等离子体处理有机气体

合集下载

等离子uv光解废气处理原理

等离子uv光解废气处理原理

等离子UV光解废气处理是一种利用等离子体和紫外线辐射来处理废气的方法。

其原理可以分为以下几个步骤:
1.等离子体产生:通过使用高压电场、电子束、电容放电等方式产生等离子体。

等离子体是一种带有正、负离子和电子的高能粒子状态,具有很高的反应活性。

2.紫外线辐射产生:通过电极产生高电压,将气体或液体放电并产生脉冲电流。

随后,在放电电极的附近产生电弧等离子体,并通过碰撞和辐射转化为紫外线辐射。

紫外线辐射主要包括UVA(315-400nm)、UVB(280-315nm)和UVC(100-280nm)等波长。

3.光解反应:紫外线辐射在等离子体中与废气中的污染物发生光解反应。

其中,UVC波段的紫外线具有较高的能量,能够直接破坏废气中的有机分子的化学键,使其发生裂解。

同时,紫外线辐射也能激发废气中的氧分子产生活性氧,如氧自由基,也起到氧化降解有机物的作用。

4.氧化和降解:光解后的有机物、氧化产物和废气中的其他污染物进一步发生化学反应,经过氧化、降解和转化等过程,最终转化为无害的物质,如水和二氧化碳等。

等离子UV光解废气处理技术具有高效、无二次污染、操作简便、适用范围广等优点。

它可广泛应用于工业废气处理、空气净化和挥发性有机物去除等领域,有效降低有害气体的排放,保护环境和人体健康。

低温等离子体技术处理vocs

低温等离子体技术处理vocs

低温等离子体技术处理VOCs在当今社会,挥发性有机污染物(VOCs)对环境和人类健康造成了严重的影响。

通过采用低温等离子体技术处理VOCs污染物,能有效减少其排放,保护生态环境。

本文将介绍低温等离子体技术处理VOCs的原理、应用及优势。

原理低温等离子体技术是一种利用等离子体体系催化氧化VOCs的技术。

等离子体是一种气体中部分或全部电离的状态,其中包括正离子、自由电子和激发态分子。

通过在低温下产生等离子体,在等离子体的作用下,VOCs被催化氧化为二氧化碳和水等无害物质。

这一过程是在较低的温度下进行的,避免了高温造成的能源浪费和设备磨损。

应用低温等离子体技术广泛应用于工业生产过程中VOCs污染物的处理。

例如,在印刷、油漆、化工等行业的生产过程中产生的VOCs可以通过低温等离子体技术进行净化处理。

此外,该技术还可以应用于垃圾焚烧、废气处理等环境保护领域。

优势低温等离子体技术处理VOCs的优势主要有以下几点:1.高效净化:等离子体的存在增加了VOCs的氧化反应速率,使处理效率更高。

2.节能环保:相比传统的高温氧化技术,低温等离子体技术不需要提高温度即可有效处理VOCs污染物,节约了能源并降低了碳排放。

3.安全可靠:低温等离子体技术在操作时不产生高温,减少了操作人员的安全风险。

4.适用范围广:低温等离子体技术适用于处理多种类型的VOCs污染物,具有较强的通用性。

综上所述,低温等离子体技术作为一种高效、节能、环保的VOCs处理技术,具有广阔的应用前景,对保护环境和促进可持续发展具有重要意义。

等离子体处理

等离子体处理

等离子体处理
等离子体处理是一种用于处理固体、液体和气体的技术。

它利用高能电离的等离子体来实现各种应用,包括去除污染物、杀菌消毒、涂层附着、表面改性等。

等离子体处理可以通过气体放电、电子束加热、激光辐照等方式产生等离子体。

等离子体中的电子和离子具有高能量和高速度,可以与物质发生碰撞,引起化学反应、离子束轰击、材料熔化等。

