势,而价带能级有向低能级移动的趋势,因此直接带隙变大.同时,对照态密度分布图及高压下能级的移动情况,分析了CdO两种结构在高压作用下的光学性质.图5表1参l9关键词:氧化镉;密度泛函理论;电子结构O8o3O420140?50球弹丸超高速碰撞双层板防护结构撞击极限分析=Ballistic limitanalysisforprojectilesimpactingondualwallstructuresat hypervelocity[刊,中]/丁莉(哈尔滨工业大学空间碎片高速撞击研究中心,哈尔滨150080),张伟,庞宝君,李灿安∥高压物理,一20o7,21(3),一3l1~315防护结构的撞击极限是空间防护领域的重要研究内容,基于对理想弹塑性薄板的分析,得到了双层板结构的撞击极限方程所得方程适用于球形弹丸超高速正撞击双层板结构的情况,分析时采用了Rayleigh—Ritz法及Tresca屈服准则.为验证方程的有效性,对实验进行了预报分析,并且与已有的经验方程的撞击极限曲线进行了对比.结果发现,方程预测结果的准确率为80%,且所得的撞击极限曲线与已有的经验方程曲线吻合得很好.图4表1参9关键词:空问防护;解析方法;撞击极限方程;超高速碰撞0803O42114O?50金刚石膜厚度尺寸对热残余应力的影响=Effectofdiamondfilmsthicknessonthermalresidualstress[刊,中]/唐达培(西南交通大学应用力学与工程系,成都610031),高庆,吴兰鹰∥高压物理.一2oo7,21(3).一316--3212008年14卷第3期中国学术期刊文摘55采用有限元方法对钼基体上不同厚度(2O~10001)金刚石膜的热残余应力进行了全面的模拟与分析,得出了它们在膜内分布的等值线图,研究了金刚石膜厚度尺寸对整个膜内的最大主拉应力和界面处每个应力分量最大值的影响.结果表明:在整个膜内,最大主拉应力的位置出现在膜的表面,界面或侧面,其值随膜厚度的增加而增大;在界面处,最大轴向应力随膜厚度的增加而增大,而最大径向压应力,最大周向压应力和最大剪应力则随膜厚度的增加而减小,其中最大剪应力减幅较小; 膜厚度越大时,以上各量随厚度增(减)的速度越慢.其结论对于在金刚石膜的制备中合理地选择厚度,有效地进行应力控制有一定的参考价值,图4参14关键词:金刚石膜;厚度;残余应力;有限元;主应力;界面O8O3O422140-5OPzT95/5粉体的冲击合成反应机理初探:Studyonthemecha- nismofPZT95/5powdersynthesisbyshockwaves[gJ,中]/王军霞(西南科技大学材料科学与工程学院,绵阳621010),杨世源,贺红亮,王进∥高压物理.一20o7,21(3).一322~326采用柱面冲击波回收装置,通过炸药爆轰产生的冲击波作用于Pb4O3,ZrO2和TiO2混合物粉体以合成PzT95/5粉体.通过对回收粉体进行的x射线衍射(xRD)分析,并结合冲击波理论, 从实验和理论两个方面探讨了PZT粉体的合成机理和过程. 结果表明,PZT的合成反应与Pb0的分解反应几乎同时进行, 由于冲击波的特殊性,系统的温度和压力能同时满足Pb30分解和PzT合成的反应热力学条件,由Pb304分解的PbO一旦形成,就立刻与ZrO2,TiO2等氧化物反应生成PZT;冲击波合成PzT粉体属于特殊的固相反应,物质的扩散速度和反应速度大大提高.图2参13关键词:PzT95/5粉体;冲击波;合成机理08030423140-5O金属材料再加载"准弹性"响应的实验验证=Experimental validationof"quasi—elastic"responseofmetalduringreloading process[刊,中]/宋萍(中国工程物理研究院流体物理研究所,绵阳621900),周显明,袁帅,李加波,汪小松∥高压物理学报.一20o7,21(3).一327~331用波反射法设计了一维应变冲击实验,由时间分辨VISAR系统(V elocityInterferometerSystemforAnyReflection)~U量了镁铝合金的冲击一再加载速度波剖面.结果显示,在排除窗口反射稀疏波的情况下,从24GPa冲击态开始的再加载存在明显的"准弹性"响应,证实了Asay等报道的二次压缩"准弹性"响应是材料本征特性.并对金属材料高压本构参量实验测量的关键技术进行了探讨.图5表2参11关键词:波反射;再加载:准弹性08o30424l4o-5O0,1~3000MPa下碳化硅顶砧拉曼光谱作为压力计的研究ResearchonusingRamanspectraofcarborundumanvilaspres—suresensoratpressureof0.1~3000MPa[刊,中]/瞿清明(北京大学造山带与地壳演化教育部重点实验室,北京100871),郑海飞∥高压物理.一20o7,21(3).一332~336利用Mao—Bell型水热金刚石压腔,以6H型碳化硅晶体作为顶砧,在常温下对碳化硅顶砧的不同点位进行拉曼光谱的原位测量,探讨了在一定条件下利用碳化硅顶砧的969拉曼峰位移作为压力标定的可行性,所具有的优点及需要改进的方面,并且得到了室温下的压力测量公式.图8参9关键词:高压;碳化硅;压腔;拉曼光谱;压力标定08030425l40-5OEu"离子掺杂钛酸盐纳米管的直接水热合成与发光性能= Directhydrothermalsynthesisandluminescencepropertyoftitan—atenanotubesdopedwithEu针ions旰0,中]/宋功保(西南科技大学建筑材料四』II省重点实验室,绵阳621010),王美丽,苗兰冬,李健,张宝述∥高压物理.一20o7,21(3).一30531O采用纳米管制备和离子掺杂同步进行的直接水热合成方法,合成了纯钛酸盐纳米管(TNT)和Eu离子掺杂的纳米管(TNT-Eu); 并利用x射线衍射(XRD),透射电子显微镜(TEM),光致发光谱仪研究了纳米管的形貌特征,物相组成,热稳定性和发光性能.结果显示:这种方法简便易行,稳定性好,产率高.钛酸盐纳米管物相可近似表示为(H,Na)2Ti3O7或(H,Na)2(Ti,Eu)3O7. 高温处理对钛酸盐纳米管的结构产生很大的影响,450℃下纳米管的层状结构被破坏,晶体结构转化为锐钛矿型的TiO2. TNT-Eu样品的发光性能较强,出现的393.5am,593am,614am的谱带归属于o.和o.电子的跃迁.图8表1参26关键词:直接水热合成;钛酸盐纳米管;Eu离子;掺杂;发光性能08O3O426140-50两种后处理方法对HfO2薄膜性能的影响=Influenceoftwo post—treatmentmethodsonpropertiesofHfO,thinfilms[gJ,中J/尚光强(中国科学院上海光学精密机械研究所,上海201800),王聪娟,袁磊,贺洪波,范正修,邵建达∥光子.一20o7,36(9).———1683~1686利用电子束蒸发和光电极值监控技术制备了氧化铪薄膜,并分别用两种后处理方法(空气中退火和氧等离子体轰击)对样品进行了处理.然后,对样品的透过率,吸收和抗激光损伤阈值进行了测试分析.实验结果表明,两种后处理方法都能不同程度地降低了氧化铪薄膜的吸收损耗,提高了抗激光损伤阈值.实验结果还表明,氧等离子体轰击的后处理效果明显优于热退火, 样品的吸收平均值在氧等离子体后处理前后分别为34.8ppm和9.0ppm,而基频(1064nm)激光损伤阈值分别为10.0J/cm2和21.4J/cm.图3表1参l1关键词:氧化铪薄膜;薄膜退火;抗激光损伤阈值;薄膜吸收08030427140-5O六方单晶氮化铝薄膜的合成与紫光发光机理=Luminescence mechanismofhexagonalmonocrystalaluminumnitridefilms[刊,中]/吕惠民(西安交通大学应用物理系,西安710049),陈光德,耶红刚,颜国君∥光子.一20o7,36(9).一1687~1690利用无水三氯化铝与叠氮化钠在无溶剂的条件下直接反应,成功地合成出六方单晶氮化铝(h.A1N)薄膜.反应温度为450~C, 有效反应时间为20h.高分辨率透射电镜发现为薄膜形态:电子衍射和x射线衍射结果都表明,氮化铝薄膜为六方结构.光致发光实验显示,在可见光范围内有一较强的辐射峰,中心位于413am处,半高宽约为5am.同时,对六方单晶氮化铝薄膜的生长机理和光致发光机理也进行了讨论.图5参16关键词:六方单晶氮化铝薄膜;光致发光;二茂铁08030428140?5O利用非规整膜系实现宽角度入射减偏振,减反射薄膜的研究= Thestudyofanti—polarizationandantireflectioncoatingsofbroad anglerangesbyinhomogeneouscoatings[刊,中]/徐晓峰(东华大学应用物理系,上海201620),邢怀中,杜西亮,范滨∥光子.一20o7,36(9).一l691~l693利用非均匀膜系理论对宽角度入射减偏振,减反射薄膜进行优。
物理英文术语及常用词汇

物理英文术语及常用词汇物理英文术语及常用词汇为了方便广大考生更好的'复习,店铺整理了物理英语术语及常用词汇,以供各位考生考试复习参考。
希望对考生复习有所帮助。
