2013届高考一轮复习理数浙江-第4讲函数模型及讲义其应用
2013届高考一轮复习(理数,浙江)-第11讲 函数的图象

素材2
(1)已知定义在区间[0,1]上的函数 y=f(x)的图象如图所 示,对于满足 0<x1<x2<1 的任意 x1、x2,给出下列结论: ①f(x2)-f(x1)>x2-x1; ②x2f(x1)>x1f(x2); fx1+fx2 x1+x2 ③ <f( 2 ). 2 其中正确的结论的序号是 ②③ .
在高考中要求学生掌握的三种变换是:⑧ ___________ .
3.常用函数图象变换的规律.
1 平移变换:y f x 的图象向左 或向右 平移a a 0 个单位长度得到函数y f ( x a )的 图象;y f x 的图象向上 或向下 平移k k 0 个单位长度得到函数y f x k .
素材1
作出下列函数图象: (1)y=log2|x-1|;
-2x+3 x≤1 -x2+4x-2 1<x≤3 (2)y= x-3 x>3 2
.
【解析】 (1)作 y=log2|x|的图象, 再将图象向右平移一个单位, 如图①,即得到 y=log2|x-1| 图象.
(2)分段分别画出一次函数(x≤1),二次函数(1<x≤3),指数 函数(x>3)的图象,如图②.
(2)在同一坐标系中作出函数 y=f(x)与 y=mx 的图象,如 图②. 由图象知,当 y=mx 与 f(x)=-x2+4x-3(1<x<3)有两个 公共点时,方程 f(x)=mx 有四个不同的实数根. 由直线 y=mx 与 y=-x2+4x-3(1<x<3)相切, 即 mx=-x2+4x-3,x2+(m-4)x+3=0 有两相等实根, 得 Δ=(m-4)2-4×3=0 及 1<x<3,所以 m=4-2 3, 所以当 0<m<4-2 3时, 函数 y=f(x)与 y=mx 的图象有四 个不同的公共点,即方程 f(x)=mx 有四个不相等的实根, 故集合 M={m|0<m<4-2 3}.
高考数学一轮复习 2.13 函数模型的应用课件 理

函数为增函数得到
x
的不等式
g x <h x 或
n∈Z,求 n 的值; (3)若函数 f(x)=log2(4x+a·2x+a+1)有不动点,求
实数 a 的取值范围.
【解析】(1)由已知可得,问题等价于 f(x)=x 无 实数根,
即 x2+(a-1)x+a=0 无实数根,
∴Δ=(a-1)2-4a<0,3-2 2<a<3+2 2.
(2)令 f(x)=x,∴-ln x+3=x,即 ln x+x-3=0, 令 g(x)=ln x+x-3,g(x)在(0,+∞)上递增, g(2)<0,g(3)>0,x0∈(2,3),n=2.
【解析】(1)令 f(x)=0,从而可知 a=-3x2, ∵x∈(0,2),∴-3x2∈(-12,0),故满足 f(x) 在(0,2)上无零点的实数 a 的取值范围是(-∞,- 12]∪[0,+∞). 若 a=0,|g(x)|=1,在(0,2)上无单调性; 若 a>0,|g(x)|=|2ax+1|=2ax+1,在(0,2)上单 调递增;
∴f(3x+6)>f9-f1x=f9x,由函数 f(x)为增函数 可得 3x+6>9x>0,∴0<x<1,不等式解集为(0,1).
(3)函数 f x 在 x∈(0,3]上是递增函数,因此最大
值为 f3=1,所以不等式 f(x)≤m2-2am+1 恒成立转 化为 1≤m2-2am+1 对所有 a∈[-1,1]恒成立, ∴m2-2am≥0 恒成立,设 ga=-2ma+m2,所以需 满足gg-1≥1≥0,0,
A.f(x)>g(x)>h(x) B.g(x)>f(x)>h(x) C.g(x)>h(x)>f(x) D.f(x)>h(x)>g(x)
2013高考数学(文)北师大版一轮精品课件第四章函数应用(精)

第10讲 │ 要点探究 要点探究
► 探究点1
例1
函数的图像的画法
作出下列函数的图像:
x+2
(1)y=|lgx|;(2)y=2
x+2 ;(3)y= . x- 1
第10讲 │ 要点探究
[解答]
lgxx≥1, (1)y= -lgx0<x<1.
图像如图①.
第10讲 │ 要点探究
(2)将 y=2x 的图象向左平移 2 个单位即可得到 y=2x 2 的图 象,如图②.
[思路] 从已知图形中封闭曲线入手, 研究投影点 Q(x,0)的速 度的变化规律.
第10讲 │ 要点探究
[答案]B
[解析] 由图可知,当质点 P(x,y)在两个封闭曲线上运动 时,投影点 Q(x,0)的速度先由正到 0,到负,到 0,再到正,故 A 错误;投影点 Q(x,0)在终点的速度是由大到小接近 0,故 D 错 误;质点 P(x,y)在开始时沿直线运动,故投影点 Q(x,0)的速度 为常数,因此 C 是错误的,故选 B.
图10-1
第10讲 │ 知识梳理
Ⅱ.函数y=f(|x|)的图像可以看作将函数y=f(x)的图像的y 轴右边部分沿y轴翻折到y轴左边,替代原y轴左边部分, 并保留__________________________ 得到. 原y轴右边部分
图10-2
第10讲 │ 知识梳理
④伸缩变换: Ⅰ.函数 y=af(ห้องสมุดไป่ตู้)(a>0)的图像可以看作将函数 y=f(x)的图像
第10讲 │ 问题思考
►
问题 5
函数 y=f(x+a)与 y=f(b-x)的图像关于直 )
a+b 线 x= 对称.( 2
第10讲 │ 问题思考
2013版高考数学 3.4.2 函数模型及其应用课件 苏教版必修1

1 求利润函数P x 及边际利润函数 MP x ; 2 利润函数P x 与边际利润函数MP x 是否具有相同的最大
值?
