等离子体

合集下载

等离子概述

等离子概述

机械工业方面的应用
• 等离子体焊接、等离子体切削和等离子体钻等在机械工业 中已有较广泛的应用
• 等离子体喷涂, 对轴承、齿轮等磨损部件的修复有重要的作 用。等离子体喷制微孔材料以及喷铸成型又是一种有意义的 新工艺
• 用等离子体注人和成膜的方法对金属材料表面进行氮化、碳 化、硼化或生成氮化钦膜,保持原材料的基本性能和尺 寸, 从而大大提高其耐磨、抗腐蚀性能, 可以延长工具和模 具的寿命
• 利用等离子体聚合非晶硅膜作为太阳能电池是太阳能利用的一个 重要环节, 它使太阳能电池面积大、质量轻、耐辐照、造价低。 磁流体发电是使流动的等离子体燃气通过强磁场把热能直接转化 为电能的新技术,可将火力发电站的热效率由30一40 % 提高到 50 一60 %多。 • 在受控核聚变中的应用
高电压工程基础
高电压工程基础
第0章 放电等离子体概述
0.1 什么是等离子体 0.2 等离子体的特性 0.3 等离子体的产生 0.4 等离子体的应用
高电压工程基础
0.1 什么是等离子体 固体 冰 液体 水 气体
水汽
等离子体
电离气体
00C
1000C
100000C 温度
等离子体(又称电浆)是在固态、液态和气态以外的第四大物质状态, 其特性与前三者截然不同
高电压工程基础 化学工业和材料工业方面的应用
• 烯炔的合成, 煤转化为乙炔, 从天然气中获得乙炔和乙烯等; 制备超细碳化钦、氮化钦、合成户碳化硅超细粉末, 以及制备 微细钨粉、碳化钨粉、氧化铝粉和钦白等 • 熔炼高温金属, 熔化难熔化合物, 进行金属的重熔精炼 • 制成高强度耐磨膜、光学保护膜、电学绝缘膜、反渗透膜、选 择性渗透膜等 • 改善吸水性。 染色性、粘结性、生物亲和性等。有利于短期内 产品更新, 适用于化纤、塑料、橡胶以及皮革等