物理英文术语及常用词汇篇1力 force重力 gravity摩擦力 friction拉力 traction质量 mass惯量 Interia加速度 acceleration力矩 torque静止 at rest相对 relative能量 energy动能 kenetic energy势能 potential energy功 work动量 momentum角动量 angular momentum能量守恒 energy conservation保守力 conserved force振动 vibration振幅 amplitude波 wave驻波 standing wave震荡 oscillation相干波 coherent wave干涉 interference衍射 diffraction轨道 obital速度 velocity速率 speed大小 magnatitude方向 direction水平 horizental竖直 vertical相互垂直 perpendicular坐标 coordinate直角坐标系 cersian coordinate system 极坐标系 polar coordinate system弹簧 spring球体 sphere环 loop盘型 disc圆柱形 cylinder电学磁学:电子 electron电荷charge电流 current电场 electric field电通量 electric flux电势electirc potential导体 conductor电介质 dieletric绝缘体 insultalor电阻 resistor电阻率 resistivity电容capacitor无穷 infinite横截面 cross ection匀强电场 uniform electric field分布 ditribution磁场 magnetic field磁通量 magnetic flux电感 inductance变压器 transformer频率 frequency周期 period电磁波 electomagnetic wave平面 plane热学:热平衡 thermal equilibrium理想气体 ideal gas热能 thermal energy热量 heat热容 heat capacity外界 surrounding准静态过程 quasi-static process等体过程 isochoric process等压过程 isobaric process等温过程 isothermal process绝热过程 adiabatic process循环 cycle光学光 light光程 optical path光强度 light intensity偏振 polarization 波长 wave length 传播 propagation量子力学(高中好像讲了一点点)原子 atomic 光子 photon光电效应 photo-electric effect物质波 matter wave光谱 spectrum激光 laser衰减 decay辐射 radiation械振动 mechanical vibration简谐振动 simple harmonic oscillation振幅 amplitude周期 period频率 ferquency赫兹 hertz单摆 simple pendulum受迫振动 forced vibration共振 resonnance机械波 mechanical wave介质 medium横波 transverse wave纵波 longitudinal wave波长 wavelength超声波 supersonic wave阿伏加德罗常数 Avogadro constant布朗运动 Brown mation热运动 thermal motion热力学能 thermal energy内能 internal energy热力学第一定律 first law of thermodynamics 能量守恒定律 law of conservation of energy热力学第二定律 second law of thermodynamics 各向同性 isotropy各向异性 anisotropy单晶体 single crystal(monocrystal)多晶体 ploycrystal表面张力 surface tension毛细现象 capillarity液晶 liquid crystal电荷 electric charge电荷量 queantity df electricity正电荷 positive charg负电荷 negative charg库仑定律 Coulomb law静电感应 electrostatic induction感应电荷 inducde charge元电荷 elementary charge电荷守恒定律 law of conservation of charge库仑(电荷单位) coulomb电场 electric fileld电场强度 electric field strength电场线 electric potential电势 electric potential电势差/电压 electric potential difference伏特 volt电容 capacitance电容器 capacitor法拉(电容单位) farad电流 electric current安培(电流单位) ampere电阻 resistance欧姆(电阻单位) ohm电动势 electormotive force(e.m.f.)半导体 semiconductor超导体 superconductor磁性 magnetism磁场 magnetic field磁感线 magnetic induction line安培定则 Ampere rule安培力 Ampere force磁感应强度 magnetic induction左手定则 left-hand rule洛伦兹力 Lorentz force磁通量 magnetic flux电磁感应 elctromagnetic induction感应电流 induction current感应电动势 induction electromotive force电磁感应定律 law of electromagnetic induction 右手定则 right-hand rule自感 self-induction交流 alternating current瞬时值 instantaneous value峰值 peak value有效值 effective value电感 inductance变压器 transformer电能 electric energy电磁场 electromagnetic field电磁波 electromagnetic wave雷达 radar光线 light ray平行光 parallel light实象 real image虚象 virtual image折射 refaction入射角 incident angle反射角 reflection angle折射角 diffraction angle折射率 diffraction index全反射 total reflection临界角 critical angle光导纤维 optical fiber棱镜 prism色散 dispersion光谱 spectrum波的衍射 diffraction of wave波的干涉 interference of waves 红外线 infrared ray紫外线 ultraviolet rayX射线 X-ray电磁波谱 electromagnetic effect 光电效应 photoelectric effect光子 photon普朗克常数 Planck constant波粒二象性 wave-particle duality 概率波 probability wave物质波 matter wave电子 electron质子 proton中子 neutron核子 nucleon同位数 isotope原子核 nucleus能级 energy level基态 ground state激发态 excited state跃迁 transition放射性 radioactivityα射线α rayβ射线β rayγ射线γ ray衰变 decay核反应 nuclear reaction核能 nuclear energy质能方程 mass-energy equation裂变 fission链式反应 chain reaction聚变 fusion热核反应 thermonuclear reaction介子 meson轻子 lepton强子 hadron物理英文术语及常用词汇篇2AAbsolute acceleration 绝对加速度Absolute error 绝对误差Absolute motion 绝对运动Absolute temperature 绝对温度Absolute velocity 绝对速度Absolute zero 绝对零度Absorption 吸收Absorptivity 吸收率Accelerated motion 加速运动Acceleration of gravity重力加速度Acceleration 加速度Accidental error 偶然误差Acoustics 声学Acting force 作用力Adjustment 调节Aether 以太Air pump 