避雷器参数选择
避雷器参数及选型原则

金属氧化物避雷器的选择避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。
1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。
(2)、按照被保护的对象确定避雷器的类型。
(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。
(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。
(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。
(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。
(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。
(8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。
(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。
(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。
(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。
2、主要特性参数选择(1)、持续运行电压Uc中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。
在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障二;「三2h及以上切除故障3〜10kV 1.0〜1.1U L, 35〜66kV Uc》U L至于10s〜2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。
避雷器参数定义

避雷器参数定义1、标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。
2、额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。
3、额定放电电流Isn:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。
4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
5、电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。
6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。
7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。
8、插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。
9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。
10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。
通常称为“系统阻抗”。
13、峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。
14、漏电流:指在75或80标称电压Un下流经保护器的直流电流。
避雷器分类/避雷器价格/避雷器分类避雷器有高压和低压避雷器之分,本节介绍的是低压配电系统中的避雷器(电涌保护器SPD)1. 电涌保护器器的种类名目繁多的避雷器在我国的市场上已经超过了上百种,如何对不同品牌、不同型号的避雷器进行分类也许就摆在我们面前。
避雷器如何正确选择适合的避雷器

避雷器如何正确选择适合的避雷器避雷器是一种非常重要的电力设备,它可用于保护各种电气设备和电力系统中的电路。
在选择适合的避雷器时,需要考虑许多因素,包括电气参数、应用需求和环境条件等。
下面将详细介绍如何正确选择适合的避雷器。
一、避雷器的分类按照使用场合的不同,避雷器可以分为低压避雷器、中压避雷器和高压避雷器,其中低压避雷器用于家庭电路和小型工商业用电,中压避雷器用于中压电力线路,而高压避雷器则用于高压输电线路的保护。
按照动作原理的不同,避雷器可以分为气体放电避雷器和压敏电阻避雷器两种类型。
气体放电避雷器是应用气体放电原理制作而成,内部充填着惰性气体。
当系统电压升高到一定程度时,避雷器内的气氛会被激发成等离子体,以达到放电保护的作用。
压敏电阻避雷器是应用陶瓷材料的电学特性制作而成,当系统电压上升到一定值时,避雷器内的压敏电阻将发生负阻特性,起到消耗过电压的能量的作用。
二、避雷器的参数选择适合的避雷器,需要考虑以下参数:1.额定电压:额定电压是避雷器能够承受的最高电压值,必须与电力系统中的额定电压匹配。
2.击穿电压:击穿电压是避雷器放电的电压值,也就是保护作用启动的电压值。
3.额定放电电流:额定放电电流是避雷器在击穿电压作用下的放电电流值。
4.容量:容量是避雷器所能承受的过电压的能量大小,必须与所保护的设备或电路的容量匹配。
三、选择适合的避雷器选择适合的避雷器需要考虑以下因素:1.电气参数的匹配:必须满足避雷器的电气参数与实际使用环境的需求相匹配。
2.环境条件的考虑:根据实际环境条件选择合适的避雷器,如避雷器应采用防水、防尘等防护措施,以便确保设备的正常运转。
3.使用寿命的要求:不同种类的避雷器有不同的使用寿命,应根据实际使用寿命的需求选择合适的避雷器。
4.价格和性价比:在满足性能的前提下,应根据自身需求和实际预算选择性价比较高的避雷器产品。
四、安装和使用正确的安装和使用是保证避雷器正常工作的关键。
在安装时,必须遵循厂家的安装说明书并严格按照图纸要求接线。
避雷器的工作原理及参数