分析:本题为信息题目,应理解题意将本题转化为二次
函数求最值问题,二次函数问题为考试中的热点。
解 由题意知,x 1,100 ,且 x N .
2、某租赁公司拥有汽车100辆,当每辆车的月租金为 3000元时,可全部租出; 当每辆车的月租金每增加50元时, 未租出的车将会增加一辆.租出的车每辆每月需要维护费 150元,未租出的车每辆每月需要维护费 50 元.
(1)当每月每辆车的租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时, 租赁公司的月收益
建立相应的数学模型; ③解模:求解数学模型,得出数学结论;
④还原:将用数学知识和方法得出的结论,还原为实际 问题的意义.
拿一张纸,对折7次就有1厘米厚,如果把这张纸对 折27次(假设可以做到)之后的高度,是否比珠穆朗玛 峰(8848米)高呢?(220 =1048756) 解:设纸张的厚度为k米,则k×27=0.01m
一辆汽车在某段路程中的行驶速率与时间的关系如图所示. (1)求图中阴影部分的面积,并说明所求面积的实际含义; (2)假设这辆汽车的里程表在汽车行驶这 段路程前的读数为2004km,试建立行驶这 段路程时汽车里程表读数s km与时间t h 的函数解析式,并作出相应的图象.
90 80 70
v/(km· h-1)
f (x) a (x 1)
a 2a , g (x) (x 2) 2 3
∴x≥1. g(x)≥f(x),
因此,当家庭只有1个孩子时,两家随便选择,当孩
而x>0,且520-40x>0,即0 x 13
浙江专用高考数学一轮复习第三章函数导数及其应用第四节函数的图象教案含解析

浙江专用高考数学一轮复习第三章函数导数及其应用第四节函数的图象教案含解析第四节 函数的图象1.描点法作图其基本步骤是列表、描点、连线,具体为:(1)①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点). (3)描点,连线. 2.图象变换 (1)平移变换①y =f (x )的图象――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象.(2)对称变换①y =f (x )的图象――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――→关于原点对称 y =-f (-x )的图象; ④y =a x(a >0且a ≠1)的图象――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象.(3)伸缩变换 ①y =f (x )的图象 错误!y =f (ax )的图象; ②y =f (x )的图象――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x )的图象.(4)翻折变换①y =f (x )的图象――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.[小题体验]1.(2018·湖州模拟)函数y =⎝ ⎛⎭⎪⎫12x+1的图象关于直线y =x 对称的图象大致是( )解析:选A 函数y =⎝ ⎛⎭⎪⎫12x +1的图象如图所示,关于y =x 对称的图象大致为A 选项对应图象.2.已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数为( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)答案:C1.函数图象的每次变换都针对自变量“x ”而言,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,其中是把x 变成x -12.2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.如函数y =f (|x |)的图象属于自身对称,而y =f (x )与y =f (-x )的图象关于y 轴对称是两个函数.[小题纠偏]1.判断正误(在括号内打“√”或“×”).(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( ) (2)函数y =f (x )与y =-f (x )的图象关于原点对称.( )(3)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( )答案:(1)× (2)× (3)√2.将函数y =f (-x )的图象向右平移1个单位得到函数________的图象. 答案:y =f (-x +1)3.把函数y =f (2x )的图象向右平移________个单位得到函数y =f (2x -3)的图象. 答案:32考点一 作函数的图象基础送分型考点——自主练透[题组练透]分别画出下列函数的图象: (1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1.解:(1)y =⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图1.(2)将y =2x的图象向左平移2个单位.图象如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.图象如图3.[谨记通法]画图的3种常用方法考点二 识图与辨图重点保分型考点——师生共研[典例引领]1.若对任意的x ∈R ,y =1-a |x |均有意义,则函数y =log a ⎪⎪⎪⎪⎪⎪1x的大致图象是( )解析:选B 由题意得1-a |x |≥0,即a |x |≤1=a 0恒成立,由于|x |≥0,故0<a <1.y=log a ⎪⎪⎪⎪⎪⎪1x =-log a |x |是偶函数,且在(0,+∞)上是单调递增函数,故选B.2.如图,矩形ABCD 的周长为8,设AB =x (1≤x ≤3),线段MN 的两端点在矩形的边上滑动,且MN =1,当N 沿A →D →C →B →A 在矩形的边上滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 围成的区域的面积为y ,则函数y =f (x )的图象大致为( )解析:选D 法一:由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x , 则AD =8-2x2=4-x所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3),显然该函数的图象是二次函数图象的一部分, 且当x =2时,y =4-π4∈(3,4),故选D.法二:在判断出点P 的轨迹后,发现当x =1时,y =3-π4∈(2,3),故选D.[由题悟法]识图3种常用的方法[即时应用]1.(2018·浙江名校联考信息卷三)函数f (x )=⎝ ⎛⎭⎪⎫1-21+e x sin x (其中e 为自然对数的底数)在[-2π,2π]上图象的大致形状是( )解析:选A 因为f (x )=⎝ ⎛⎭⎪⎫1-21+e x sin x =e x-1e x +1sin x ,f (-x )=e -x-1e -x +1sin(-x )=1-e x1+e x(-sin x )=e x-1e x +1sin x =f (x ),所以函数f (x )为偶函数,其图象关于y 轴对称,排除选项C 、D ,由f ⎝ ⎛⎭⎪⎫π2>0,可排除选项B.故选A. 2.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A 、C.当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4=1+5,f ⎝ ⎛⎭⎪⎫π2=2 2.∵22<1+5,∴f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4,从而排除D ,故选B.