在污染处理方面,等离子体处理可以用于去除有机物、无机物和重金属等污染物。

等离子体处理可以分解有机物分子,将其转化为无害的气体和水蒸气。

对于无机物和重金属,等离子体处理可以通过离子束轰击、化学反应等方式将其转化为可固定或可分离的形式。

在材料处理方面,等离子体处理可以用于表面涂层、改性和清洁。

等离子体处理可以将涂层附着在材料表面,增加
材料的硬度、耐磨性和耐腐蚀性。

等离子体处理也可以用于改变材料的表面性质,如增加材料的疏水性或亲水性。

此外,等离子体处理还可以用于清洁表面,去除油污、尘埃等杂质。

总之,等离子体处理是一种多功能的技术,可以应用于各种领域的污染处理和材料处理。

它具有高效、环保和可控性的特点,在未来的发展中有着广阔的应用前景。

等离子除臭原理

等离子除臭原理

等离子除臭原理等离子技术是一种新型的除臭技术,它利用高温等离子体对空气中的有害气体进行分解和氧化,从而达到除臭的效果。

等离子除臭技术主要包括等离子发生器、等离子反应室和等离子处理装置三个部分。

等离子发生器通过高压电场产生等离子体,等离子体在高温条件下分解空气中的有机气体,生成一系列氧化物,最终将有机气体分解为无害的物质。

等离子反应室是等离子处理的核心部分,它能够有效地将有机气体转化为无害物质。

等离子处理装置则是将处理后的空气排放到室外,确保室内空气的清新。

等离子除臭原理主要包括电离、电子碰撞、分子碰撞和氧化等过程。

首先,等离子发生器通过高压电场将气体电离,产生正离子和自由电子。

接着,自由电子与气体分子碰撞,将气体分子激发成高能态,然后再与其他气体分子碰撞,将其激发成高能态。

在分子碰撞的过程中,气体分子会发生化学反应,生成一系列的氧化物。

最终,这些氧化物会将有机气体分解成无害的物质,从而达到除臭的效果。

等离子除臭技术具有高效、无污染、无二次污染等优点。

首先,等离子除臭技术可以高效地将有机气体分解为无害物质,大大提高了除臭效果。

其次,等离子除臭技术在处理过程中不会产生二次污染,不会对环境造成影响。

再次,等离子除臭技术不需要添加任何化学药剂,不会产生化学反应,避免了污染物的二次排放。

因此,等离子除臭技术成为了目前除臭领域的一种热门技术。

在实际应用中,等离子除臭技术被广泛应用于垃圾填埋场、化工厂、污水处理厂、家庭厨房等领域。

在垃圾填埋场,大量的有机废气会对周围环境造成污染,使用等离子除臭技术可以有效地将这些有机废气分解为无害物质,保护周围环境的清洁。

在化工厂和污水处理厂,等离子除臭技术可以有效地处理有机废气,保护员工的健康,同时也减少了对环境的污染。

在家庭厨房,等离子除臭技术可以有效地去除厨房中产生的异味,保持室内空气的清新。

总的来说,等离子除臭技术以其高效、无污染、无二次污染等优点,成为了目前除臭领域的一种热门技术。

等离子体处理有机废气技术综述

等离子体处理有机废气技术综述

等离子体处理有机废气技术综述[摘要]本文旨在综述等离子体降解有机废气技术。

阐述了等离子体的概念,讨论了等离子体处理有机废气的机理,又分别综述了联合处理VOCs废气技术的研究进展。

最后提出了该项技术在有机废气治理领域的研究方向。

[关键字]低温等离子体;联合;研究方向引言目前对有机废气治理采用的处理方法主要有吸收、吸附、催化燃烧等,这些方法所用设备多、工艺繁、能耗大:而相对比较热门的生物处理法又面临占地面积大,易受负荷变化影响,微生物菌种筛选和驯化难度大等问题。