避雷器的工作原理及参数避雷器是一种用来保护电力系统和电气设备免受雷电侵害的装置。
它能将过电压引入大地,防止电力设备电气设备因雷击而损坏。
其基本工作原理是利用非线性元件的电压-电流特性,引导过电压,保护设备不受损害。
避雷器的主要参数有额定电流、额定暂时工频应力、额定耐受永久工频电流和额定残余电流。
首先,额定电流(In)是指避雷器能承受的最大瞬时电流。
雷电产生的能量很大,所以避雷器需要能承受高电流的冲击。
其次,额定暂时工频应力(Up)是指额定电流通过避雷器时的最高电压。
这个参数衡量了避雷器内部元件的电压抗力。
第三,额定耐受永久工频电流(Iimp)是指避雷器能承受的长工频电流。
当有持续时间长的过电压时,避雷器需要能承受相应的电流。
最后,额定残余电流(Ires)是指避雷器通过额定电流后,保持其运行状态时,残余电流的最大值。
这个参数表明避雷器在引导过电压后,能否保持稳定。
避雷器工作的过程中,当雷电侵入电力系统中,会产生过电压。
在正常情况下,避雷器处于断路状态,不导通电流。
但当过电压发生时,避雷器会迅速导通,将过电压引导到地下。
避雷器内部的非线性元件,如气体放电管和金属氧化物层压电阻器(MOA),起到了关键作用。
当过电压上升时,气体放电管开始放电,将电流导向地下。
在气体放电管导通期间,金属氧化物层压电阻器也会参与导电,共同形成电流通路。
避雷器还会根据电力系统的特性进行分级。
通常分为三个等级:耐受等级(Uc),根据避雷器能够承受的冲击电压等级;放电等级(Up),根据避雷器能够引导的过电压等级;动作等级(Imax),根据避雷器能够承受的最大瞬时电流等级。
值得注意的是,避雷器还有其它参数,如交流耐压、直流耐压、泄放电流和接地电阻等。
这些参数都是根据特定情况和需求来进行设计的。
总结起来,避雷器的工作原理是利用非线性元件的电压-电流特性,引导过电压,保护电力系统和电气设备免受雷电侵害。
其主要参数包括额定电流、额定暂时工频应力、额定耐受永久工频电流和额定残余电流。
避雷器的选择方法 、 民熔

避雷器的选择方法如何选择避雷器(1)按额定电压选择:避雷器的额定电压应与系统的额定电压一致。
(2)检查最大允许电压:检查避雷器安装处导线对地的最高电压是否不超过避雷器的最高工作电压。
导线对地最高电压与系统中性点是否接地和系统参数有关①中性点不接地系统:导体对地最高电压为系统电压的1.1倍,一般不存在问题。
②一般情况下,避雷器的最大工作电压等于线路电压。
③中性点直接接地系统:国内避雷器中性点直接接地系统中,最大工作电压为系统电压的0.8倍,按额定电压选择无问题。
(3)检查工频放电电压:①在中性点绝缘或阻抗接地系统中,工频放电电压应大于相电压的3.5倍。
中性点的放电电压应大于中性点电压的3倍。
②工频放电电压应大于最大工作电压的1.8倍。
避雷器又称避雷器、浪涌保护器、浪涌保护器、过电压保护器,主要包括电源防雷器和信号防雷器。
防雷装置通过现代电气等技术,可以防止雷电对设备的损坏。
避雷器中雷电的能量吸收主要是氧化锌压敏电阻和气体放电管。
1.在防雷装置保护达到理想效果的基础上,要注意“在正确的地方合理安装合适的避雷器”,避雷器的选择非常重要。
2.进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配。
这个*估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格。
该处的雷电流为10/35μs电流波形。
3.在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算。
在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流。
2.在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗。
35kv金属氧化物避雷器技术参数

35kv金属氧化物避雷器技术参数35kV金属氧化物避雷器是一种用于保护电力设备免受雷击和过电压损害的重要设备。
它具有很高的技术参数,以下将会对其技术参数进行详细介绍。
1. 额定电压:35kV金属氧化物避雷器的额定电压为35kV,这是指避雷器能够正常工作的最高电压。
超过这个电压,避雷器可能会损坏或无法正常工作。
2. 额定放电电流:避雷器的额定放电电流是指在额定电压下,避雷器能够承受的最大放电电流。
这个参数决定了避雷器对雷击过电压的抵抗能力,一般情况下,额定放电电流越大,避雷器的抵抗能力越强。
3. 高压持续时间:35kV金属氧化物避雷器能够承受的高压持续时间是指在额定电压下,避雷器能够承受的最长时间。
这个参数决定了避雷器的工作稳定性和耐久性,一般情况下,高压持续时间越长,避雷器的工作寿命越长。
4. 耐受重复雷击次数:避雷器的耐受重复雷击次数是指在一定时间内,避雷器能够承受的雷击次数。
这个参数决定了避雷器的使用寿命和可靠性,一般情况下,耐受重复雷击次数越多,避雷器的可靠性越高。
5. 阻止电压:35kV金属氧化物避雷器的阻止电压是指在额定电压下,避雷器能够将过电压降低到的最低电压。
这个参数决定了避雷器对过电压的抑制能力,一般情况下,阻止电压越低,避雷器的保护能力越强。
6. 接地电阻:避雷器的接地电阻是指避雷器接地装置的电阻大小。
接地电阻的大小直接影响到避雷器的接地效果,一般情况下,接地电阻越小,避雷器的接地效果越好。
7. 外形尺寸:35kV金属氧化物避雷器的外形尺寸是指避雷器的物理尺寸。
外形尺寸的大小决定了避雷器在安装和使用过程中的便捷性,一般情况下,外形尺寸越小,避雷器的安装和使用越方便。
8. 重量:避雷器的重量是指避雷器的物理重量。
重量的大小决定了避雷器的搬运和安装难度,一般情况下,重量越轻,避雷器的搬运和安装越方便。
9. 安装方式:35kV金属氧化物避雷器的安装方式包括室内安装和室外安装两种。
室内安装适用于小型电力设备,室外安装适用于大型电力设备。
避雷器主要特性及参数选择 图文 民熔