抽气机Air table 气垫桌Air track 气垫导轨Alternating current circuit 交流电路Alternating current generator交流发电机Alternating 交流电Altimeter 测高仪Ammeter 安培计Amperemeter 电流计Ampere 安培Ampere’s experiment 安培试验Ampere’s force 安培力Ampere’s law 安培定律Amperemeter 安培计Amplitude 振幅Angle of rotation 自转角转动角Angular acceleration 角加速度Angular displacement 角位移Angular velocity 角速度Anion 负离子Anisotropy 各向异性AnnihilationAnode 阳极Antenna 天线Applied physics 应用物理学Archimedes principle阿基米德原理Area 面积Argumentation 论证Argument 辐角Astigmatoscope 散光镜Atomic nucleus 原子核Atomic physics 原子物理学Atomic spectrum 原子光谱Atomic structure 原子结构Atom 原子Atwood’s machine阿特伍德机Average power 平均功率Average velocity 平均速度Avogadroconstant 阿伏加德罗常数Avogadro law 阿伏加德罗定律Bbalance 天平ballistic galvanometer 冲击电流计band spectrum 带状谱barometer 气压机basic quantity 基本量basic units 基本单位battery charger 电池充电器battery accumulator 蓄电池battery 电池组beam 光束betatron 电子感应加速器Bohr atom model 波尔原子模型Boiling point 沸点Boiling 沸腾Bounce 反弹Bound charge 束缚电荷Bound electron 束缚电子Branch circuit 支路Breakdown 击穿Brightness 亮度Buoyancy force 浮力CCalorifics 热学camera 照相机capacitance 电容capacitor 电容器capillarity 毛细现象cathode ray 阴极射线cathode-ray tude 阴极射线管cathode 阴极cation 正离子cell 电池Celsius scale 摄氏温标Centre of gravity 重心Centre of mass 质心Centrifugal force 离心力Centripetal acceleration 向心加速度Centripetal force 向心力Chain reaction 链式反应Chaos 混沌Characteristic spectrum 特征光谱Charged body 带电体Charged particle 带电粒子Charge 充电Circular hole diffraction 圆孔衍射Circular motion 圆周运动Classical mechanics 经典力学Classical physics 经典物理学Cloud chamber 云室Coefficient of maximum static friction 最大静摩擦系数Coefficient of restitution 恢复系数Coefficient of sliding friction 滑动摩擦系数Coefficient 系数Coil 线圈Collision 碰撞Component force 分力Coherent light 相干光源Component velocity 分速度Composition of forces 力的合成Composition of velocities 速度的合成Compression 压缩Concave lens 凹透镜Concave mirror 凹面镜Concurrent force 共点力Condensation 凝结Condenser 电容器Conducting medium 导电介质Conductor 导体Conservative force field 保守立场Conservative force 保守力Constant force 恒力Constant 常量Continuous spectrum 连续谱Convergent lens 会聚透镜Convex lens 凸透镜Convex mirror 凸面镜Coordinate system 坐标系Coplanar force 共面力Corolis force 科里奥利力Corpuscular property 例子性Corpuscular theory 微粒说Coulomb force 库仑力Coulomb 库仑Coulomb’s law库仑定律counter 计数器creation 产生creepage 漏电crest 波峰critical angle 临界角critical resistance 临界电阻critical temperature 临界温度crystal 晶体current density 电流密度current element 电流元current source电流源current strength 电流强度curvilinear motion 曲线运动cyclotron 回旋加速器DDamped vibration 阻尼震动Damping 阻尼Daniell cell 丹尼尔电池Data processing 数据处理Data 数据Decay衰变Definition of ampere 安培的定义Defocusing 散集Density 密度Derived quantity 导出量Derived unit 导出单位Dielectric 电介质Diffraction pattern衍射图样Diffraction 衍射Diffuse reflection 漫反射Digital timer 数字计时器Dimensional exponent量纲指数Dimension 量纲Diode 二极管Diopter 屈光度Direct current 直流(dc)Direct impact 正碰Direct measurement 直接测量Discharge 放电Disorder 无序物理英文术语及常用词汇篇3physics 物理physics 物理mechanics 力学thermodynamics 热力学electromagnetism 电磁学optics 光学dynamics 动力学force 力velocity 速度acceleration 加速度equilibrium 平衡statics 静力学motion 运动inertia 惯性gravitation 引力relativity 相对gravity 地心引力vibration 震动medium (media) 媒质frequency 频率wavelength 波长pitch 音高intensity 强度echo 回声resonance 回声,洪亮sonar 声纳ultrasonics 超声学electricity 电static electricity 静电magnetism 磁性,磁力magnet 磁体electromagnet 电磁magnetic field 磁场electric current 电流direct current (DC) 直流电alternating current (AC) 交流电electric circuit 电路electric charge 电荷electric voltage 电压electric shock 触电electric appliance 电器conductor 导体insulator 绝缘体semiconductor 半导体battery (cell) 电池dry battery 干电池storage battery 蓄电池electronics 电子学electronic 电子的electronic component (part) 电子零件integrated circuit 集成电路chip 集成电器片,集成块electron tube 电子管vacuum tube 真空管transistor 晶体管amplification (名词)放大amplify (动词)放大amplifier 放大器,扬声器oscillation 震荡optical 光(学)的optical fiber 光学纤维lens 透镜,镜片microscope 显微镜telescope 望远镜magnifier 放大镜microwaves 微波dispersion 色散transparent 透明translucent 半透明opaque 不透明的【物理英文术语及常用词汇】。
格点量子色动力学进展.pptx
The fDs puzzle?
Experimental results
Comparison
Independent determination of Vcs
More comparisons…
Is is a puzzle?