考点三 函数图象的应用题点多变型考点——多角探明[锁定考向]函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.常见的命题角度有: (1)研究函数的性质; (2)求参数的值或取值范围; (3)求不等式的解集.[题点全练]角度一:研究函数的性质1.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)解析:选C 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.角度二:求参数的值或取值范围2.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( )A .(1,2] B.⎝ ⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)解析:选A 要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围为(1,2].角度三:求不等式的解集3.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析:选C 令g (x )=y =log 2(x +1), 作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +1,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.[通法在握]函数图象应用的常见题型与求解策略 (1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值. ②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性. ④从图象与x 轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(范围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[演练冲关]1.(2018·杭州模拟)已知函数f (x )=|ln x |,若实数a ,b 满足f (a )=f (b )(a ≠b ),则ab 的值为( )A .2B .e C.1eD .1解析:选D 作出函数f (x )的图象如图,若f (a )=f (b )(a ≠b ), 设a <b ,则0<a <1,b >1,即|ln a |=|ln b |,则-ln a =ln b ,则ln a +ln b =ln ab =0,即ab =1,故选D.2.(2018·广州五校联考)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (3-a 2)<f (2a ),则实数a的取值范围是________.解析:如图,画出f(x)的图象,由图象易得f(x)在R上单调递减,∵f(3-a2)<f(2a),∴3-a2>2a,解得-3<a<1.答案:(-3,1)一抓基础,多练小题做到眼疾手快1.(2018·金华期末)若函数y=f(x)定义域为实数集R,则函数y=f(1-x)与y=f(x -1)的图象关于( )A.直线y=0对称B.直线x=0对称C.直线y=1对称 D.直线x=1对称解析:选D 假设f(x)=x2,则f(x-1)=(x-1)2,f(1-x)=(1-x)2=(x-1)2,它们是同一个函数,此函数图象关于直线x=1对称.2.函数f(x)=x e-|x|的图象可能是( )解析:选C 因为函数f(x)的定义域为R,f(-x)=-f(x),所以函数f(x)为奇函数,排除A、B;当x∈(0,+∞)时,f(x)=x e-x,因为e-x>0,所以f(x)>0,即f(x)在x∈(0,+∞)时,其图象恒在x轴上方,排除D,故选C.3.(2019·台州三校适考)函数f(x)=x33x-1的大致图象是( )解析:选C 由函数f(x)的解析式可知,f(x)的定义域为{x|x≠0},排除选项A;当x <0时,x3<0,3x-1<0,所以f(x)>0,排除选项B;当x→+∞时,f(x)→0,排除选项D.故选C.4.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.解析:当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8]. 答案:(2,8]5.(2018·金华名校模拟)已知函数f (x )=1ax 2+bx +c的部分图象如图所示,则a +b +c =________.解析:由图象知2,4是y =ax 2+bx +c 的两根,又由二次函数y =ax 2+bx +c 的对称性和图象知顶点为(3,1),故⎩⎪⎨⎪⎧4a +2b +c =0,16a +4b +c =0,9a +3b +c =1.解得⎩⎪⎨⎪⎧a =-1,b =6,c =-8.则a +b +c =-3.答案:-3二保高考,全练题型做到高考达标1.(2019·绍兴模拟)已知f (x )=x 2cos x ,则f (x )的部分图象大致是( )解析:选B 因为函数f (x )=x 2cos x ,所以f (-x )=f (x ),所以f (x )为偶函数,函数图象关于y 轴对称,排除A 、C ,当x ∈⎝⎛⎭⎪⎫0,π2时,f (x )>0,排除D ,故选B.2.下列函数f (x )图象中,满足f ⎝ ⎛⎭⎪⎫14>f (3)>f (2)的只可能是( )解析:选D 因为f ⎝ ⎛⎭⎪⎫14>f (3)>f (2),所以函数f (x )有增有减,排除A ,B.在C 中,f ⎝ ⎛⎭⎪⎫14<f (0)=1,f (3)>f (0),即f ⎝ ⎛⎭⎪⎫14<f (3),排除C ,选D. 3.(2018·宁波模拟)在同一个坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0且a ≠1,则下列所给图象中可能正确的是( )解析:选D 当a >1时,y =sin ax 的周期小于2π,排除A 、C ,当0<a <1时,y =sin ax 的周期大于2π,故选D.4.(2017·台州期中)函数y =xx 2+a的大致图象如图所示,则( )A .a ∈(-1,0)B .a ∈(0,1)C .a ∈(-∞,1)D .a ∈(1,+∞)解析:选B 当x =0时,y =0,故a ≠0, 当x >0 时,y =xx 2+a>0恒成立,即a >-x 2恒成立,所以a >0,所以y =xx 2+a=1x +ax≤12a ,当且仅当x =a 时取等号,由图知,当x >0时,函数取得最大值时相应的x 的值小于1,所以0<a <1,所以0<a <1.5.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0,若方程f (x )=x +a有两个不同实根,则a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(0,1)D .(-∞,+∞)解析:选A x ≤0时,f (x )=2-x-1, 0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.故x >0时,f (x )是周期函数,如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).6.(2018·稽阳联考)函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c=________.解析:由图象可求得直线的方程为y =2x +2,又函数y =log c ⎝ ⎛⎭⎪⎫x +19的图象过点(0,2),将其坐标代入可得c =13,所以a +b +c =2+2+13=133.答案:1337.(2018·金华名校联考)已知函数f (x )=⎩⎪⎨⎪⎧|log 21-x |,x <1,-x -32+5,x ≥1,若直线y =m 与函数y =f (x )的图象交于四点,且四点的横坐标从左至右分别是x 1,x 2,x 3,x 4,则z =(x 1-1)(x 2-1)(x 3-1)(x 4-1)的取值范围是________.