等离子体 pdf

等离子体 pdf

等离子体 pdf等离子体(plasma)是由离子、电子和中性粒子组成的高温、高压等离子体状态。

等离子体广泛存在于自然和人造环境中,如闪电、太阳等。

1. 等离子体的特点(1)束流性:等离子体具有高温、高速度等特点,呈束流状。

(2)不稳定:等离子体受到扰动容易引起电磁不稳定,表现为各种波动现象。

(3)非线性:等离子体内的各种物理过程非常复杂,常常表现为非线性。

(4)粒子运动:等离子体内的离子和电子呈现出一定的运动规律,这种过程被称为粒子运动。

2. 等离子体应用领域(1)航空航天技术:等离子体可以用于改进飞行器的 aerodynamics性能。

(2)核聚变能技术:在核聚变器中,等离子体是聚变反应的条件之一。

(3)半导体器件制造:等离子体作为半导体晶体的蚀刻介质,可以实现精细加工。

(4)生物医学:等离子体可以用于癌细胞治疗、杀菌消毒、皮肤医疗等。

3. 等离子体 pdf 研究近年来,等离子体 pdf 研究已经成为热门的科研方向。

研究者通过模拟等离子体 pdf 过程,探索其诸多特性。

(1)非线性的演化:研究者模拟了不稳定等离子体中波动的发展过程,发现其在表面上呈现出“强大的花环”。

(2)等离子体扰动下的湍流:研究者通过计算模拟,揭示了等离子体中小尺度湍流的存在机制。

(3)等离子体与纳米材料相互作用:研究者利用等离子体处理技术,实现了对纳米材料的准精细制备。

4. 结论总体来看,等离子体具有广泛的应用前景和科学意义,等离子体 pdf研究是一个新兴而又充满潜力的方向。

期待未来更多的研究进展!。

等离子体的产生与性质

等离子体的产生与性质

等离子体的产生与性质等离子体,是由离子和自由电子组成的物质状态,广泛存在于宇宙中的各种天体和地球上的许多自然现象中。

它是一种高度激发的、高能量的状态,具有许多独特的性质和应用。

本文将探讨等离子体的产生与性质,为读者提供一些基础知识。

一、等离子体的产生等离子体的产生主要有三种方式:热激发、电子撞击和辐射。

1. 热激发当物质受到高温加热时,其中的原子和分子会获得足够的热能,使电子从原子中被剥离,形成自由电子和带正电的离子。

这种热激发的等离子体常见于太阳、恒星以及高温等离子体实验等。

2. 电子撞击在高能电子的撞击下,原子的电子会被击出,形成电离的原子和自由电子。

这种电子撞击的等离子体广泛存在于放电现象中,例如闪电放电、等离子体显示器等。

3. 辐射在高能辐射,如紫外线、X射线、高能粒子束等照射下,原子和分子会发生电离,产生电离的原子和离子。

这种辐射产生的等离子体常见于太阳风等。

二、等离子体的性质等离子体具有一系列独特的性质,深受科学界和工业界的关注与应用。

1. 导电性等离子体中带正电的离子和自由电子的存在使其具有良好的导电性能。

这使得等离子体成为高能物理研究中的重要工具,并广泛应用于电子器件、等离子体喷涂、核聚变等领域。

2. 准中性性质尽管等离子体中存在带正电的离子和带负电的自由电子,但总体上它的电中性仍然保持。

这种准中性的性质使得等离子体能够传递电磁波,并可应用于等离子体显示器、激光器和通信技术等领域。

3. 高温性等离子体中的电子和离子带有高能量,在自由碰撞过程中能够释放巨大的热能。

因此,等离子体往往处于高温状态,并显示出与常温材料截然不同的性质。

这使得等离子体成为核聚变、等离子体焊接等高温技术的基础。

4. 碰撞性等离子体中的电子和离子之间发生碰撞,由于它们的高速运动而产生碰撞性。

这种碰撞将能量传递给其他粒子,并在等离子体中产生电流、加热等效应。

这种碰撞性使得等离子体成为高密度等离子体实验和等离子体工程的重要研究对象。

等离子 原理

等离子 原理

等离子原理
等离子是一种高能态的物质,它在自然界中存在于极高温度的条件下。

等离子体是由电离的气体分子或原子组成的,其中的带电粒子包括正离子、负离子和自由电子。

等离子体的形成是通过加热气体或施加电场来提供足够的能量,以克服原子或分子的束缚力,使其失去电子并形成带电状态。

当气体分子电离后,带电粒子与自由电子之间发生碰撞,导致能量传递和转移。

这些带电粒子具有高速移动的特点,可以在外加电场的作用下形成电流。

等离子体具有独特的物理性质,如导电性、磁性和发光性。

导电性是指等离子体中的带电粒子可以在电场的驱动下流动,形成电流。

