汽车发动机曲轴的热处理工艺
20CrMnTi钢制造汽车曲轴正时齿轮热处理工艺设计

攀枝花学院学生课程设计(论文)题目20CrMnTi钢制造汽车曲轴正时齿轮热处理工艺设计学生姓名:学号:所在院(系):材料工程学院专业:材料成型及控制工程班级:指导教师:职称:讲师2013年12月18日攀枝花学院教务处制攀枝花学院本科学生课程设计任务书课程设计(论文)指导教师成绩评定表摘要本课设计了20CrMnTi钢制造汽车曲轴正时齿轮热处理工艺设计。
主要的工艺过程包括锻造、预备热处理(完全退火)、渗碳、淬火+低温回火等过程。
通过各种不同的工艺过程进行恰当的处理可以获得各种性能良好的材料并且满足各项性能的要求。
20CrMnTi钢其塑性、低温冲击韧性高,但强度、硬度较低,锻造、焊接和冷冲压性能良好,冷变形塑性高,但切削加工变形小。
用于制造受力不大、韧性要求高的零件和渗碳件,紧固件和冲模锻件以及不经热处理的低负荷零件。
汽车曲轴齿轮是汽车中重要的传动部件。
其将汽车发动机和汽车主轴联结起来,将动力和扭矩由电机传递到主轴,从而使主轴转动汽车轮。
其主要作用是通过变速装置调节主轴转速和扭矩,从而使发动机运行在最佳的状态[1]。
关键词:汽车曲轴正时齿轮、20CrMnTi钢、预备热处理、完全退火、低温回火+淬火。
目录摘要 (Ⅰ)1、设计任务 (1)1.1设计任务 (1)1.2设计的技术要求 (1)2、热处理零件图 (2)3、设计方案 (2)3.1 汽车曲轴正时齿轮设计的分析 (2)3.1.1工作条件 (2)3.1.2失效形式 (2)3.1.3性能要求 (2)3.2钢种材料 (3)4、设计说明 (4)4.1加工工艺流程 (4)4.2具体热处理工艺 (4)4.2.1预备热处理工艺 (5)4.2.2渗碳工艺 (5)4.2.3淬火+低温回火热处理工艺 (6)4.2.4渗氮工艺 (6)5、分析与讨论 (8)6、结束语 (9)7、热处理工艺卡片 (10)8、汽车曲轴正时齿轮的热处理缺陷及预防或补救措施 (10)参考文献 (19)1 设计任务1.1设计任务20CrMnTi制造汽车曲轴正时齿轮热处理工艺设计1.2设计的技术要求20CrMnTi钢是一种低碳钢材料,它的延展性、可塑性都是比较好的,由于它的含碳量低(在0.17-0.23%之间)所以,硬度比较低。
汽车发动机曲轴的热处理与失效分析

汽车发动机曲轴的热处理与失效分析随着汽车工业的快速发展,汽车发动机的性能和可靠性要求越来越高。
曲轴作为发动机的重要部件之一,承受着巨大的转动和惯性力,因此对其热处理和失效分析显得尤为重要。
本文将就汽车发动机曲轴的热处理工艺和常见失效形式进行探讨。
一、汽车发动机曲轴的热处理工艺1. 液体渗碳法液体渗碳法是常见的曲轴热处理方法之一。
该方法通过在高温下将液体渗碳剂浸泡曲轴表面,使碳原子渗透到曲轴表层,增加硬度和耐磨性。
这种方法可以有效地提高曲轴的使用寿命和耐久性。
2. 气体渗碳法气体渗碳法在汽车发动机曲轴的热处理中也有广泛应用。
该方法通过在高温下将碳气体与曲轴表面反应,使碳原子渗入曲轴表层,增加曲轴的硬度和强度。
气体渗碳法具有渗透层均匀、生产效率高等优点。
3. 氮化处理氮化处理是一种常见的曲轴热处理方法。
通过将曲轴置于氨气或氮气环境中,在高温下进行反应,使氮原子渗入曲轴表面形成氮化层,提高曲轴的硬度和耐磨性。
氮化处理可以显著提高曲轴的工作寿命和可靠性。
二、汽车发动机曲轴的失效形式1. 疲劳断裂汽车发动机曲轴承受着巨大的转动和振动力,长期工作下容易发生疲劳断裂。