解析:作出直线y =m 和函数f (x )的图象如图所示,由题意知x 1<1,x 2<1,且|log 2(1-x 1)|=|log 2(1-x 2)|,即log 2(1-x 1)=-log 2(1-x 2),得0=log 2(1-x 1)+log 2(1-x 2)=log 2(1-x 1)(1-x 2),∴(x 1-1)(x 2-1)=1.易知x 3,x 4>1,结合f (x )=-(x -3)2+5(1≤x ≤5)的图象关于直线x =3对称,得x 3+x 42=3,x 3∈[1,3),则(x 3-1)(x 4-1)=(x 3-1)(6-x 3-1)=-x 23+6x 3-5=-(x 3-3)2+4∈[0,4),故z =(x 1-1)(x 2-1)(x 3-1)(x 4-1)∈[0,4). 答案:[0,4)8.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析:如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)9.已知函数f (x )=|x |(x -a ),a >0. (1)作出函数f (x )的图象; (2)写出函数f (x )的单调区间;(3)当x ∈[0,1]时,由图象写出f (x )的最小值.解:(1)f (x )=⎩⎪⎨⎪⎧x x -a ,x ≥0,-x x -a ,x <0,其图象如图所示.(2)由图知,f (x )的单调递增区间是(-∞,0),⎝ ⎛⎭⎪⎫a2,+∞,单调递减区间是⎝ ⎛⎭⎪⎫0,a 2.(3)由图象知,当a2>1,即a >2时,f (x )min =f (1)=1-a ;当0<a2≤1,即0<a ≤2时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a 24.综上,f (x )min =⎩⎪⎨⎪⎧-a 24,0<a ≤2,1-a ,a >2.10.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,求a 的取值范围.解:不等式4a x -1<3x -4等价于ax -1<34x -1. 令f (x )=ax -1,g (x )=34x -1,当a >1时,在同一直角坐标系中作出两个函数的图象如图(1)所示,由图知不满足条件; 当0<a <1时,在同一直角坐标系中作出两个函数的图象如图(2)所示,当x ≥2时,f (2)≤g (2),即a2-1≤34×2-1,解得a ≤12,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,12.三上台阶,自主选做志在冲刺名校1.(2018·杭州二中联考)如图,P 是正方体ABCD A 1B 1C 1D 1对角线AC 1上一动点,设AP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 设正方体的棱长为1,连接AC 交BD 于O ,连接PO ,则PO 是等腰△PBD 的高,故△PBD 的面积为f (x )=12BD ×PO .在三角形PAO 中,PO =PA 2+AO 2-2PA ×AO cos ∠PAO=x 2+12-2x ×22×63, ∴f (x )=12×2×x 2+12-2x ×22×63=22x 2-23x +12,画出其图象,可知A 正确.2.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围. 解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x+2,∴y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+a x =x +a +1x, g ′(x )=1-a +1x2.∵g (x )在(0,2]上为减函数, ∴1-a +1x 2≤0在(0,2]上恒成立, 即a +1≥x 2在(0,2]上恒成立, ∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).命题点一 函数的概念及其表示1.(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|解析:选D 取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x =0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误; 取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )= x +1,则对任意x ∈R 都有f (x 2+2x )= x 2+2x +1=|x +1|,故选项D 正确.综上可知,本题选D.2.(2013·浙江高考)已知函数f (x )=x -1,若f (a )=3,则实数a =________. 解析:由f (a )=a -1=3,得a =10. 答案:103.(2016·浙江高考)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =_________,b =________.解析:∵f (x )=x 3+3x 2+1, ∴f (a )=a 3+3a 2+1,∴f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2. 由此可得⎩⎪⎨⎪⎧2a +b =-3, ①a 2+2ab =0, ②a 3+3a 2=a 2b . ③∵a ≠0,∴由②得a =-2b ,代入①式得b =1,a =-2. 答案:-2 14.(2014·浙江高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.解析:f (x )的图象如图,由图象知. 满足f (f (a ))≤2时,得f (a )≥-2, 而满足f (a )≥-2时,a ≤ 2.答案:(-∞, 2 ] 命题点二 函数的基本性质1.(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50解析:选C ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).由f (1-x )=f (1+x ),得-f (x -1)=f (x +1), ∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数得f (0)=0. 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50) =f (1)+f (2)=2+0=2.2.(2015·全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ 解析:选A ∵f (-x )=ln(1+|-x |)-11+-x 2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x2-4x +1<0⇔13<x <1.故选A.3.(2014·浙江高考)设函数f 1(x )=x 2,f 2(x )=2(x -x 2),f 3(x )=13|sin 2πx |,a i =i 99,i =0,1,2,…,99.记I k =|f k (a 1)-f k (a 0)|+|f k (a 2)-f k (a 1)|+…+|f k (a 99)-f k (a 98)|,k =1,2,3.