只有HPQCD的结果偏离最严重 Vcs需要单独确定 目前还不是很严重的问题…
理论方面的探讨
相关的唯象理论工作
Shallow bound state of two D mesons (S.L. Zhu et al, ) PRD77,034003 Tetra-quark resonance above threshold (X.-H Liu et al, PRD77, 094005) Threshold enhancement (J.L. Rosner, ) PRD76,114002
The Berlin wall & lattice QCD c o s t
m m
z
a
z 4, 7
Berlin wall crushing…
More physical…
Pion mass 700MeV below 300MeV where cPT starts to work…
Matrix elements
B_K 的计算 B ˆB KKBK K((8 0|/Q 3 ))L fSK s (L 232M )|(K K 2)0,2/Q 9L 1S L 2(s(43s)d()L)(sJd3)L
Renormalization dilemma
Continuum perturbation done in the MS-bar Naive Dimensional Regularization scheme (MS-bar NDR-scheme)
FLUENT中组分输运及化学反应燃烧模拟
混合分数定义
混合分数, f, 写成元素的质量分数形式:
f Zk Zk,O Zk,F Zk,O
其处中的,值。Zk 是元素k的质量分数 ;下标 F 和O 表示燃料和氧化剂进口流
对于简单的 fuel/oxidizer系统, 混合物分数代表计算控制体里的燃料 质量分数.
平衡化学的 PDF模型 层流火焰面模型
进展变量模型
Zimont 模型
有限速率模型
用总包机理反应描述化学反应过程. 求解化学组分输运方程.
求解当地时间平均的各个组分的质量分数, mj.
组分 j的源项 (产生或消耗)是机理中所有k个反应的净反应速率 :
Rj Rjk k
R、jk混(第合k或个涡化旋学破反碎应(生E成BU或)消速耗率的的j 组小分值)。是.根据 Arrhenius速率公式
p(f) can be used to compute time-averaged values of variables that
depend on the mixture fraction, f:
i
1 0
p
(
f
)
i( f )d f
Species mole fractions
Temperature, density
的燃烧过程。.
计算连续相流动场 计算颗粒轨道
更新连续相源项
颗粒弥散: 随机轨道模型
Monte-Carlo方法模拟湍流颗粒弥散 (discrete random walks)
颗粒运动计算中考虑气体的平均速度及随机湍流脉 动速度的影响。
每个轨道包含了一群具有相同特性的颗粒,如相同 的初始直径,密度等.
Two gaps make a high-temperature superconductor
IOP P UBLISHING R EPORTS ON P ROGRESS IN P HYSICS Rep.Prog.Phys.71(2008)062501(9pp)doi:10.1088/0034-4885/71/6/062501Two gaps make a high-temperature superconductor?S H¨ufner1,2,M A Hossain1,2,A Damascelli1,2and G A Sawatzky1,21AMPEL,University of British Columbia,Vancouver,British Columbia,V6T1Z4,Canada2Department of Physics and Astronomy,University of British Columbia,Vancouver,British Columbia,V6T1Z1,CanadaReceived27February2008,infinal form2April2008Published2May2008Online at /RoPP/71/062501AbstractOne of the keys to the high-temperature superconductivity puzzle is the identification of theenergy scales associated with the emergence of a coherent condensate of superconductingelectron pairs.These might provide a measure of the pairing strength and of the coherence ofthe superfluid,and ultimately reveal the nature of the elusive pairing mechanism in thesuperconducting cuprates.To this end,a great deal of effort has been devoted to investigatingthe connection between the superconducting transition temperature T c and the normal-statepseudogap crossover temperature T∗.Here we present a review of a large body ofexperimental data which suggests a coexisting two-gap scenario,i.e.superconducting gap andpseudogap,over the whole superconducting dome.We focus on spectroscopic data fromcuprate systems characterized by T maxc ∼95K,such as Bi2Sr2CaCu2O8+δ,YBa2Cu3O7−δ,Tl2Ba2CuO6+δand HgBa2CuO4+δ,with particular emphasis on the Bi-compound which has been the most extensively studied with single-particle spectroscopies.(Somefigures in this article are in colour only in the electronic version)This article was invited by Professor L Greene.Contents1.Introduction12.Emerging phenomenology32.1.Angle-resolved photoemission42.2.Tunneling52.3.Raman scattering52.4.Inelastic neutron scattering52.5.Heat conductivity63.Outlook and conclusion6 Acknowledgments6 References71.IntroductionSince their discovery[1],the copper-oxide high-T c superconductors(HTSCs)have become one of the most investigated class of solids[2–24].However,despite the intense theoretical and experimental scrutiny,an understanding of the mechanism that leads to superconductivity is still lacking.At the very basic level,what distinguishes the cuprates from the conventional superconductors is the fact that they are doped materials,the highly atomic-like Cu 3d orbitals give rise to strong electron correlations(e.g. the undoped parent compounds are antiferromagnetic Mott–Hubbard-like insulators),and the superconducting elements are weakly-coupled two-dimensional layers(i.e.the celebrated square CuO2planes).Among the properties that are unique to this class of superconducting materials,in addition to the unprecedented high superconducting T c,the normal-state gap or pseudogap is perhaps the most noteworthy.The pseudogap wasfirst detected in the temperature dependence of the spin-lattice relaxation and Knight shift in nuclear magnetic resonance and magnetic susceptibility studies[25].The Knight shift is proportional to the density of states at the Fermi energy;a gradual depletion was observed below a crossover temperature T∗,revealing the opening of the pseudogap well above T c on the underdoped side of the HTSC phase diagram(figure1).As the estimates based on thermodynamicx (c)Tx (a)x(b)T* T cT*T cT*T cFigure1.Various scenarios for the interplay of pseudogap(blue dashed line)and superconductivity(red solid line)in thetemperature-doping phase diagram of the HTSCs.While in(a)the pseudogap merges gradually with the superconducting gap in the strongly overdoped region,in(b)and(c)the pseudogap lines intersect the superconducting dome at about optimal doping(i.e.maximum T c).In most descriptions,the pseudogap line is identified with a crossover with a characteristic temperature T∗rather than a phase transition;while at all dopings T∗>T c in(a),beyond optimal doping T∗<T c in(b)and T∗does not even exist in(c).Adapted from[12].quantities are less direct than in spectroscopy we,in the course of this review,concentrate mainly on spectroscopic results; more information on other techniques can be found in the literature[5].As established by a number of spectroscopic probes, primarily angle-resolved photoemission spectroscopy,[26,27] the pseudogap manifests itself as a suppression of the normal-state electronic density of states at E F exhibiting a momentum dependence reminiscent of a d x2−y2functional form.For hole-doped cuprates,it is largest at Fermi momenta close to the antinodal region in the Brillouin zone—i.e.around (π,0)—and vanishes along the nodal direction—i.e.the(0,0) to the(π,π)line.Note however that,strictly speaking, photoemission and tunneling probe a suppression of spectral weight in the single-particle spectral function,rather than directly of density of states;to address this distinction,which is fundamental in many-body systems and will not be further discussed here,it would be very interesting to investigate the quantitative correspondence between nuclear magnetic resonance and single-particle spectroscopy results.Also,no phase information is available for the pseudogap since,unlike the case of optimally and overdoped HTSCs[28],no phase-sensitive experiments have been reported for the underdoped regime where T∗ T c.As for the doping dependence,the pseudogap T∗is much larger than the superconducting T c in underdoped samples,it smoothly decreases upon increasing the doping,and seems to merge with T c in the overdoped regime,eventually disappearing together with superconductivity at doping levels larger than x∼0.27[5–24].In order to elaborate on the connection between pseudogap and high-T c superconductivity,or in other words between the two energy scales E pg and E sc identified by T∗and T c,respectively,let us start by recalling that in conventional superconductors the onset of superconductivity is accompanied by the opening of a gap at the chemical potential in the one-electron density of states. According to the Bardeen–Cooper–Schrieffer(BCS)theory