曲轴的弯曲应力和旋转应力作用下,会产生应力集中现象,导致曲轴发生疲劳断裂。
疲劳断裂的发生会导致曲轴的完全失效,严重影响发动机的工作正常性。
2. 磨损曲轴在长时间工作中,会与连杆轴承、活塞等零部件产生摩擦,从而导致磨损。
磨损严重影响曲轴的精度和运转平稳性,进一步影响整个发动机的工作效率和寿命。
3. 腐蚀汽车发动机在工作中,由于油污和湿度等环境因素的影响,曲轴表面容易发生腐蚀。
腐蚀会导致曲轴表面的金属材料逐渐溶解,使曲轴的强度大幅下降,最终导致曲轴的失效。
三、失效分析与预防措施1. 失效分析在曲轴的热处理与失效分析中,需要通过工艺参数的分析和实验数据的对比,来确定曲轴热处理工艺的优化方案。
同时,可以通过金相显微镜等测试手段,对曲轴的金属组织进行分析,查找潜在的裂纹和磨损等问题。
(完整word版)曲轴制造工艺过程

曲轴制造工艺过程曲轴是引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。
是发动机上的一个重要的机件,其材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈,(还有其他).主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。
曲轴润滑主要是指与摇臂间轴瓦的润滑和两头固定点的润滑.这个一般都是压力润滑的,曲轴中间会有油道和各个轴瓦相通,发动机运转以后靠机油泵提供压力供油进行润滑、降温。
发动机工作过程就是,活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。
曲轴的旋转是发动机的动力源.也是整个船的源动力。
1。
曲轴制造技术/工艺的进展1、球墨铸铁曲轴毛坯铸造技术(1) 熔炼高温低硫纯净铁水的获得是生产高质量球墨铸铁的关键。
国内主要是以冲天炉为主的生产设备,铁水未进行预脱硫处理;其次是高纯生铁少、焦炭质量差。
目前已采用双联外加预脱硫的熔炼方法,采用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分.目前,在国内铁水成分的检测已普遍采用真空直读光谱仪来进行。
(2)造型气流冲击造型工艺明显优于粘土砂型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量等特点,这对于多拐曲轴尤为重要.目前,国内已有一些曲轴生产厂家从德国、意大利、西班牙等国引进气流冲击造型工艺,不过,引进整条生产线的只有极少数厂家,如文登天润曲轴有限公司引进了德国KW铸造生产线。
2、钢曲轴毛坯的锻造技术近几年来,国内已引进了一批先进的锻造设备,但由于数量少,加之模具制造技术和其他一些设施跟不上,使一部分先进设备未发挥应有的作用。
从总体上来讲,需改造和更新的陈旧的普通锻造设备多,同时,落后的工艺和设备仍占据主导地位,先进技术有所应用但还不普遍。
3、机械加工技术目前国内曲轴生产线多数由普通机床和专用机床组成,生产效率和自动化程度相对较低。
stl12热处理工艺

stl12热处理工艺STL12热处理工艺随着科技的不断进步,热处理工艺在工业生产中起着至关重要的作用。
STL12热处理工艺是一种常见的热处理工艺,广泛应用于各个领域。
本文将从STL12热处理工艺的基本原理、工艺流程和应用领域等方面进行介绍。
一、STL12热处理工艺的基本原理STL12热处理工艺是一种通过改变金属材料的组织结构和性能来达到特定要求的工艺。