则( )A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 1解析:选B 显然f 1(x )=x 2在[0,1]上单调递增,可得f 1(a 1)-f 1(a 0)>0,f 1(a 2)-f 1(a 1)>0,…,f 1(a 99)-f 1(a 98)>0,所以I 1=|f 1(a 1)-f 1(a 0)|+|f 1(a 2)-f 1(a 1)|+…+|f 1(a 99)-f 1(a 98)|=f 1(a 1)-f 1(a 0)+f 1(a 2)-f 1(a 1)+…+f 1(a 99)-f 1(a 98)=f 1(a 99)-f 1(a 0)=⎝ ⎛⎭⎪⎫99992-0=1.f 2(x )=2(x -x 2)在⎣⎢⎡⎦⎥⎤0,4999上单调递增,在⎣⎢⎡⎦⎥⎤5099,1上单调递减,可得f 2(a 1)-f 2(a 0)>0,…,f 2(a 49)-f 2(a 48)>0,f 2(a 50)-f 2(a 49)=0,f 2(a 51)-f 2(a 50)<0,…,f 2(a 99)-f 2(a 98)<0,所以I 2=|f 2(a 1)-f 2(a 0)|+|f 2(a 2)-f 2(a 1)|+…+|f 2(a 99)-f 2(a 98)|=f 2(a 1)-f 2(a 0)+…+f 2(a 49)-f 2(a 48)-[f 2(a 51)-f 2(a 50)+…+f 2(a 99)-f 2(a 98)]=f 2(a 49)-f 2(a 0)-[f 2(a 99)-f 2(a 50)]=2f 2(a 50)-f 2(a 0)-f 2(a 99)=4×5099×⎝ ⎛⎭⎪⎫1-5099=9 8009 801<1.f 3(x )=13|sin 2πx |在⎣⎢⎡⎦⎥⎤0,2499,⎣⎢⎡⎦⎥⎤5099,7499上单调递增,在⎣⎢⎡⎦⎥⎤2599,4999,⎣⎢⎡⎦⎥⎤7599,1上单调递减,可得f 3(a 1)-f 3(a 0)>0,…,f 3(a 24)-f 3(a 23)>0, f 3(a 25)-f 3(a 24)>0,f 3(a 26)-f 3(a 25)<0,…,f 3(a 49)-f 3(a 48)<0,f 3(a 50)-f 3(a 49)=0,f 3(a 51)-f 3(a 50)>0,…,f 3(a 74)-f 3(a 73)>0,f 3(a 75)-f 3(a 74)<0,f 3(a 76)-f 3(a 75)<0,…,f 3(a 99)-f 3(a 98)<0,所以I 3=|f 3(a 1)-f 3(a 0)|+|f 3(a 2)-f 3(a 1)|+…+|f 3(a 99)-f 3(a 98)|=f 3(a 25)-f 3(a 0)-[f 3(a 49)-f 3(a 25)]+f 3(a 74)-f 3(a 50)-[f 3(a 99)-f 3(a 74)]=2f 3(a 25)-2f 3(a 49)+2f 3(a 74)=23⎝ ⎛⎭⎪⎫2sin 49π99-sin π99>23⎝ ⎛⎭⎪⎫2sin 5π12-sin π12=23⎝ ⎛⎭⎪⎫26+224-6-24=6+326>1.因此I 2<I 1<I 3. 4.(2018·北京高考)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.解析:设f (x )=sin x ,则f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin 0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.答案:f (x )=sin x (答案不唯一)5.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:设x >0,则-x <0,f (-x )=e x -1+x .∵f (x )为偶函数,∴f (-x )=f (x ), ∴f (x )=ex -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0. 答案:2x -y =06.(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.解析:由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4,所以f (15)=f (-1)=⎪⎪⎪⎪⎪⎪-1+12=12,所以f (f (15))=f ⎝ ⎛⎭⎪⎫12=cos π4=22. 答案:22命题点三 函数的图象1.(2018·浙江高考)函数y =2|x |sin 2x 的图象可能是( )解析:选D 由y =2|x |sin 2x 知函数的定义域为R , 令f (x )=2|x |sin 2x , 则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数. ∴f (x )的图象关于原点对称,故排除A 、B. 令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z),∴当k =1时,x =π2,故排除C ,选D.2.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a(x ≥0),g (x )=log a x 的图象可能是( )解析:选D 当a >1时,函数f (x )=x a(x >0)单调递增,函数g (x )=log a x 单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当0<a <1时,函数f (x )=x a(x >0)单调递增,函数g (x )=log a x 单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知B 错,因此选D.3.(2015·浙江高考)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )解析:选D 函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D.4.(2018·全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:选D 法一:令f (x )=-x 4+x 2+2, 则f ′(x )=-4x 3+2x , 令f ′(x )=0,得x =0或x =±22, 则f ′(x )>0的解集为⎝⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,f (x )单调递增;f ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,f (x )单调递减,结合图象知选D. 法二:当x =1时,y =2,所以排除A 、B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.故选D.5.(2018·全国卷Ⅱ)函数f(x)=e x-e-xx2的图象大致为( )解析:选B ∵y=e x-e-x是奇函数,y=x2是偶函数,∴f(x)=e x-e-xx2是奇函数,图象关于原点对称,排除A选项.当x=1时,f(1)=e-1e>0,排除D选项.又e>2,∴1e<12,∴e-1e>1,排除C选项.故选B.6.(2016·全国卷Ⅱ)已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则∑i=1mx i=( ) A.0 B.mC.2m D.4m解析:选B ∵f(x)=f(2-x),∴函数f(x)的图象关于直线x=1对称.又y=|x2-2x-3|=|(x-1)2-4|的图象关于直线x=1对称,∴两函数图象的交点关于直线x=1对称.当m为偶数时,∑i=1mx i=2×m2=m;当m为奇数时,∑i=1mx i=2×m-12+1=m.故选B.1。
(浙江专用)高考数学一轮复习 1-2-9函数模型及其应用课件 文

• 规律方法 在建立二次函数模型解决实际 问题中的最优问题时,一定要注意自变量 的取值范围,需根据函数图象的对称轴与 函数定义域在坐标系中对应区间之间的位 置关系讨论求解.