of superconductivity[29],the gap energy provides a direct measure of the binding energy of the two electrons forming a Cooper pair(the two-particle bosonic entity that characterizes the superconducting state).It therefore came as a great surprise that a gap,i.e.the pseudogap,was observed in the HTSCs not only in the superconducting state as expected from BCS, but also well above T c.Because of these properties and the hope it might reveal the mechanism for high-temperature superconductivity,the pseudogap phenomenon has been very intensely investigated.However,no general consensus has been reached yet on its origin,its role in the onset of superconductivity itself,and not even on its evolution across the HTSC phase diagram.As discussed in three recent papers on the subject [12,15,17],and here summarized infigure1,three different phase diagrams are usually considered with respect to the pseudogap line.While Millis[15]opts for a diagram like the one infigure1(a),Cho[17]prefers a situation where the pseudogap line meets the superconducting dome at x 0.16(figures1(b)and(c));Norman et al[12]provide a comprehensive discussion of the three different possibilities. One can summarize some of the key questions surrounding the pseudogap phenomenon and its relevance to high-temperature superconductivity as follows[12,15,17]:1.Which is the correct phase diagram with respect to thepseudogap line?2.Does the pseudogap connect to the insulator quasiparticlespectrum?3.Is the pseudogap the result of some one-particle bandstructure effect?4.Or,alternatively,is it a signature of a two-particle pairinginteraction?5.Is there a true order parameter defining the existence of apseudogap phase?6.Do the pseudogap and a separate superconducting gapcoexist below T c?7.Is the pseudogap a necessary ingredient for high-T csuperconductivity?In this review we revisit some of these questions,with specific emphasis on the one-versus two-gap debate.Recently,this latter aspect of the HTSCs has been discussed in great detail by Goss Levi[30],in particular based on scanning-tunneling microscopy data from various groups[31–33].Here we expand this discussion to include the plethora of experimental results available from a wide variety of techniques.We0.050.100.150.200.250408012016050100150E n e r g y (m e V )Hole doping (x)T c (K )Figure 2.Pseudogap (E pg =2 pg )and superconducting (E sc ∼5k B T c )energy scales for a number of HTSCs with T max c ∼95K(Bi2212,Y123,Tl2201and Hg1201).The datapoints were obtained,as a function of hole doping x ,by angle-resolved photoemission spectroscopy (ARPES),tunneling (STM,SIN,SIS),Andreev reflection (AR),Raman scattering (RS)and heat conductivity (HC).On the same plot we are also including the energy r of the magnetic resonance mode measured by inelastic neutron scattering (INS),which we identify with E sc because of the striking quantitative correspondence as a function of T c .The data fall on two universal curvesgiven by E pg =E max pg (0.27−x)/0.22and E sc =E max sc [1−82.6(0.16−x)2],with E maxpg =E pg (x =0.05)=152±8meV and E maxsc =E sc (x =0.16)=42±2meV (the statistical errors refer to the fit of the selected datapoints;however,the spread of all available data would be more appropriately described by ±20and ±10meV ,respectively).show that one fundamental and robust conclusion can be drawn:the HTSC phase diagram is dominated by two energy scales,the superconducting transition temperature T c and the pseudogap crossover temperature T ∗,which converge to the very same critical point at the end of the superconducting dome.Establishing whether this phenomenology can be conclusively described in terms of a coexisting two-gap scenario,and what the precise nature of the gaps would be,will require a more definite understanding of the quantities measured by the various probes.2.Emerging phenomenologyThe literature on the HTSC superconducting gap and/or pseudogap is very extensive and still growing.In this situation it seems interesting to go over the largest number of data obtained from as many experimental techniques as possible,and look for any possible systematic behavior that could be identified.This is the primary goal of this focused review.We want to emphasize right from the start that we are not aiming at providing exact quantitative estimates of superconducting and pseudogap energy scales for any specific compound or any given doping.Rather,we want to identify the general phenomenological picture emerging from the whole body of available experimental data [5,9,13,16,18,34–72].We consider some of the most direct probes of low-energy,electronic excitations and spectral gaps,such as angle-resolved photoemission (ARPES),scanning-tunneling microscopy (STM),superconductor/insulator/normal-metal(SIN)and superconductor/insulator/superconductor (SIS)tunneling,Andreev reflection tunneling (AR)and Raman scattering (RS),as well as less conventional probes such as heat conductivity (HC)and inelastic neutron scattering (INS).The emphasis in this review is on spectroscopic data because of their more direct interpretative significance;however,these will be checked against thermodynamic/transport data whenever possible.With respect to the spectroscopic data,it is important to differentiate between single-particle probes such as ARPES and STM,which directly measure the one-electron excitation energy with respect to the chemical potential (on both side of E F in STM),and two-particle probes such as Raman and inelastic neutron scattering,which instead provide information on the particle-hole excitation energy 2 .Note that the values reported here are those for the ‘full gap’2 (associated with either E sc or E pg ),while frequently only half the gap is given for instance in the ARPES literature.In doing so one implicitly assumes that the chemical potential lies half-way between the lowest-energy single-electron removal and addition states;this might not necessarily be correct but appears to be supported by the direct comparison between ARPES and STM/Raman results.A more detailed discussion of the quantities measured by the different experiments and their interpretation is provided in the following subsections.Here we would like to point out that studies of B 2g and B 1g Raman intensity [19,40,52],heat conductivity of nodal quasiparticles [70,71]and neutron magnetic resonance energy r [42]do show remarkable agreement with superconducting or pseudogap energy scales as inferred by single-particleTable1.Pseudogap E pg and superconducting E sc energy scales (2 )as inferred,for optimally doped Bi2212(T c∼90–95K),from different techniques and experiments.Abbreviations are given in the main text,while the original references are listed.Experiment Energy meV ReferencesARPES—(π,0)peak E pg80[34,35]Tunneling—STM…70[18,36]Tunneling—SIN…85[37]Tunneling—SIS…75[38,39]Raman—B1g…65[40]Electrodynamics…80[5,41]Neutron—(π,π) r E sc40[42]Raman—B2g…45[40]Andreev…45[43]SIS—dip…40[39]probes,or with the doping dependence of T c itself.Thus they provide,in our opinion,an additional estimate of E sc and E pg energy scales.As for the choice of the specific compounds to include in our analysis,we decided to focus on those HTSCs exhibiting a similar value of the maximum superconductingtransition temperature T maxc ,as achieved at optimal doping,so that the data