其基本原理是通过对金属材料进行加热和冷却处理,使其在固态条件下发生相变,从而改变材料的晶体结构和力学性能。
STL12热处理工艺通常包括加热、保温和冷却三个阶段,每个阶段都有其特定的温度和时间要求。
二、STL12热处理工艺的工艺流程STL12热处理工艺的工艺流程包括以下几个步骤:1. 加热:将金属材料置于炉中进行加热,使其达到所需的温度。
加热温度的选择应根据具体材料的特性和要求来确定。
2. 保温:在加热到达一定温度后,将金属材料保持在该温度下一段时间,以使其达到均匀加热的状态。
3. 冷却:将加热保温后的金属材料迅速冷却至室温。
冷却方式可以采用水淬、油淬或空冷等不同方法,具体取决于材料的要求。
4. 回火:在冷却后,有时需要对金属材料进行回火处理,以消除残余应力,并提高材料的韧性和可加工性。
5. 检验:经过热处理后的金属材料需要进行各种性能检验,如硬度测试、金相分析等,以确保其达到要求的性能指标。
三、STL12热处理工艺的应用领域STL12热处理工艺广泛应用于各个领域,特别是在金属制造和加工行业中。
以下是STL12热处理工艺在几个典型应用领域的具体应用:1. 汽车制造:汽车发动机的曲轴、连杆等关键零部件经过STL12热处理工艺后,能够提高其强度和硬度,从而提高整个发动机的性能和可靠性。
2. 机械制造:机械零部件如齿轮、轴承等经过STL12热处理工艺后,能够提高其耐磨性和抗疲劳性能,延长使用寿命。
3. 航空航天:航空航天领域对金属材料的性能要求非常高,STL12热处理工艺可以使金属材料达到航空航天要求的高强度和高耐腐蚀性。
第三次作业参考答案

1、何谓退火和正火?两者的特点和用途有什么不同?退火是将钢件加热到Ac1或Ac3以上(30~50℃),保温一段时间,然后再缓慢的冷却(一般用炉冷)。
正火是将钢件加热到Ac3或Acm以上(30~50℃),保温一段时间,然后在空气中冷却,冷却速度比退火稍快。
退火与正火的主要区别是:正火是完全退火的一种变态或特例,二者仅是冷却速度不同,通常退火是随炉冷而正火是在空气中冷却,正火既适用于亚共析钢也适用于过共板钢,对于共析钢,正火一般用于消除网状碳化物;对于亚共析钢,正火的目的与退火基本相同,主要是细化晶粒,消除组织中的缺陷,但正火组织中珠光体片较退火者细,且亚共析钢中珠光数量多铁素体数量少,因此,经正火后钢的硬度、强度均较退火的高,由此可知,在生产实践中,钢中有网状渗碳体的材料需先经正火消除后方可使用其他工艺,而对热处理后有性能要求的材料,则据要求的不同及钢种不同选择退火工艺,如:要求热处理后有一定的强度、硬度,可选择正火工艺;要求有一定的塑性,尽量降低强度、硬度的则应选择退火工艺。
生产上常用的退火操作种类(1)完全退火(俗称退火)主要用于亚共桥钢和合金钢的铸件、锻件及热轧型材,有的也用做焊接结构件,其目的是细化晶粒,改善组织,消除残余应力,降低硬度、提高塑性,改善切削加工性能,完全退火是一种时间很长的退火工艺,为了缩短其退火时间,目前常采用等温火的工艺来取代完全退火工艺,同完全退火比较,等温火的目的与完全退火相同,但它大大缩短了退火时间。
(2)球化退火主要用于过共析钢及合金工具钢(如刀具、量具、模具以及轴承等所有钢种)。
其目的主要是降低硬度,改善切削加工性,并为以后淬火作好准备。
(3)去应力退火(又称低温退火)主要用来消除铸件、锻件及焊接件、热轧件等内应力。
(4)再结晶退火用来消除冷加工(冷拉、冷冲、冷轧等)产生的加工硬化。
目的是消除内应力,提高塑性,改善组织。
(5)扩散退火主要用于合金钢,特别是合金钢的铸件和钢锭。