• 【训练1】 (2014·舟山高三检测)某汽车销 售公司在A,B两地销售同一种品牌的汽车, 在 A 地的销售利润 ( 单位:万元 ) 为 y1 = 4.1x -0.1x2,在B地的销售利润(单位:万元)为 y2 = 2x ,其中 x 为销售量 ( 单位:辆 ) ,若该 公司在两地共销售 16辆该种品牌的汽车, 则能获得的最大利润是 • ( ) • A.10.5万元 B.11万元 • C.43万元 D.43.025万元
4.某种病毒经 30 分钟繁殖为原来的 2 倍,且知病毒的繁殖规律 为 y=ekt(其中 k 为常数,t 表示时间,单位:小时,y 表示 病毒个数),则 k=________,经过 5 小时,1 个病毒能繁殖 为________个. 解析 当 t=0.5 时,y=2,∴2= ∴k=2ln 2,∴y=e2tln 2,当 t=5 时,y=e10ln 2=210=1 024. 答案 2ln 2 1 024
指数函数型
对数函数型 幂函数型
• (2)指数、对数、幂函数模型性质比较
函数
性质 在(0,+ ∞)
y=ax
(a>1)
递增
y=logax
(a>1)
递增
y=xn
(n>0)
上的增减
性
单调
y轴
单调
x轴
单调递增
增长速度 越来越快 随x的增
越来越慢
相对平稳
• •
•
• •
• 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1) 函数 y = 2x 的函数值比 y = x2 的函数值 大. × • ( ) (2)“指数爆炸”是指数型函数 y = abx + c(a≠0 , b > 0 , b≠1) 增长速度越来越快的形 × 象比喻. • ( ×) (3)幂函数增长比直线增长更快. • ( ) (4)f(x) = x2 , g(x) = 2x , h(x) = log x ,当
高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数

-23-
(2)由题意,得 sin x≥√23,作直线 y=√23交单位圆于 A,B 两点,连 接 OA,OB,则 OA 与 OB 围成的区域(图中阴影部分)即为角 x 的终
Байду номын сангаас
边的范围,故满足条件的角 x 的集合为
������
2������π
+
π 3
≤
������
≤ 2������π +
2π 3
,������∈Z
考点1
考点2
考点3
-18-
(3)方法一(角的集合表示):
∵2kπ+π<α<2kπ+32π(k∈Z),
∴kπ+π2
<
������ 2
<kπ+34π
(k∈Z).
当
k=2n(n∈Z)时,2nπ+π2
<
������ 2
<2nπ+34π
,
������ 2
是第二象限角;
当 k=2n+1(n∈Z)时,2nπ+3π < ������<2nπ+7π , ������是第四象限角.
-12-
知识梳理 双基自测
12345
5.(教材例题改编P13例3)若角θ同时满足sin θ<0,且tan θ<0,则角θ
的终边一定落在第
象限.
关闭
由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半 轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边
.
思考角的终边在一条直线上与在一条射线上有什么不同?已知角
2013届高考数学一轮复习教案2.10函数模型及其应用

§2.10函数模型及其应用1.几类函数模型及其增长差异(1)几类函数模型(2)①指数函数y=a x (a>1)与幂函数y=x n (n>0)在区间(0,+∞),无论n比a大多少,尽管在x的一定范围内a x会小于x n,但由于y =a x的增长速度快于y=x n的增长速度,因而总存在一个x0,当x>x0时有__________.②对数函数y=log a x (a>1)与幂函数y=x n (n>0)对数函数y=log a x(a>1)的增长速度,不论a与n值的大小如何总会慢于y=x n的增长速度,因而在定义域内总存在一个实数x0,使x>x0时有____________.由①②可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在(0,+∞)上,总会存在一个x0,使x>x0时有__________________.2.解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:[难点正本疑点清源]解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.1.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午3时的温度为________.2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.3.某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是______________.4.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站()A.5千米处B.4千米处C.3千米处D.2千米处5.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是()A.x>22%B.x<22%C.x=22%D.x的大小由第一年的产量确定题型一一次函数、二次函数模型例1某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A、B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?探究提高(1)在实际问题中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升(自变量的系数大于0)或直线下降(自变量的系数小于0),构建一次函数模型,利用一次函数的图象与单调性求解.(2)有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数图象与单调性解决.(3)在解决二次函数的应用问题时,一定要注意定义域.用一根长为12 m的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的高与宽应各为多少?题型二分段函数模型例2为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=⎩⎨⎧13x 3-80x 2+5 040x ,x ∈[120,144),12x 2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?探究提高 本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x,3x (吨). (1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 题型三 指数函数、幂函数模型例3 某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下问题: (1)写出该城市人口总数y (万人)与年份x (年)的函数关系式; (2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后,该城市人口将达到120万人(精确到1年);(4)如果20年后该城市人口总数不超过120万人,年自然增长率应该控制在多少? (参考数据:1.0129≈1.113,1.01210≈1.127,lg 1.2≈0.079,lg 2≈0.301 0,lg 1.012≈0.005,lg 1.009≈0.003 9)探究提高 此类增长率问题,在实际问题中常可以用指数函数模型y =N (1+p )x (其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a (1+x )n (其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律是:θ=m ·2t +21-t (t ≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围.3.