could be quantitatively compared without any rescaling.We have therefore selected Bi2Sr2CaCu2O8+δ(Bi2212),YBa2Cu3O7−δ(Y123),Tl2Ba2CuO6+δ(Tl2201) and HgBa2CuO4+δ(Hg1201),which have been extensivelyinvestigated and are all characterized by T maxc ∼95K[73](with particular emphasis on Bi2212,for which the most extensive set of single-particle spectroscopy data is available). It should also be noted that while Bi2212and Y123are ‘bilayer’systems,i.e.their crystal structure contains as a key structural element sets of two adjacent CuO2layers, Tl2201and Hg1201are structurally simpler single CuO2-layer materials.Therefore,this choice of compounds ensures that our conclusions are generic to all HTSCs with a similar T c, independent of the number of CuO2layers.A compilation of experimental results for the magnitude of pseudogap(E pg=2 pg)and superconducting(E sc∼5kB T c) energy scales,as a function of carrier doping x,is presented infigure2(only some representative datapoints are shown,so as not to overload thefigure;similar compilations were also obtained by a number of other authors)[5,9,13,16,42,43,52, 57,60,70,74,75].The data for these HTSCs with comparableT max c ∼95K fall on two universal curves:a straight linefor the pseudogap energy E pg=2 pg and a parabola for the superconducting energy scale E sc∼5k B T c.The two curves converge to the same x∼0.27critical point at the end of the superconducting dome,similarly to the cartoon of figure1(a).In order to summarize the situation with respect to quantitative estimates of E pg and E sc,we have listed in table1the values as determined by the different experimental techniques on optimally doped Bi2212(with T c ranging from 90to95K).While one obtains from this compilation the average values of E pg 76meV and E sc 41meV at optimal doping,the numbers do scatter considerably.Note also that these numbers differ slightly from those given in relation to the parabolic and straight lines infigure2(e.g.E maxsc= 42meV)because the latter were inferred from afitting of superconducting and pseudogap data over the whole doping range,while those in table1were deduced from results for optimally doped Bi2212only.It is also possible to plot the pseudogap E pg and superconducting E sc energy scales as estimated simultaneously in one single experiment on the very same sample.This is done infigure3for Raman,tunneling and ARPES results from Bi2212and Hg1201,which provide evidence for the presence of two energy scales,or possibly two spectral gaps as we discuss in greater detail below,coexisting over the whole superconducting dome.2.1.Angle-resolved photoemissionThe most extensive investigation of excitation gaps in HTSCs has arguably been done by ARPES[9,10,26,27,34,35,54–66,76–80].This technique provides direct access to the one-electron removal spectrum of the many-body system;it allows,for instance in the case of a BCS superconductor[29], to measure the momentum dependence of the absolute value of the pairing amplitude2 via the excitation gap observed for single-electron removal energies,again assuming E F to be located half-way in the gap[9,10].This is the same in some tunneling experiments such as STM,which however do not provide direct momentum resolution but measure on both sides of E F[18].The gap magnitude is usually inferred from the ARPES spectra from along the normal-state Fermi surface in the antinodal region,where the d-wave gap is largest;it is estimated from the shift to high-binding energy of the quasiparticle spectral weight relative to the Fermi energy.With this approach only one gap is observed below a temperature scale that smoothly evolves from the so-called pseudogap temperature T∗in the underdoped regime,to the superconducting T c on the overdoped side.We identify this gap0.050.100.150.200.25408012016050100150Energy(meV)Hole doping (x)T c(K)Figure3.Pseudogap E pg and superconducting E sc energy scales (2 )as estimated,by a number of probes and for different compounds,in one single experiment on the very same sample. These data provide direct evidence for the simultaneous presenceof two energy scales,possibly two spectral gaps,coexisting in the superconducting state.The superconducting and pseudogap lines are defined as infigure2.with the pseudogap energy scale E pg=2 pg.This is also in agreement with recent investigations of the near-nodal ARPES spectra from single and double layer Bi-cuprates[57,76,77], which further previous studies of the underdoped cuprates’Fermi arc phenomenology[78–80].From the detailed momentum dependence of the excitation gap along the Fermi surface contour,and the different temperature trends observed in the nodal and antinodal regions,these studies suggest the coexistence of two distinct spectral gap components over the whole superconducting dome:superconducting gap and pseudogap,dominating the response in the nodal and antinodal regions,respectively,which would eventually collapse to one single energy scale in the very overdoped regime.2.2.TunnelingThe HTSCs have been investigated by a wide variety of tunneling techniques[13,18,36–39,44–51],such as SIN[38,51],SIS[37–39],STM[18,36,46],intrinsic tunneling[47–50]and Andreev reflection,which is also a tunneling experiment but involves two-particle rather than single-particle tunneling(in principle,very much like SIS) [13,43,72].All these techniques,with the exception of intrinsic tunneling3,are represented here either in thefigures or table.Similarly to what was discussed for ARPES at the antinodes,there are many STM studies that report a pseudogap E pg smoothly evolving into E sc upon overdoping[18,31]. In addition,a very recent temperature-dependent study of overdoped single-layer Bi-cuprate detected two coexisting,yet clearly distinct,energy scales in a single STM experiment[32]. In particular,while the pseudogap was clearly discernible in the differential conductance exhibiting the usual large spatial modulation,the evidence for a spatially uniform superconducting gap was obtained by normalizing the low-temperature spectra by those just above T c 15K.These values have not been included infigures2and3because T c 95K;however,this study arguably provides the most direct evidence for the coexistence of two distinct excitation gaps in the HTSCs.One can regard Andreev reflection(pair creation in addition to a hole)as the inverse of a two-particle scattering experiment such as Raman or INS.A different view is also possible:SIN tunneling goes over to AR if the insulator layer gets thinner and thinner[13];thus a SIN tunneling,as also STM,should give the same result as AR.However while SIN and STM measure the pseudogap,AR appears to be sensitive to the superconducting energy scale E sc(figure2).We can only conjecture that this has to do with the tunneling mechanisms actually being different.3The most convincing tunneling results showing two coexisting gaps were actually obtained by intrinsic tunneling[47–50],in particular from Bi2Sr2CuO6+δ(Bi2201)[48].However,because this technique suffers from systematic problems[50],and one would anyway have to scale the Bi2201data because of the lower value of T c and in turn gap energy scales,these results were not included infigures2or3.Since intrinsic tunneling is in principle a clean SIS experiment which measures pair energies through Josephson tunneling, a refinement