避雷器避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。
1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。
(2)、按照被保护的对象确定避雷器的类型。
(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。
(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。
(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。
(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。
(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值, 线路放电耐受试验等级及能量吸收能力。
(8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。
(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。
(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。
(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。
2.主要特性参数选择(1)、持续运行电压Uc中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。
在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc 何按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障U。
2U132h及以上切除故障3~ 10kV 1.0~ 1.1UL, 35~ 66kV Uc2UL至于10s~2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。
避雷器的选择方法

避雷器的选择方法避雷器如何选择1按额定电压选择:要求避雷器额定电压与系统额定电压一致;2校验最大允许电压:核对避雷器安装地点可能出现的导线对地最大电压,是否不超过避雷器的最大工作电压;导线对地最大电压与系统中性点是否接地及系统参数有关:①中性点不接地系统:导线对地最大电压为系统电压的1.1倍,所以一般没有问题;②中性点经消弧线圈或高阻抗接地系统:一般选择避雷器的最大工作电压等于线电压;③中性点直接接地系统:国产避雷器的中性点直接接地系统中其最大工作电压等于系统电压的0.8倍,所以按额定电压选择是没有问题的;3校验工频放电电压:①在中性点绝缘或经阻抗接地的系统中,工频放电电压应大于相电压的3.5倍;在中性点直接接地的系统中,工频放电电压应大于相电压的3倍;②工频放电电压应大于最大工作电压的1.8倍防雷器 ,又称避雷器、浪涌保护器、电涌保护器、过电压保护器等,主要包括电源防雷器和信号防雷器,防雷器是通过现代电学以及其它技术来防止被雷击中的设备的损坏;避雷器中的雷电能量吸收,主要是氧化锌压敏电阻和气体放电管;基于防雷器的防护想要取得理想的效果,应注重“在合适的地方合理地装设合适的防雷器”,防雷器的选择十分重要;⒈进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配;这个估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格;该处的雷电流为10/35μs电流波形;在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算;在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流;⒉在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗;如内外两端阻抗一致,则电力线被分配到一半的直击雷电流;在这种情况下必须采用具有防直击雷功能的防雷器;⒊后续的估模式用于估LPZ1区以后防护区交界处的雷电流分配情况;由于用户侧绝缘阻抗远远大于防雷器放电支路与外引线路的阻抗,进入后续防雷区的雷电流将减少,在数值上不需特别估算;一般要求用于后续防雷区的电源防雷器的通流能力在20kA8/20μs以下,不需采用大通流能力的防雷器;后续防雷区防雷器的选择应考虑各级之间的能量分配和电压配合,在许多因素难以确定时,采用串并式电源防雷器是个好的选择;串并式是根据现代雷电防护中许多应用场合、保护范围层次区分等特点提出的概念相对于传统的并式防雷器而言;其实质是经能量配合和电压分配的多级放电器与滤波器技术的有效结合;串并式防雷有如下特点:应用