磁性是由于带电粒子的运动产生的磁场,使得等离子体对磁场产生响应。

发光性则是由于带电粒子在高能态下产生辐射,使等离子体呈现出明亮的光辉。

等离子体在实际应用中有着广泛的应用。

例如,在等离子切割中,利用等离子体高温和高能量的特性,可以快速切割各种材料。

等离子喷涂则可以通过将金属加热到等离子体状态,将金属粉末喷涂到物体表面,形成坚固的涂层。

等离子显示器则利用等离子体的发光性质,显示出鲜艳的彩色图像。

总之,等离子是一种具有独特物理性质的高能态物质,其原理是通过提供足够能量,使气体分子电离并形成带电粒子。

等离子体的形成和性质使其在多个领域有着广泛的应用。

等离子体的概念

等离子体的概念

等离子体的概念什么是等离子体?等离子体是物质的第四态,与固体、液体和气体不同。

它是由电离的气体分子、离子和电子构成的,呈现出整体性质,同时具有高度的电导率和磁导率。

等离子体的形成方式等离子体可以通过多种方式形成。

其中一种是热激发,当气体受到高温或强电场的作用时,气体分子会被激发成离子和电子,形成等离子体。

另一种方式是辐射激发,当气体受到高能辐射的作用时,也会产生等离子体。

等离子体的性质等离子体具有许多独特的性质,使其在许多领域有着广泛的应用。

1. 导电性等离子体是电离的气体分子、离子和电子的集合体,因此具有良好的导电性。

等离子体中的电子和离子能够在外加电场的作用下移动,形成电流。

2. 可透明性由于等离子体中的电子可以吸收和发射光子,所以等离子体对电磁波具有吸收和散射的作用。

这使得等离子体可以具有透明或半透明的性质。

3. 发光性当电子从较高能级跃迁到较低能级时,会释放出光子,产生发光现象。

这种性质使得等离子体可以被应用在照明、显示等领域。

4. 等离子体波动性等离子体中的电子和离子受到电磁场的作用,会发生振荡。

这种振荡可以传播出去,形成等离子体波动。

等离子体波动有着广泛的应用,例如在天体物理学中,等离子体波动可以产生天体的射电辐射。

等离子体的应用等离子体在各个领域有着广泛的应用。

1. 等离子体技术等离子体技术是利用等离子体的特性进行科学研究和应用开发的一种技术。

等离子体技术在材料加工、能源开发、环境污染处理等方面有着广泛的应用。

2. 核聚变核聚变是一种将轻核聚变成重核的过程,通过高温和高压下的等离子体状态可以实现核聚变反应。

核聚变被认为是未来清洁、可持续能源的一个重要研究方向。

3. 物质表面处理等离子体喷涂技术可以在物质表面形成致密、均匀的薄膜,提高材料的耐磨、耐腐蚀性能,广泛应用于汽车制造、航空航天等领域。

4. 等离子体显示技术等离子体显示技术是一种利用等离子体发光性质的显示技术。

它具有高亮度、高对比度、可视角度大的特点,被广泛应用于电视、手机等显示设备。

等离子体物理:等离子体产生与性质

等离子体物理:等离子体产生与性质

电离的粒子质量计算成分
点是受仪器性能和测量条件限制
• 探针诊断法:通过测量等离子体中探
• 探针诊断法:优点是测量精度高,缺
针的电压信号计算成分
点是受探针位置和形状影响
04
等离子体的稳定性与输运
性质
等离子体的稳定性及其影响因素
影响因素
• 电离程度:电离程度越高,等离子体越稳定
• 温度:温度越高,等离子体越稳定
激光诱导击穿法产生等离子体
01
02
激光诱导击穿法
应用
• 通过激光束聚焦在材料表面,产
• 等离子体加工:利用激光诱导击
生高温高压区,使材料电离
穿法产生等离子体
• 等离子体光谱分析:利用激光诱
温度高,能量密度大,可控性好
导击穿法产生的等离子体进行光谱分

化学放电法产生等离子体
影响因素
• 电离程度:电离程度越高,等离子体的电导率越高
• 温度:温度越高,等离子体的热导率越高
• 压力:压力越高,等离子体的扩散系数越低
等离子体与壁面的相互作用
01
相互作用
• 指等离子体与容器壁、电极等固体物表
面的相互作用
• 相互作用包括吸附、溅射和气体分子的
再结合等过程
02
影响
• 等离子体的能量损失:与壁面相互作用
等离子体密度的测量方法
测量方法
优缺点
• 吸收光谱法:通过测量等离子体对光
• 吸收光谱法:优点是测量精度高,缺
的吸收程度计算密度
点是受光谱仪分辨率限制
• 激光干涉法:通过测量等离子体的折
• 激光干涉法:优点是测量速度快,缺
射率变化计算密度
点是受激光源和探测器性能限制