热处理典型应用

热处理典型应用热处理是一种通过加热和冷却来改变材料性能的工艺方法。
它在工业制造中有着广泛的应用,可以提高材料的硬度、强度、耐磨性和耐腐蚀性等特性。
下面将介绍热处理的一些典型应用。
1. 硬化硬化是热处理中最常见的应用之一。
通过加热材料到一定温度,使其达到奥氏体组织,然后迅速冷却,使其转变成马氏体组织,从而提高材料的硬度和强度。
硬化通常用于制造刀具、齿轮、轴承等需要较高硬度和强度的零件。
2. 回火回火是一种通过加热和冷却来改变材料硬度和韧性的热处理方法。
在硬化后,材料通常会变得非常脆弱,此时需要进行回火处理。
回火的过程是将材料加热到一定温度,保温一段时间,然后缓慢冷却。
回火可以减轻材料的内应力,提高其韧性和可加工性。
回火通常用于制造弹簧、刀具等需要一定硬度和韧性的零件。
3. 淬火淬火是一种通过迅速冷却来改变材料组织和性能的热处理方法。
淬火的目的是使材料迅速从奥氏体组织转变为马氏体组织,从而提高材料的硬度和强度。
淬火过程中,材料需要被迅速冷却,通常使用水、油或盐水等介质来实现。
淬火通常用于制造汽车零件、机械零件等需要高硬度和强度的零件。
4. 固溶处理固溶处理是一种通过加热和冷却来改变合金材料的组织和性能的热处理方法。
固溶处理通常用于处理合金材料中的固溶体溶解和析出过程。
在固溶处理过程中,材料会被加热到一定温度,使固溶体中的溶质溶解,然后迅速冷却,使溶质重新析出。
固溶处理可以提高合金材料的强度、硬度和耐腐蚀性。
固溶处理通常用于制造航空航天零件、汽车零件等需要高强度和耐腐蚀性的零件。
5. 淬火回火淬火回火是一种将淬火和回火两种热处理方法结合起来使用的工艺。
在淬火的过程中,材料会变得非常脆弱,此时需要进行回火处理来提高其韧性。
淬火回火可以在保证材料硬度和强度的同时,提高其韧性和可加工性。
淬火回火通常用于制造高强度和高韧性要求的零件,如汽车发动机曲轴、齿轮等。
热处理是一种重要的工艺方法,通过加热和冷却来改变材料性能,以满足不同工程应用的需求。
汽车曲轴的软氮化技术

汽车曲轴的软氮化技术为提高曲轴的疲劳强度,许多曲轴生产厂采用了气体软氮化技术(气体软氮化是一种由液体软氮化发展起来的、化学热处理工艺,其实质是以渗氮为主的低温碳氮共渗。
它的特点是处理温度低、时间短,工件变形小,质量稳定,不受钢种限制,能显著提高零件的耐磨性、疲劳强度、抗咬合、抗擦伤等性能,同时还能解决液体软氮化中的毒性问题,避免了公害,因而劳动条件好。
此外,设备和操作都简单,容易推广。
其基本原理是气体软氮化的原理是在530°~580℃的气氛中产生2CO →[C]+CO_2(渗碳)及2NH3→2[N]+3H_2(氮化)反应,使钢铁表面形成氮化物或碳氮化物。
),其中采用这项技术以山东曲轴总厂、潍坊柴油机厂、重汽集团复强动力公司等为典型代表。
仅山东曲轴总厂,就拥有连续软氮化生产设备及5-2型气体软氮化设备近10多台。
而重汽集团复强动力公司设备能力达到技术国内最先进、功率最大、装炉量最多,同时比同行业设备更具有节能环保效应。
目前,国内生产曲轴所采用的典型材料为45钢和42CrMoTi。
曲轴气体软氮化与处理其他软氮化零件相类似,其氮化工艺过程一般要经过前清洗、升温、保温、冷却、后清洗等5个阶段,包括出装炉。
不同的厂家在气体软氮化工艺上略有不同。
1.前清洗工艺待处理零件装炉前应通过清洗使零件表面清洁无油,目前采用的主要清洗方法主要有下列方式:高温蒸汽加清洗剂洗涤然后加高温蒸汽漂洗涤、自动清洗机清洗、汽油擦洗。