of the technique might provide an accurate estimate of both superconducting and pseudogap simultaneously,and is thus highly desirable.SIS tunneling experiments[39]find E pg/E sc 1for Bi2212at all doping levels.There are,however,some open questions concerning the interpretation of the SIS experiments. This technique,which exploits Josephson tunneling,measures pair spectra;the magnitude of E pg can readily be obtained from the most pronounced features in the spectra[39].The signal related to E sc is seen as a‘sideband’on the E pg features;it does not seem obvious why,if the E sc signal did originate from a state of paired electrons,it would not show up more explicitly.2.3.Raman scatteringLight scattering measures a two-particle excitation spectrum providing direct insight into the total energy needed to break up a two-particle bound state or remove a pair from a condensate. Raman experiments can probe both superconducting and pseudogap energy scales,if one interprets the polarization dependent scattering intensity in terms of different momentum averages of the d-wave-like gap functions:one peaked at(π,0) in B1g geometry,and thus more sensitive to the larger E pg which dominates this region of momentum space;the other at(π/2,π/2)in B2g geometry,and provides an estimate of the slope of the gap function about the nodes,(1/¯h)(d /d k)|n, which is more sensitive to the arguably steeper functional dependence of E sc out of the nodes[19,40,52,53].One should note,however,that the signal is often riding on a high background,which might result in a considerable error and data scattering.At a more fundamental level,while the experiments in the antinodal geometry allow a straightforward determination of the gap magnitude E pg,the nodal results need a numerical analysis involving a normalization of the Raman response function over the whole Brillouin zone,a procedure based on a low-energy B2g sum rule(although also the B2g peak position leads to similar conclusions)[52].This is because a B2g Raman experiment is somewhat sensitive also to the gap in the antinodal direction,where it picks up,in particular,the contribution from the larger pseudogap.2.4.Inelastic neutron scatteringInelastic neutron scattering experiments have detected the so-called q=(π,π)resonant magnetic mode in all of the T c 95K HTSCs considered here[16].This resonance is proposed by some to be a truly collective magnetic mode that, much in the same way as phonons mediate superconductivity in the conventional BCS superconductors,might constitute the bosonic excitation mediating superconductivity in the HTSCs. The total measured intensity,however,amounts to only a small portion of what is expected based on the sum rule for the magnetic scattering from a spin1/2system[8,16,24, 42,68,69];this weakness of the magnetic response should be part of the considerations in the modeling of magnetic resonance mediated high-T c superconductivity.Alternatively, its detection below T c might be a mere consequence of the onset of superconductivity and of the corresponding suppression of quasiparticle scattering.Independently of the precise interpretation,the INS data reproduced infigure2show that the magnetic resonance energy r tracks very closely, over the whole superconducting dome,the superconductingenergy scale E sc∼5k B T c(similar behavior is observed, in the underdoped regime,also for the spin-gap at the incommensurate momentum transfer(π,π±δ)[81]).Also remarkable is the correspondence between the energy of the magnetic resonance and that of the B2g Raman peak.Note that while the q=(π,π)momentum transfer observed for the magnetic resonance in INS is a key ingredient of most proposed HTSC descriptions,Raman scattering is a q=0probe.It seems that understanding the connection between Raman and INS might reveal very important clues.2.5.Heat conductivityHeat conductivity data from Y123and Tl2201fall onto the pseudogap line.This is a somewhat puzzling result because they have been measured at very low temperatures,well into the superconducting state,and should in principle provide a measure of both gaps together if these were indeed coexisting below T c.However,similarly to the B2g Raman scattering, these experiments are only sensitive to the slope of the gap function along the Fermi surface at the nodes,(1/¯h)(d /d k)|n; the gap itself is determined through an extrapolation procedure in which only one gap was assumed.The fact that the gap values,especially for Y123,come out on the high side of the pseudogap line may be an indication that an analysis with two coexisting gaps might be more appropriate.3.Outlook and conclusionThe data infigures2and3demonstrate that there are two coexisting energy scales in the HTSCs:one associated with the superconducting T c and the other,as inferred primarily from the antinodal region properties,with the pseudogap T∗. The next most critical step is that of addressing the subtle questions concerning the nature of these energy scales and the significance of the emerging two-gap phenomenology towards the development of a microscopic description of high-T c superconductivity.As for the pseudogap,which grows upon underdoping, it seems natural to seek a connection to the physics of the insulating parent compound.Indeed,it has been pointed out that this higher energy scale might smoothly evolve,upon underdoping,into the quasiparticle dispersion observed by ARPES in the undoped antiferromagnetic insulator[82,83]. At zero doping the dispersion and quasiparticle weight in the single-hole spectral function as seen by ARPES can be very well explained in terms of a self-consistent Born approximation[84],as well as in the diagrammatic quantum Monte Carlo[85]solution to the so-called t–t –t –J model.In this model,as in the experiment[82,83],the energy difference between the top of the valence band at(π/2,π/2)and the antinodal region at(π,0)is a gap due to the quasiparticle dispersion of about250±30meV.Note that this would be a single-particle gap .For the direct comparison with the pseudogap data infigure2,we would have to consider 2 ∼500meV;this,however,is much larger than the x=0 extrapolated pseudogap value of186meV found from our analysis across the phase diagram.Thus there seems to be an important disconnection between thefinite doping pseudogapand the zero-doping quasiparticle dispersion.The fact that the pseudogap measured in ARPES and SINexperiments is only half the size of the gap in SIS,STM,B1gRaman and heat conductivity measurements,points to a pairinggap.So although the origin of the pseudogap atfinite dopingremains uncertain,we are of the opinion that it most likelyreflects a pairing energy of some sort.To this end,the trend infigure2brings additional support to the picture discussed bymany authors that the reduction in the density of states at T∗isassociated with the formation of electron pairs,well above theonset of phase coherence taking place at T c(see,e.g.