函数建模及函数应用问题试题:(12分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的 优惠价格转让给了尚有5万元无息贷款没有偿还的小型企 业乙,并约定从该店经营的利润中,首先保证企业乙的全 体职工每月最低生活费的开支3 600元后,逐步偿还转让 费(不计息).在甲提供的资料中有:①这种消费品的进价为 每件14元;②该店月销量Q (百件)与销售价格P (元)的关 系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?审题视角 (1)认真阅读题干内容,理清数量关系.(2)分析图形提供的信息,从图形可看出函数是分段的.(3)建立函数模型,确定解决模型的方法. 规范解答解 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,①由销量图易得Q =⎩⎪⎨⎪⎧-2P +50 (14≤P ≤20),-32P +40 (20<P ≤26),[2分]代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600 (14≤P ≤20),⎝⎛⎭⎫-32P +40(P -14)×100-5 600 (20<P ≤26), [4分](1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元.[8分](2)设可在n 年内脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫.[12分]解函数应用题的一般程序是:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义.第五步:反思回顾——对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.批阅笔记(1)本题经过了三次建模:①根据月销量图建立Q与P的函数关系;②建立利润余额函数;③建立脱贫不等式.(2)本题的函数模型是分段的一次函数和二次函数,在实际问题中,由于在不同的背景下解决的问题发生了变化,因此在不同范围中,建立函数模型也不一样,所以现实生活中分段函数的应用非常广泛.(3)在构造分段函数时,分段不合理、不准确,是易出现的错误.方法与技巧解答数学应用题关键有两点:一是认真审题,读懂题意,理解问题的实际背景,将实际问题转化为数学问题;二是灵活运用数学知识和方法解答问题,得到数学问题中的解,再把结论转译成实际问题的答案.失误与防范1.函数模型应用不当,是常见的解题错误.所以,正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学解对实际问题的合理性.答案要点梳理1.(2)①a x >x n ②log a x <x n a x >x n >log a x 基础自测 1.78℃2.2 5003.y =a (1+r )x ,x ∈N *4.A5.B 题型分类·深度剖析例1 解 (1)设甲、乙两种产品分别投资x 万元(x ≥0),所获利润分别为f (x )、g (x )万元,由题意可设f (x )=k 1x ,g (x )=k 2x , ∴根据图象可解得f (x )=0.25x (x ≥0), g (x )=2x (x ≥0).(2)①由(1)得f (9)=2.25,g (9)=29=6, ∴总利润y =8.25(万元).②设B 产品投入x 万元,A 产品投入(18-x )万元,该企业可获总利润为y 万元, 则y =14(18-x )+2x ,0≤x ≤18.令x =t ,t ∈[0,32],则y =14(-t 2+8t +18)=-14(t -4)2+344.∴当t =4时,y max =344=8.5,此时x =16,18-x =2. ∴当A 、B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.变式训练1 解 设框架的宽度为x m ,则其高度为 h =(6-2x ) m,0<x <3.设框架的面积为y m 2,则y =xh = x (6-2x )=-2x 2+6x =-2(x -1.5)2+4.5,当x =1.5时, y 取最大值4.5,此时h =3.故当框架的高度为3 m ,宽度 为1.5 m 时,框架的面积最大,从而窗户通过的阳光最充足. 例2 解 (1)当x ∈[200,300]时,设该项目获利为S , 则S =200x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损. (2)由题意,可知二氧化碳的每吨处理成本为:y x =⎩⎨⎧13x 2-80x +5 040,x ∈[120,144).12x +80 000x-200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240,所以当x =120时,yx 取得最小值240.②当x ∈[144,500]时, y x =12x +80 000x-200≥212x ×80 000x-200=200, 当且仅当12x =80 000x ,即x =400时,yx取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低. 变式训练2 解 (1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x ≤4,且5x >4时,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8. 当乙的用水量超过4吨,即3x >4时,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧14.4x , 0≤x ≤45,20.4x -4.8, 45<x ≤43,24x -9.6, x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎡⎦⎤0,45时,y ≤f ⎝⎛⎭⎫45<26.4; 当x ∈⎝⎛⎦⎤45,43时,y ≤f ⎝⎛⎭⎫43<26.4; 当x ∈⎝⎛⎭⎫43,+∞时,令24x -9.6=26.4,解得x =1.5. 所以甲户用水量为5x =5×1.5=7.5吨, 付费S 1=4×1.8+3.5×3=17.70(元); 乙户用水量为3x =4.5吨,付费S 2=4×1.8+0.5×3=8.70(元). 例3 解 (1)1年后该城市人口总数为 y =100+100×1.2%=100×(1+1.2%),2年后该城市人口总数为y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2. 3年后该城市人口总数为y =100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3. x 年后该城市人口总数为y =100×(1+1.2%)x .(2)10年后,人口总数为100×(1+1.2%)10≈112.7(万人). (3)设x 年后该城市人口将达到120万人, 即100×(1+1.2%)x =120,x =log 1.012120100=log 1.0121.20≈16(年).(4)由100×(1+x %)20≤120,得(1+x %)20≤1.2, 两边取对数得20lg(1+x %)≤lg 1.2≈0.079, 所以lg(1+x %)≤0.07920=0.003 95,所以1+x %≤1.009,得x ≤0.9, 即年自然增长率应该控制在0.9%.变式训练3 解 (1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度, 即θ≥2恒成立,亦m ·2t +22t ≥2恒成立,亦即m ≥2⎝⎛⎭⎫12t -122t 恒成立.令12t =x ,则0<x ≤1,∴m ≥2(x -x 2), 由于x -x 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞.高;考|试*题;库。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这种函数模型应用十分广泛,因其图象是一个 “勾 号 ”, 故 我 们 把 它 称 之 为 “勾 ”函 数 模 型 ; ⑧分段函数模型:这个模型实则是以上两种或 多种模型的综合,因此应用也十分广泛.