清洗的好坏将直接影响曲轴的处理质量和延长处理周期。
如果曲轴表面脏,处理后的曲轴表面附着很多碳黑,既影响产品外观又影响产品质量。
经改进清洗工艺后,处理质量大大提高。
据实际经验来看,表面清洁易形成连续的厚度较为均匀的化合物层,反之则不易形成连续和厚度均匀的化合物层。
而在气体软氮化时化合物层对硬度、耐磨及抗疲劳性能有较大贡献。
本文的第三种方式是在生产条件不具备时的变通方法,仅适用于小规模清洗。
2.预氧化工艺为保证零件性能的综合要求,在气体软氮化之前一般还需要进行预先热处理,气体软氮化的预热温度一般取400~490℃,保温1h左右,去除工件表面油污、油脂,并在表面形成一层氧化物,使(合金)氮化物缓慢形成,使深层更加均匀。
汽车发动机曲轴的热处理工艺

摘要:本文对一般汽车发动机曲轴的各项性能与技术参数进行了分析,制定出相应材料(35CrMo)曲轴的热处理工艺方案,在工艺试验的基础上对方案进行了验证与改进,保证曲轴的各项性能达到要求。
关键词:曲轴热处理工艺35CrMo 调质高频淬火目录1.引言 (3)2.曲轴的服役条件与失效形式 (3)2.1.服役条件 (3)2.2.失效形式 (4)3.技术要求与材料的选择 (5)3.1 锻钢曲轴热处理的技术要求 (5)3.2 材料的选择 (5)3.2.1选材条件 (5)3.2.2 锻钢曲轴材料的要求 (5)3.2.3 备选材料的化学成分与力学性能的对比与分析 (5)3.2.4 材料的确定 (6)4.加工工序 (6)5.具体热处理工艺的制定与用材分析 (7)5.1 35CrMo热处理的技术要求 (7)5.2 具体工艺与用材分析 (7)5.2.1 原始材料的组织与性能 (7)5.2.2调质工艺与用材分析 (8)5.2.2.1 调制工艺参数的确定 (8)5.2.2.2 组织性能分析 (8)5.2.3 去应力退火 (10)5.2.4表面处理 (10)5.2.4.1表面热处理工艺 (10)5.2.4.2 组织性能分析 (11)6.结论 (12)7.参考文献 (14)致谢 (15)1.引言曲轴是汽车发动机的最关键的零部件之一,曲轴的性能在很大程度上影响着汽车发动机的可靠性与寿命。
曲轴在发动机中承担着最大的负荷和全部的功率,承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。
因而,需要合适的热处理工艺,以保证其达到所要求的各项性能指标。
图(1).曲轴结构示意图2.曲轴的服役条件与失效形式2.1.服役条件曲轴在发动机中承担着最大的负荷和全部的功率,承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:本文对一般汽车发动机曲轴的各项性能与技术参数进行了分析,制定出相应材料(35CrMo)曲轴的热处理工艺方案,在工艺试验的基础上对方案进行了验证与改进,保证曲轴的各项性能达到要求。
关键词:曲轴热处理工艺35CrMo 调质高频淬火目录1.引言 (3)2.曲轴的服役条件与失效形式 (3)2.1.服役条件 (3)2.2.失效形式 (4)3.技术要求与材料的选择 (5)3.1 锻钢曲轴热处理的技术要求 (5)3.2 材料的选择 (5)3.2.1选材条件 (5)3.2.2 锻钢曲轴材料的要求 (5)3.2.3 备选材料的化学成分与力学性能的对比与分析 (5)3.2.4 材料的确定 (6)4.加工工序 (6)5.具体热处理工艺的制定与用材分析 (7)5.1 35CrMo热处理的技术要求 (7)5.2 具体工艺与用材分析 (7)5.2.1 原始材料的组织与性能 (7)5.2.2调质工艺与用材分析 (8)5.2.2.1 调制工艺参数的确定 (8)5.2.2.2 组织性能分析 (8)5.2.3 去应力退火 (10)5.2.4表面处理 (10)5.2.4.1表面热处理工艺 (10)5.2.4.2 组织性能分析 (11)6.结论 (12)7.参考文献 (14)致 (15)1.引言曲轴是汽车发动机的最关键的零部件之一,曲轴的性能在很大程度上影响着汽车发动机的可靠性与寿命。