等离子的形态

等离子的形态

等离子的形态
等离子(Plasma)是物质的一种存在状态,也被称为物质的第四态,因为它既不同于固态、液态和气态这三种常见的物质状态。

等离子体的形态非常特殊,它是由大量的带电粒子(如电子和离子)组成的,这些粒子在空间中自由运动,形成了一种高度电离的气体。

等离子的形态多变,可以根据其所处的环境和条件呈现不同的外观和特性。

在宇宙中,等离子体广泛存在于恒星、行星和其他天体中,它们以炽热、发光的气态形式存在,形成了壮丽的星空景象。

在地球上,等离子体也可以通过人工方式产生,例如在实验室中的放电管或聚变反应堆中。

等离子的形态还与其温度和密度密切相关。

在高温和高密度的条件下,等离子体可以形成一团炽热的火焰或光芒四射的气球。

而在低温和低密度的条件下,等离子体可能呈现出稀薄、透明的状态,类似于普通的气体。

除了温度和密度外,等离子的形态还受到电磁场的影响。

在电磁场的作用下,等离子体中的带电粒子会发生运动和相互作用,形成复杂的结构和动态行为。

这些结构和行为不仅影响着等离子体的性质和功能,也为我们提供了研究和应用等离子体的基础。

总的来说,等离子体的形态是多样且复杂的,它可以呈现出不同的外观和特性,受到多种因素的影响。

对于等离子体的研究不仅有助于我们深入理解物质的本质和宇宙的演化,也为等离子体技术的应用提供了广阔的前景。

等离子体

等离子体

两者相等称为高温等离子体;不相等则称低温等离子体。

低温等离子体广泛运用于多种线电波可以远距离传播的现象,推测地球上空存在着能反射电磁波的电离层。

这个假说为英国的E.V.阿普顿用实验证实。

英国的D.R.哈特里(1931)和阿普顿(1932)提出了电离层的折射率公式,并得到磁化等离子体的色散方程。

1941年英国的S.查普曼和V.C.A.费拉罗认为太阳会发射出高速带电粒子流,粒子流会把地磁场包围,并使它受压缩而变形。

从20世纪30年代起,磁流体力学及等离子体动力论逐步形成。

等离子体的速度分布函数服从福克-普朗克方程。

苏联的Л.Д.朗道在1936年给出方程中由于等离子体中的粒子碰撞而造成的碰撞项的碰撞积分形式。

1938年苏联的A.A.符拉索夫提出了符拉索夫方程,即弃去碰撞项的无碰撞方程。

朗道碰撞积分和符拉索夫方程的提出,标志着动力论的发端。

1942年瑞典的H.阿尔文指出,当理想导电流体处在磁场中,会产生沿磁力线传播的横波(即阿尔文波)。

印度的S.钱德拉塞卡在1942年提出用试探粒子模型来研究弛豫过程。

1946年朗道证明当朗缪尔波传播时,共振电子会吸收波的能量造成波衰减,这称为朗道阻尼。

朗道的这个理论,开创了等离子体中波和粒子相互作用和微观不稳定性这些新的研究领域。

从1935年延续至1952年,苏联的H.H.博戈留博夫、英国的M.玻恩等从刘维定理出发,得到了不封闭的方程组系列,名为BBGKY链。

由它可导出符拉索夫方程等,这给等离子体动力论奠定了理论基础。

1950年以后,因为英、美、苏等国开始大力研究受控热核反应,促使等离子体物理蓬勃发展。

热核反应的概念最早出现于1929年,当时英国的阿特金森和奥地利的豪特曼斯提出设想,太阳内部轻元素的核之间的热核反应所释放的能量是太阳能的来源,这是天然的自控热核反应。

1957年英国的J.D.劳孙提出受控热核反应实现能量增益的条件,即劳孙判据。

50年代以来已建成了一批受控聚变的实验装置,如美国的仿星器和磁镜以及苏联的托卡马克,这三种是磁约束热核聚变实验装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等离子体又叫做电浆,是由部分电子被剥夺后的原子及原子团被电离后产生的正负电子组成的离子化气体状物质,它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。

等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。

等离子体物理的发展为材料、能源、信息、环境空间、空间物理、地球物理等科学的进一步发展提供了新的技术和工艺。

物质由分子组成,分子由原子组成,原子由带正电的原子核和围绕它的、带负电的电子构成。

当被加热到足够高的温度或其他原因,外层电子摆脱原子核的束缚成为自由电子,就像下课后的学生跑到操场上随意玩耍一样。

电子离开原子核,这个过程就叫做“电离”。

这时,物质就变成了由带正电的原子核和带负电的电子组成的、一团均匀的“浆糊”,因此人们戏称它为离子浆,这些离子浆中正负电荷总量相等,所以就叫等离子体。

1简介看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电中都存在等离子体,它占了整个宇宙的99%。

21世纪人们已经掌握和利用电场和磁场产生来控制等离子体。

例如焊工们用高温等离子体焊接金属。

等离子体由离子、电子以及未电离的中性粒子的集合组成,整体呈中性的物质状态。

等离子体可分为两种:高温和低温等离子体。

等离子体温度分别用电子温度和离子温度表示,两者相等称为高温等离子体;不相等则称低温等离子体。

低温等离子体广泛运用于多种等离子体发生器生产领域。

例如:等离子电视,婴儿尿布表面防水涂层,增加啤酒瓶阻隔性。

更重要的是在电脑芯片中的蚀刻运用,让网络时代成为现实。

高温等离子体只有在温度足够高时发生的。

恒星不断地发出这种等离子体,组成了宇宙的99%。

低温等离子体是在常温下发生的等离子体(虽然电子的温度很高)。

低温等离子体可以被用于氧化、变性等表面处理或者在有机物和无机物上进行沉淀涂层处理。

等离子体(Plasma)是一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”,也称“电浆体”。

等离子体具有很高的电导率,与电磁场存在极强的耦合作用。

等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体”(plasma)一词引入物理学,用来描述气体放电管里的物质形态[1]。

严格来说,等离子体是具有高位能动能的气体团,等离子体的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被束缚于原子核,而成为高位能高动能的自由电子。