[86,87]).The pseudogap energy E pg=2 pg would then be the energy needed to break up a preformed pair.To conclusively addressthis point,it would be important to study very carefully thetemperature dependence of the(π,0)response below T c;anyfurther change with the onset of superconductivity,i.e.anincrease in E pg,would confirm the two-particle pairing picture,while a lack thereof would suggest a one-particle band structureeffect as a more likely interpretation of the pseudogap.The lower energy scale connected to the superconductingT c(parabolic curve infigure2and3)has already been proposedby many authors to be associated with the condensationenergy[86–89],as well as with the magnetic resonance inINS[90].One might think of it as the energy needed totake a pair of electrons out of the condensate;however,fora condensate of charged bosons,a description in terms of acollective excitation,such as a plasmon or roton,would bemore appropriate[24].The collective excitation energy wouldthen be related to the superfluid density and in turn to T c.In thissense,this excitation would truly be a two-particle process andshould not be measurable by single-particle spectroscopies.Also,if the present interpretation is correct,this excitationwould probe predominantly the charge-response of the system;however,there must be a coupling to the spin channel,so as tomake this process neutron active(yet not as intense as predictedby the sum rule for pure spin-1/2magnetic excitations,whichis consistent with the small spectral weight observed by INS).As discussed,one aspect that needs to be addressed to validatethese conjectures is the surprising correspondence betweenq=0and q=(π,π)excitations,as probed by Raman andINS,respectively.We are led to the conclusion that the coexistence of twoenergy scales is essential for high-T c superconductivity,withthe pseudogap reflecting the pairing strength and the other,always smaller than the pseudogap,the superconductingcondensation energy.This supports the proposals thatthe HTSCs cannot be considered as classical BCSsuperconductors,but rather are smoothly evolving from theBEC into the BCS regime[91–93],as carrier doping isincreased from the underdoped to the overdoped side of thephase diagram.AcknowledgmentsSH would like to thank the University of British Columbiafor its hospitality.Helpful discussions with W N Hardy,。
基于双边滤波与受限玻尔兹曼机的冷冻电镜单颗粒图像识别
Biophysics 生物物理学, 2021, 9(1), 34-42Published Online February 2021 in Hans. /journal/biphyhttps:///10.12677/biphy.2021.91005基于双边滤波与受限玻尔兹曼机的冷冻电镜单颗粒图像识别王桉迪,姚睿捷,黄强*复旦大学生命科学学院,上海收稿日期:2021年1月5日;录用日期:2021年2月15日;发布日期:2021年2月26日摘要冷冻电镜技术(Cryo-EM)起源于20世纪70年代,是结构生物学中蛋白质与核酸分子结构研究的重要技术手段。
21世纪以来,计算机性能的提升与直接电子检测相机的极大发展,使得人们在小样本低剂量样本条件下仍可获得接近原子分辨率级的三维结构模型。
由于三维结构模型是利用多角度投影,通过大量二维冷冻电镜单颗粒图像重构所得,因此,二维单颗粒图像的识别与分类直接影响最终模型的分辨率。
目前,通过冷冻电镜获得的图像大部分噪声较多,因此对二维单颗粒图像的筛选,往往需要耗费有经验的科学工作者耗费大量时间。
针对此问题,本文运用计算机图形学与机器学习相结合的方法,在预处理阶段以双边滤波器(Bilateral Filter)对信噪比较低的图像进行边缘优化,并通过直方图均衡化实现图像信息增强,最后以少量高置信度图像为训练样本,通过受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)进行监督式学习并实现图像的分类与筛选,以提高二维单颗粒图像识别的效率与准确率。
在方法检验阶段,首先,我们利用蛋白质数据库(Protein Data Bank, PDB)中已知的生物大分子结构,投影生成不同信噪比的模拟单颗粒模拟数据,验证了在低信噪比条件下应用本方法进行单颗粒图像识别分类的准确性。
随后我们以瞬态受体电位离子通道蛋白子类V成员1 (Transient Receptor Potential cation channel subfamily V member 1,TRPV1)的真实二维单颗粒图像数据集进行识别分类与三维模型重构,通过cryoSPARC平台,以约53%的原始数据量重构出了与原分辨率3.6Å相近的模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Single–particle spectrum for a model of fermions interacting with two-level local excitations on a lattice: A dynamical CPA approach
Preprint submitted to Elsevier Science 6 February 2008
In the present Letter we investigate the one-electron spectrum in this model by using well established method — single-site dynamical coherent potential approximation (DCPA) [13,14,15,16] which becomes equivalent to dynamical mean-field theory (DMFT) [17] in the limit of infinite dimensionality of the lattice (d → ∞, which corresponds to Gaussian bare density of states for hypercubic lattice) or infinite nearest neighbor number (z → ∞, Bethe lattice). In those limits the equivalence of both methods was demonstrated explicitly in [18]. From the practical point of view, DCPA differs from DMFT by that the former retains the shape of the bare density of states for finite d. Both the methods enable us to map a rather complicated TLS lattice problem onto a single-impurity problem which is readily solvable for one electron in empty conduction band. We consider the spinless fermion model describing fermion-pseudospin interaction: H=
k
1 . z − ǫk
(4)
The local self-energy is obtained from the solution of the auxiliary singleimpurity problem, the corresponding model parameters being determined from the self-consistency condition G(z ) = Gloc (z ). The local Green’s function is given by
ij
tij c† i cj −
i
(γ i τ i )ni −
(hi τ i )
i
(1)
where c† i , ci are fermion creation and annihilation operators on a site i; tij are transfer integrals, ni = c† i ci , τ i are pseudospin-1/2 operators; γ i is the vector of coupling between fermions and pseudospins, hi is pseudomagnetic field vector, the tunneling frequency being Ωi = ∆i = (hi hi ). Further on we consider translationally invariant case where site dependence of both coupling constants and tunnelling frequency is absent H=
G (z ) . 1 + G(z )Σloc (z )
(6)
Introducing F (z ) by F (R0 (z )) = z to exclude Σloc (z ) from the expression (6), one can write down the self-consistency condition in a more familiar form
1 loc G− loc (z ) = R0 (z ) −1
− Σloc (z )
(5)
loc where R0 (z ) is the resolvent of the single-impurity problem, with the interaction at the impurity site being switched off. We obtain the self-consistency condition as loc R0 (z ) =
The problem of interaction of current carriers with local excitations is one of the classical problem of solid state physics [1]. Recently, the interest in this topic has been revived in connection with investigation of highly correlated electron systems, in particular high-Tc superconductors where anharmonic lattice vibrations (i.e., those of apical oxygen) are assumed sometimes to play an important role [2,3,4,5,6]. The problem is relevant for both metals and semiconductors where the electron spectrum is essentially modified by the influence of local excitations. Formally the local excitations can be described in terms of multi-level spectrum of a strongly anharmonic system. In the simplest case one can use a model of two-level system (TLS) which is formally described by pseudospin formalism. This model is widely used for two-level systems in metallic glasses [7,8,9,10], crystalline-electric field (CEF) excitations [11], dissipative systems with tunneling states [12].
k
ǫk c† k ck − λ
i
(τi+ + τi− )ni − hz
τiz ,
i
(2)
with ǫk being electron band spectrum, and we have put γz = 0 after pseudospin quantization axis rotation. Note that the model (1,2) can be mapped onto various models in different regions of its parameter space. For example, at γ i = (0, 0, γz ) and hi = (0, 0, hz ) we get the Falicov-Kimball model [19]. For large pseudospin values we obtain by using the Holstein-Primakoff representation the Holstein model [20,21] which is widely used to describe small polaron formation, in particular in molecular crystals. We calculate the one-particle Green’s function in the case of single conduction electron, G k (z ) = ck | c† k
z
= [z − ǫk − Σk (z )]−1 2
(3)
where Σk (z ) is the electron self-energy. In the local self-consistent approximation (which corresponds to dynamical CPA and DMFT) the quantity Σk (zபைடு நூலகம்) is replaced by the momentum-independent local self-energy, Σk (z ) → Σloc (z ) and the expression for the on-site Green’s function G(z ) = k Gk (z ) takes the form G(z ) = R0 (z − Σloc (z )), R0 (z ) =