曲轴在发动机中承担着最大的负荷和全部的功率,承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。
因而,需要合适的热处理工艺,以保证其达到所要求的各项性能指标。
图(1).曲轴结构示意图2.曲轴的服役条件与失效形式2.1.服役条件曲轴在发动机中承担着最大的负荷和全部的功率,承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。
因而,需要合适的热处理工艺,以保证其达到所要求的各项性能指标。
在曲轴工作的过程中,往复的惯性力和离心力使之承受很大的弯--扭应力轴颈表面容易磨损,且轴颈与曲臂的过渡圆角处最为薄弱。
除曲轴的材质,加工因素外,曲轴的工作条件(温度、环境介质、负荷特性)等都是影响曲轴服役的。
2.2 失效形式①疲劳断裂:多数断裂时曲柄与轴颈的圆角处产生疲劳裂纹,随后向曲柄深处发展,造成曲柄的断裂,其次是曲柄中部的油道壁产生裂纹,发展为曲柄处的断裂。
②轴颈表面的严重磨损。
(如图2)图(2)、磨损的曲轴3.技术要求与材料的选择3.1 锻钢曲轴热处理的技术要求气缸直径小于或等于200mm的往复活塞式燃机曲轴的热处理技术要求预备热处理项目锻钢最终热处理(感应加热淬火)淬硬层深度D S∕mm2.0~4.5毛坯硬度(HBS)调制207~302硬度(HRC)≥53 同一曲轴硬度差(HBS)≤50同曲轴硬度差(HRC)≤6 显微组织(体积分数)索氏体1~4级显微组织细针状M1~3级3.2 材料的选择3.2.1选材条件首先,应满足曲轴的力学性能,它取决与发动机设计的强度水平。
其次,考虑曲轴的疲劳强度和耐磨性。
(与材料本身的成分及热处理后的性能有关)3.2.2锻钢曲轴材料的要求根据JB∕T6727。
锻钢曲轴对材料的要求如下:①钢的含碳量要精选,含碳量的变化围应不大于0.05%(质量分数);钢的含S .P 量应不大于0,.0025%(质量分数)。
②钢的非金属夹杂物,脆性夹杂物,塑性夹杂物应不超过GB10561规定的2.5级。
③钢的淬透性应按GB255进行测定,其淬透性曲线应在所用的钢号的淬透性围。
3.2.2备选材料的化学成分与力学性能的对比与分析各种适合曲轴材料的化学成分及机械性能(质量分数)3.2.4 材料的确定由于曲轴需要承受交变的弯曲---扭荷以及发动机的大的功率,因此,要求其具有高的强度,良好的耐磨、耐疲劳性以及循环韧性等。
因而,根据曲轴材料的要求,各项技术要求,及材料的成分,机械性能,淬透性,同时需考虑成本的经济性,最终选择不含贵金属的且各项性能指标优良的35CrMo作为汽车发动机的材料。
4.加工工序(锻坯)调制(淬火+高温回火)→矫直→清理→检验→粗加工→去应力退火→精加工→表面热处理(高频淬火+低温回火)→矫直→磨削→检验5.具体热处理工艺的制定与用材分析5.1 35CrMo热处理的技术要求5.2 具体工艺与用材分析5.2.1原始材料的组织与性能本次实验采用φ 15 (mm)棒材。