广泛;不但可以按常规进行应用,也适合保护区难以区别的场所;感生退耦器件在瞬态过电压下的分压、延迟作用,以帮助实现能量配合;减缓瞬态干扰的上升速率,以实现低残压与长寿命以及极快的响应时间;⒋防雷器的其它参数选择取决于各个被保护物所在防雷区的级别,其工作电压以安装在引电路中所有部件的额定电压为准;串并式防雷器还需注意其额定电流;⒌影响电子线雷电流分配的其它因素:变压器端接地电阻降低将使电子线中分配电流增大;供电线缆的长度的增加将使电力线中分配电流减少,并使几要导线中有平衡的电流分配;过短的电缆长度和过低的中性线阻抗将使电流不平衡,从而引起差模干扰;供电线缆并接多用户将降低有效阻抗,导致分配电流增大,在连成网状的供电状态下,雷临时性流主要流入电力线,这是多数雷损发生在电力线处的原因;;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合外套氧化物避雷器参数选择
1.避雷器选型总体原则
避雷器选型的一般原则如下。
(1)根据被保护对象选择避雷器类型。
(2)按系统中长期作用在避雷器上的最高电压确定避雷器的持续运行电压。
(3)估算通过避雷器的雷电放电电流幅值,选择避雷器的标称放电电流。
(4)根据被保护设备的额定雷电冲击耐受电压和操作冲击耐受电压,按照绝缘配合系数的要求,留够绝缘裕度,确定避雷器雷电冲击保护水平和操作冲击保护水平。
2、避雷器额定电压:施加避雷器端子间的最大允许工频电压有效值,按照此电压所设计的避雷器,能在所规定的动作负载试验中确定的暂时过电压下正确地工作。
(1)按IEC 标准规定,避雷器在注入标准规定的能量后,必须能耐受相当于额定电压数值的暂时过电压至少10s。
(2)避雷器额定电压选择。
避雷器额定电压可按(下)式选择U r≥kU t (1)
式中:U r——避雷器额定电压,kV;
k——切除短路故障时间系数,10s 及以内切除故障k=1.0,10s 以上切除故障k=1.3;
U t——暂时过电压,kV。
在选择避雷器额定电压时,仅考虑单相接地、甩负荷和长线电容效应引起的暂时过电压,可按表3选取
即:10kV避雷器额定电压选17kV;35kV避雷器额定电压选54KV。
3、避雷器的标称放电电流的选取
避雷器的标称放电电流分lkA、1.5kA、2.5kA、5kA、10kA和20kA 共6个等级。
确定避雷器的额定电压后,对照《交流电力系统金属氧化物避雷
器使用导则》中避雷器分类表,可查出相应的避雷器标称放电电流等级。
一般保护110kV一220kV设备的避雷器选10kA;保护35kV以下设备的避雷器选5kA;变压器中性点避雷器选1.5kA。
即:油田配电线路选取标称电流为5kA.
在确定避雷器的标称放电电流时,按照《交流无间隙金属氧化物避雷器》GBll032--2000附录K给出的各标称放电电流等级的避雷器每单位额定电压下典型的最大残压范围,用各设备额定雷电冲击电流的耐受电压值除以1.4得到允许的最大残压值,再除以相应电压等级下选定的避雷器的额定电压值得到一个比值(这个比值为允许的最大值),在附录K中,查出相应的额定电压和雷电冲击保护水平栏中对应的最相近的放电电流等级,也可得到选定的避雷器标称放电电流等级。
4、避雷器雷电过电压保护水平的选取
避雷器是否能起到对被保护设备的过电压保护作用,取决于避雷器的保护水平,它是电力系统过电压保护和绝缘配合的一个基本参数。
无间隙金属氧化物避雷器的保护水平完全由它的残压来确定,避雷器的雷电过电压保护水平较操作过电压保护水平高,这里只讨论雷电过电压保护水平的选取。
按照《高压输变电设备的绝缘配合》查出被保护设备的额定雷电冲击耐受电压值,除以相应的雷电过电压配合系数,得到保护该设备的避雷器雷电冲击电流下允许的最大残压值(即避雷器的雷电过电压保护水平),该值在允许范围内,取值越小,保护效果越好。
避雷器与被保护设备之间的雷电过电压配合系数一般应满足:&≥1.4;中性点设备取K≥1.25。
在确定避雷器的额定电压和标称放电电流后,可根据《交流无间隙金属氧化物避雷器》中典型电站和配电用避雷器参数选定.
即:油田配电线路选取标称电流下的残压为50kV.
问题1:避雷器的容量大小和雷电流通过的差异?
避雷器无容量一说,通过雷电流的大小和避雷器的额定电压、标称放电电流、标称电流下的残压有关。
具体选择标准如上文所示。
问题2:避雷器的两相击穿是否会造成两相短路?
当避雷器性能完好和所属电力系统无涌流时,是不会造成线路接地的。
而当避雷器出现故障,例如永久性击穿,就会造成线路接地。
当然,在避雷器泄放涌流时,实质上就是接地,将雷电、涌流能量泄放入地消解,这是允许的。
避雷器的释放雷电流瞬间是以微秒计时,而电网工频率是以毫秒计时,在电网的一个正弦波周期内如雷击发生,避雷器击穿没反应到电网时避雷器已经关断了;因此两相同时击穿(由于三相交流电相电压的波形正半周都不会同时出现,从严格的意义上说并不具有两相同时击穿的条件存在)并不引起短路;当然,避雷器击穿后不能恢复关断时引起电网故障是经常发生的。