等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的不稳定态,其中包括离子(具有不同符号和电荷)、电子、原子和分子。

其实,人们对等离子体现象并不生疏。

在自然界里,炽热烁烁的火焰、光辉夺目的闪电、以及绚烂壮丽的极光等都是等离子体作用的结果。

对于整个宇宙来讲,几乎99.9%以上的物质都是以等离子体态存在的,如恒星和行星际空间等都是由等离子体组成的。

用人工方法,如核聚变、核裂变、辉光放电及各种放电都可产生等离子体。

分子或原子的内部结构主要由电子和原子核组成。

在通常情况下,即上述物质前三种形态,电子与核之间的关系比较固定,即电子以不同的能级存在于核场的周围,其势能或动能不大。

普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离。

电离出的自由电子总的负电量与正离子总的正电量相等。

这种高度电离的、宏观上呈中性的气体叫等离子体。

等离子体和普通气体性质不同,普通气体由分子构成,分子之间相互作用力是短程力,仅当分子碰撞时,分子之间的相互作用力才有明显效果,理论上用分子运动论描述。

在等离子体中,带电粒子之间的库仑力是长程力,库仑力的作用效果远远超过带电粒子可能发生的局部短程碰撞效果,等离子体中的带电粒子运动时,能引起正电荷或负电荷局部集中,产生电场;电荷定向运动引起电流,产生磁场。

电场和磁场要影响其他带电粒子的运动,并伴随着极强的热辐射和热传导;等离子体能被磁场约束作回旋运动等。

等离子体的这些特性使它区别于普通气体被称为物质的第四态。

在宇宙中,等离子体是物质最主要的正常状态。

宇宙研究、宇宙开发、以及卫星、宇航、[1]能源等新技术将随着等离子体的研究而进入新时代。

[2]2发展史19世纪以来对气体放电的研究;19世纪中叶开始天体物理学及20世纪对空间物理学的研究;1950年前后开始对受控热核聚变的研究;以及低温等离子体技术应用的研究,从四个方面推动了这门学科的发展。

19世纪30年代英国的M.法拉第以及其后的J.J.汤姆孙、J.S.E.汤森德等人相继研究气体放电现象,这实际上是等离子体实验研究的起步时期。

1879年英国的W.克鲁克斯采用“物质第四态”这个名词来描述气体放电管中的电离气体。

美国的I.朗缪尔在1928年首先引入等离子体这个名词,等离子体物理学才正式问世。

1929年美国的L.汤克斯和朗缪尔指出了等离子体中电子密度的疏密波(即朗缪尔波)。

对空间等离子体的探索,也在20世纪初开始。

1902年英国的O.亥维赛等为了解释无线电波可以远距离传播的现象,推测地球上空存在着能反射电磁波的电离层。

这个假说为英国的E.V.阿普顿用实验证实。

英国的D.R.哈特里(1931)和阿普顿(1932)提出了电离层的折射率公式,并得到磁化等离子体的色散方程。

1941年英国的S.查普曼和V.C.A.费拉罗认为太阳会发射出高速带电粒子流,粒子流会把地磁场包围,并使它受压缩而变形。

从20世纪30年代起,磁流体力学及等离子体动力论逐步形成。

等离子体的速度分布函数服从福克-普朗克方程。

苏联的Л.Д.朗道在1936年给出方程中由于等离子体中的粒子碰撞而造成的碰撞项的碰撞积分形式。

1938年苏联的A.A.符拉索夫提出了符拉索夫方程,即弃去碰撞项的无碰撞方程。

朗道碰撞积分和符拉索夫方程的提出,标志着动力论的发端。

1942年瑞典的H.阿尔文指出,当理想导电流体处在磁场中,会产生沿磁力线传播的横波(即阿尔文波)。

印度的S.钱德拉塞卡在1942年提出用试探粒子模型来研究弛豫过程。

1946年朗道证明当朗缪尔波传播时,共振电子会吸收波的能量造成波衰减,这称为朗道阻尼。

朗道的这个理论,开创了等离子体中波和粒子相互作用和微观不稳定性这些新的研究领域。

从1935年延续至1952年,苏联的H.H.博戈留博夫、英国的M.玻恩等从刘维定理出发,得到了不封闭的方程组系列,名为BBGKY链。

由它可导出符拉索夫方程等,这给等离子体动力论奠定了理论基础。

1950年以后,因为英、美、苏等国开始大力研究受控热核反应,促使等离子体物理蓬勃发展。

热核反应的概念最早出现于1929年,当时英国的阿特金森和奥地利的豪特曼斯提出设想,太阳内部轻元素的核之间的热核反应所释放的能量是太阳能的来源,这是天然的自控热核反应。