图3为4%的硝酸酒精腐蚀过的材料原始状态的金相显微图。
图(3).35CrMo退火态(500x)从其显微组织图上可观察到其组织为铁素体基体上分布着层片状的珠光体(F+P)。
其组织结构均匀。
其初始态的力学性能:HRC:32 30 31 31 31 31 30 31 31从以上数据可以看出其力学性能均匀。
5.2.2 调质工艺与用材分析5.2.2.1 调质工艺参数的确定淬火温度:由于35CrMo是亚共析钢,所以淬火温度取AC3+30~ 50℃,所以可确定出材料的淬火温度应为850℃较合适。
其保温时间可由经验公式t≈(1.2~1.5)•D ,由于实验室一般取上限所以可得出淬火保温时间大约为25min。
淬火介质:油淬回火温度:560℃保温时间: 1h回火介质:油加热设备:箱式电阻炉调制工艺图5.2.2.2 组织性能的分析试样经淬火(未回火)后的金相组织如图(4).可以看出其显微组织为板条马氏体。
硬度测得在51~53HRC之间,且硬度分布均匀。
淬火时,冷却介质选用油淬。
这是因为油冷冷速在500~350℃时最快,其下比较慢。
这种冷却特性是比较理想的,因而正好使钢的过冷奥氏体组织在最不稳定的区域有最快的冷速,如此,可获得最大的淬硬层深度;而在马氏体转变区有最小的冷却速度,可使组织应力减至最小,故减小了变形开裂倾向,有利于后续加工及处理。
由于淬火后获得的马氏体组织不够稳定,因此,需要高温回火获得稳定的组织,回火索氏体。
如图(5)可以看出调制后获得索氏体晶粒均匀细密,具有良好的硬度与韧性,其硬度值在32HRC左右,且硬度值分布均匀,符合曲轴的技术要求。
图(4) 35CrMo淬火态(500x)图(5) 35CrMo调制态(500x)由于随回火温度的升高,马氏体的塑性韧性上升,强度硬度下降,因而,调质获得的组织具有良好的综合性能,使强度、塑性、韧性得到了良好的配合,且改善了材料的机械加工性能,并为后续的热处理及加工做了组织上的准备。
5.2.3去应力退火工艺在热处理、切削加工和其他工艺过程中,制品可能产生应力。
多数情况下,在工艺过程结束后,金属部将保留一部分残余应力。
残余应力可导致工件破裂、变形或尺寸变化,残余应力也提高金属化学活性,在残余拉应力作用下特别容易造成晶间腐蚀破裂。
因此,残余应力将影响材料的使用性能或导致工件过早失效。
所以需要去应力退火来消除之前加工过程中产生的残余应力。
去应力退火工艺图进行去应力退火时,金属在一定温度作用下通过部局部塑性变形(当应力超过该温度下材料的屈服强度时)或局部的弛豫过程(当应力小于该温度下材料的屈服强度时)使残余应力松弛而达到消除的目的。
在去应力退火时,工件一般缓慢加热至较低温度(一般小于回火温度20℃),保温一段时间后,缓慢冷却,以防止产生新的残余应力。
5.2.4 表面处理及用材分析5.2.4.1 表面热处理工艺目的:在工件表面一定深度获得马氏体组织,而其心部仍保持着表面淬火前的组织状态,以获得表面层硬而耐磨,心部又有足够塑性、韧性的工件。
加热设备:GP—25A高频淬火炉淬火温度:860——930℃(普通淬火温度+30~200℃)冷却介质:水冷回火温度:160℃Array保温时间:1.5回火介质:水5.2.4.2组织性能分析图(6)(7) 分别为试样1 的金相显微组织图。
从图(6)可以看出,试样 1 经过高频淬火以后,表面得到的并不是所需要的针状马氏体,而是粗大的组织。
其原因是高频淬火时加热时间太长而引起的。
这种粗大的组织硬度比细马氏体降低很多。
因此是不希望获得的组织,在加热时一定要严格控制温加热温度围和加热时间。