1.把长为 12 cm 的细铁丝截成两段,各自围成一个正三
B.a(1+x)7 元
C.a(1+x6)
D.[a+(1+x)6]元
4.某商店已按每件 80 元的成本购进某商品 1000 件,
根据市场预测,销售价为每件 100 元时可全部售完,定价每
提高 1 元时,销售量就减少 5 件,若要获得最大利润,销售
价应定为每件( )
A.100 元
B.110 元
C.150 元
(2)若要求 y>10,即v2+39v2+0v1600>10, 又 v2+3v+1600>0 恒成立, 化简整理得 v2-89v+1600<0, 即(v-64)(v-25)<0,所以 25<v<64. 答:(1)当汽车的平均速度为 40 千米∕小时时,车流量最 大,最大车流量约为 11.1 百辆∕小时. (2)当汽车平均速度在 25 千米∕小时至 64 千米∕小时之间 时,车流量超过 10 百辆/小时.
规律,其中最接近的一个是( )
A.y=2x-2
B.y=12(x2-1)
C.y=log2x
D.y=(12)x
【解析】将各组数据代入验证,选 B.
3.2006 年 6 月 30 日到银行存入 a 元,若年利率为 x,且按
复利计算,到 2012 年 6 月 30 日可取回本息共计( A )
A.a(1+x)6 元
(k、a、b为常数,k 0,a 0且a 1);
⑤ 对 数 型 函 数 模 型 : f x m log a x n
( m、 n、 a为 常 数 , m 0, a 0且 a 1);
⑥ 幂 函 数 型 模 型 : f x axn b
( a、 b、 n为 常 数 , a 0, n 0 );
(2)若要求在该时段内车流量超过 10 百辆∕小时,则汽 车的平均速度应在什么范围内?
【分析】(1)已知车流量与平均速度之间的函数关系式,只 需解决函数取最值的条件及所取最大值,由数学问题的解 答,得实际结论;(2)由 y>10 解不等式,得实际结论.
【解析】(1)依题意得 y=v+196v2000+3(v>0), 又 t=v+16v00≥2 v·16v00=80, 当且仅当 v=16v00,即 v=40 时,t 取最小值 80, 所以 y 有最大值,为 ymax=98230≈11.1(百辆∕小时).
精品jing
2013届高考一轮复习理数浙江-第4讲函数模型及其应用
了解指数函数、对数函数、幂函数、 分段函数等函数模型的意义,并能 建立简单的数学模型,利用这些知 识解决应用问题.
函数是描述客观世界变化规律的基本数学模型, 不同的变化规律需要用不同的函数模型来描述. 那么,面临一个实际问题,应当如何选择恰当 的函数模型来刻画它呢?事实上,要顺利地建 立函数模型,首先要深刻理解基本函数的图象 和性质,熟练掌握基本函数和常用函数的特点, 并对一些重要的函数模型必须要有清晰的认识. 一 般 而 言 , 有 以 下8种 函 数 模 型 :
【点评】已知函数模型的实际问题,关键是根据函数特点与实 际要求,解决相关数学问题,确定实际结论.
【例 2】 某商场销售某种商品的经验表明,该商品每日 的销售量 y(单位:千克)与销售价格 x(单位:元/千克)满足关系 式 y=x-a 3+10(x-6)2,其中 3<x<6,a 为常数.已知销售价格 5 元/千克时,每日可售出该商品 11 千克.
一 已知函数模型解决实际应用问题
【例 1】经过长期观测得到:在交通繁忙的时段内,某 公路段汽车的流量 y(百辆∕小时)与汽车的平均速度 v(千米 ∕小时)之间的函数关系为:y=v2+39v2+0v1600(v>0).
(1)在该时段内,当汽车的平均速度 v 为多少时,车流量 最大?最大车流量是多少?(精确到 0.1 百辆∕小时)
D.190 元
【解析】设定价 x 元,销售量为 1000-5(x-100)=1500 -5x 件,其中 x≥100,利润为 y,则
y=(x-80)(1500-5x) =-5x2+1900x-120000 =-5(x2-380x)-120000 =-5(x-190)2+60500. 所以当 x=190 时,y 取最大值,故选 D.
角形,那么这两个正三角形面积之和的最小值为( )
A. 3 cm2
B.2 3 cm2
C.3 3 cm2
D.4 3 cm2
【解析】设长为 12 cm 的细铁丝截成 x cm 和 (12-x) cm 的两截,两正三角形面积之和为 S, 其中 0<x<12,则
S= 43·(3x)2+ 43·(123-x)2
= 83(x2-12x+72)
= 183[(x-6)2+36]. 所以,当 x=6 时,S 取最小值,Smin=2 3, 故面积之和的最小值为 2 3 cm2,选 B.
2.在某种新型材料的研制中,实验人员获得了如下一
组数据:
x 1.99 3 4 5.1 6.12 y 1.5 4.04 7.5 12 18.01 现准备用下列四个函数中的一个近似地表示这些数据的
①一次函数模型:f x kx b(k、b为常数,k 0); ②反比例函数模型:f x k b(k、b为常数,k 0);
x
③二次函数模型:f x ax2 bx c
(a、b、c为常数,a 0),二次函数模型是高中阶段应用 最为广泛的模型,在高考的应用题考查中最为常见的;
④指数型函数模型:f x kax b
5.某工厂生产某种产品固定成本为 2000 万元,并且每 年生产单位产品成本增加 10 万元,又知总收入 k 是单位产 品数 Q 的函数,k(Q)=40Q-210Q2,则总利润 L(Q)的最大 值是 2500 万元,此时单位产品数 Q 为 300 .
【解析】L(Q)=k(Q)-10Q-2000 =-210Q2+30Q-2000 =-210(Q-300)2+2500. 所以当 Q=300 时,L(Q)max=2500.