1957年英国的J.D.劳孙提出受控热核反应实现能量增益的条件,即劳孙判据。

50年代以来已建成了一批受控聚变的实验装置,如美国的仿星器和磁镜以及苏联的托卡马克,这三种是磁约束热核聚变实验装置。

60年代后又建立一批惯性约束聚变实验装置。

环状磁约束等离子体的平衡问题由苏联的V.D.沙弗拉诺夫等解决。

美国的M.克鲁斯卡和沙弗拉诺夫导出了最重要的一种等离子体不稳定性,即扭曲不稳定性的判据。

1958年美国的I.B.伯恩斯坦等提出分析宏观不稳定性的能量原理。

处在环状磁场中的等离子体的输运系数首先由联邦德国的D.普菲尔施等作了研究(1962),他们给出在密度较大区的扩散系数,苏联的A.A.加列耶夫等给出了密度较小区的扩散系散(1967),这一理论适用于托卡马克这类环状磁约束等离子体中的输运过程被命名为新经典理论。

自从苏联在1957年发射了第一颗人造卫星以后,很多国家陆续发射了科学卫星和空间实验室,获得很多观测和实验数据,这极大地推动天体和空间等离子体物理学的发展。

1959年美国的J.A.范艾伦预言地球上空存在着强辐射带,这一预言为日后的实验证实,即称为范艾伦带。

1958年美国的E.N.帕克提出了太阳风模型。

1974年美国的D.A.格内特根据卫星资料,认证出地球是一颗辐射星体,为长波辐射和热红外辐射[3]。

地球辐射的辐射源是地球,其波长范围约为4~120微米,为长波辐射[3]。

辐射能量的99%集中在3微米以上的波长范围内[3]。

地球辐射的最强波长约为9.7微米[3]。

在此期间,一些低温等离子体技术也在以往气体放电和电弧技术的基础上,进一步得到应用与推广,如等离子体切割、焊接、喷镀、磁流体发电,等离子体化工,等离子体冶金,以及火箭的离子推进等,都推动了对非完全电离的低温等离子体性质的研究。

3离子效应电离层由大气的球面组成,其中带有已经被太阳辐射而电离的离子,这就是等离子体区,形成不同离子密度的层D、E、F1、F2。

在航天器重返大气时,由于摩擦产生的高温在器表面形成了很浓密的等离子体,这些电子密度足够高时,会致使等离子体频率非常高(一般为8MHz),因此地面和航天器的通信被阻断,直到它的速度降下来才恢复通信。

4主要应用当光打在金属表面时,二维光或是等离子体就会被激发。

等离子体可以被看作是光子和电子的连接。

可以建立一个混合原则,由光转变成的等离子体在金属表面传播时(该等离子体的波长比原始光波的波长小的多);等离子体能被二维光学仪器(镜子、波导、透镜等)处理,等离子体能再次转变成光或者电信号。

等离子体传感器和癌症治疗仪:NaomiHalas描述了等离子体怎样激发小金属层表面的,米粒形状的粒子能量很大,做光谱学试验的光是微分子数量级。

等离子体在米粒状粒子弯曲顶端处等离子体电场比用来激发等离子体的电场强很多,并且它在很大程度上改进了光谱的速率和精确性。

换一种说法,纳米数量级的等离子体不仅可以用来鉴定,还可以用来杀死癌细胞。

等离子体显微镜:IgorSmolyaninov报道称他和他的同事能够拍下来空间分辨率在60nm的物体(如果是实用材料,分辨率能达到30nm),而用激光激发只能达到515nm。

换句话说,用这种分辨率制造的显微镜会比平常使用的衍射方法好的多;而且,这更是远场显微镜――光源不用放在少于光波长的范围内。

巨大光极化和光传输:GennadyShvets报道当表面的声子被光激发来制造超棱镜(用平板材料透镜化)显微镜是红外线光显微镜波长的二十分之一。

他和他的同事能拍下样品表面下的特征,他们称为“巨大的光传输”,照射到表面的光比一般光的波长小的多。

光频率的未来等离子体电路:NaderEngheta支持等离子体激发的纳米粒子能够被设计成纳米数量级的电容,电阻,和感应器(电路中的各种元素)。

相关文档
最新文档