试样心部依然保持原来的组织不变,心部组织如图(7),为颗粒大小均匀综合性能良好的回火索氏体。
图(6)试样1 边部过热组织图(7)试样1心部的回火索氏体图(8)试样2表面淬火层与心部的过渡图(9)试样2边界层针状马氏体图(8)(9)是由试样2做的对比实验。
图(9)为高频淬火后的表层组织。
组织为细小的针状马氏体。
图(8)为表层与心部的过渡区域。
由图可以看出,其表层为针状马氏体,而心部则保存了原始的组织与性能。
调质态的35CrMo虽然具有良好的综合性能,但是曲轴的表面要求有良好的耐磨性,调制态的硬度远远不够,因此需要进行高频淬火来增加表面硬度及其耐磨性。
由于高频淬火时,奥氏体成分不均匀,奥氏体晶粒得到了细化,且有残余压应力的存在,所以一般高频淬火或的硬度比普通加热淬火硬度高 2~3个洛氏硬度单位,其抗疲劳性能和耐磨性都得到了显著的提高。
本次实验35CrMo在高频淬火后表层硬度值达到53∼55HRC之间,硬度在表层分布均匀。
高频淬火后,,为了降低残余应力和钢的脆性,而又不至于降低硬度,因此需要进行低温回火。
回火温度取160℃,保温1.5小时。
6.结论35CrMo材料有很高的静力强度、冲击韧性及较高的疲劳极限,淬透性较40Cr高,而且相比40CrNiMo又不含有贵重的Ni元素。
高温下有高的蠕变强度与持久强度,长期工作温度可达500℃;冷变形时塑性中等,焊接性差。
这种钢通常用作调质件,也可高中频表面淬火或淬火及低、中温回火后使用,适用于在高负荷下工作的重要结构件,特别是受冲击、震动、弯曲、扭转负荷的机件,如车轴、发动机传动机件、大电机轴、汽轮发动机主轴、轧钢机人字齿轮、曲轴、锤杆、连杆、•紧固件以及石油工业的穿孔器等。
通过选用35CrMo钢作为曲轴的材料,并且通过合适的热处理工艺,调质工艺可获得良好的综合机械性能,满足曲轴的强度,循环任性等,但是表面的耐磨性远远不够要求,因此需要通过高频淬火来增加其表面的硬度与耐磨性。
在淬火介质的选择上,选用油淬,因为油冷较水冷冷速小,可以减小变形开裂同时又减小了残余应力。
加热保温时间应严格控制,避免在调质回火时保温时间过短所引起的硬度过高,同时避免保温时间过长引起晶粒粗大。
在高频淬火之后进行回火时,回火温度应比普通淬火的回火温度低,以避免表面淬火后硬度的下降。
制样时需要保持试样短面的平整,以便于观察。
同时在实验时应按照规章制度及操作流程来工作,以避免不安全事件的发生。
爱惜实验室仪器设备.7.参考文献【1】中国机械工程学会热处理分会;热处理手册第三版第二卷典型零件的热处理;背景:机械工业;200105【2】Fabr1ce Garcia; 黄壮飞; 仕桓; 田卫华; 曲轴感应热处理[J]. 现代零部件 2009年04期【3】傅建红; 曲轴的热处理工艺改进[J]. 起重运输机械 2006年12期【4】高一新; 任伟霞; 全安; 高速大功率柴油机曲轴的表面强化[J]. 热处理2004年04期【5】胡佳富; 胡建立; 浅谈柴油机曲轴的热处理工艺及材料的选择[J]. 燃机2002年02期【6】光华; 永秀; 瑞; 发动机曲轴的强度、材料与工艺[J]. 汽车工与材料2001年09期【7】王国佐,王万智.钢的化学热处理[M].中国铁道1980.【8】秀敏;军政;柴油机曲轴热处理工艺改进[J]. 金属热处理 2001年04期【9】朱华明,勋丰,富绪.发动机曲轴的失效分析[J].国外金属热处理,2002(2):45~46致首先,感工业大学材料与化工学院为我们提供了这次综合的机会。