而等离子体技术作为一种高效率、占地少、运行费用低、使用范围广的环保处理新技术已成为近年来的研究热点。

1.等离子体技术处理有机废气机理分析1.1等离子体概念等离子体就是处于电离状态的气体,其英文名称为plasma。

等离子体是被称作除固态、液态和气态之外的第四种物质存在形态。

它是由大量带电粒子(离子、电子)和中性粒子(原子、激发态分子及光子)和自由基组成的导电性流体,因其总的正、负电荷数相等,故称为等离子体。

按热力学平衡状态进行分类,等离子体可分为热力学平衡状态等离子体(高温等离子体)和非热力学平衡状态等离子体(低温等离子体)。

非平衡等离子体较平衡等离子体易在常温常压下产生,因此在环保领域有着广泛的应用前景。

以下等离子体处理技术即低温等离子体技术。

1.2等离子体处理有机废气的机理虽然对低温等离子体去除污染物的机理还不清楚,但一般都认为是粒子间非弹性碰撞的结果。

其降解机理可概括为:1、高能电子直接作用于有机废气分子,污染物分子受碰撞激发或离解形成相应的基团和自由基。

2、高能电子与气态污染物中所含的空气、水蒸气和其它分子作用产生新的自由基和激发态物质活性粒子及氧化性极强的O3,将有机物彻底氧化。

3、活性基团从高能激发态向下跃迁产生紫外光,紫外光直接与有害气体反应而使气体分子键断裂从而得以降解。

2.等离子体处理有机废气的工艺分析2.1等离子体单独作用处理有机废气早期通常是利用等离子体单独作用处理有机废气。

等离子体医废处置方案

等离子体医废处置方案

等离子体医废处置方案简介等离子体医废是指在医疗过程中产生的含有生物危害物质和传染性物质的废弃物。

由于易感染和传播病毒等病原体,等离子体医废的处置变得尤为重要。

等离子体技术是一种高温等离子体反应技术,它可以通过高温等离子体将有机物气化分解,同时有效杀死病菌和病毒,达到无害化处理的目的。

因此,等离子体技术被广泛应用于医废处理领域。

本文将介绍等离子体医废处置方案的具体实现方法和优点。

实现方法制备等离子体制备等离子体需要先将空气或氧气引导到等离子体反应器中,再通过高频电极激发气体,形成等离子体。

等离子体的主要成分为电子、离子、自由基等活性物质。

处理医废使用等离子体技术处理医废的基本流程:首先将医废施加电场,使得医废中的导体聚集,形成有机物颗粒;然后通过等离子体反应,将这些有机物颗粒分解成CO、CO2、H2O、N2等物质,达到无害化处理的目的。

处理后的医废处置处理后的医废主要成分为二氧化碳、水、氨和硫酸等物质,这些物质不会产生污染,并且可以通过排气管口排放。

优点安全医废处理是一个危险的过程,如果不采取科学合理的处理方法,可能会对人体健康造成影响。

因此,采用等离子体技术处理医废,可以杀死病原体和病菌,有效防止危险物质对人体健康造成伤害。

无害等离子体技术在处理医废的过程中,采用高温等离子体反应技术对有机物进行分解,使医废最终变成无害的CO2、N2、SO2等物质,不会对环境造成污染。

高效使用等离子体技术处理医废的过程,比传统的焚烧方式更加高效,能大幅降低处理时间和成本。

此外,等离子体技术比其他处理医废的方法更加灵活,可以根据不同的医废种类,采取不同的处理方法。

结论等离子体技术是一种能够无害化处理医废的高品质技术,它可以有效杀死病原体和病菌,同时也不会生成二次污染物。

使用等离子体技术处理医废是非常必要的,可以为医疗行业和环保事业做出重要的贡献。

低温等离子处理有机废气原理

低温等离子处理有机废气原理

低温等离子处理有机废气原理
低温等离子处理是一种常见的有机废气处理技术,通过使用电子、离子和激发态原子等粒子来氧化、还原和降解有机废气中的有害物质,从而达到净化空气的目的。

这种技术在工业生产中得到广泛应用,对于减少空气污染和保护环境具有重要意义。

低温等离子处理有机废气的原理主要包括以下几个方面:
1. 电离过程:在等离子体发生时,分子中的原子或分子会失去或获得电子,形成带电粒子,这些带电粒子具有很强的活性,能够与有机废气中的有害物质发生化学反应。

2. 氧化反应:在等离子体中,氧分子会被激发形成活性氧原子,这些活性氧原子能够与有机废气中的有机物发生氧化反应,将有机物分解为较小的分子或气体。

3. 离子反应:等离子体中的离子也能与有机废气中的有害物质发生化学反应,形成新的化合物或分子,从而实现有机废气的净化。

4. 能量传递:在等离子体中,粒子之间通过碰撞传递能量,促进化学反应的进行,加速有机废气的处理过程。

低温等离子处理有机废气的优点包括处理效率高、能耗低、操作稳定等,因此得到了广泛应用。

但是在实际应用中也存在一些问题,比如设备成本较高、操作维护复杂等,需要进一步研究和改进。

总的来说,低温等离子处理有机废气是一种有效的空气净化技术,可以帮助减少空气污染,保护环境。

随着科技的发展和进步,相信这种技术会得到更好的应用和推广,为人类创造一个更清洁、更健康的生活环境。

低温等离子废气处理方案

低温等离子废气处理方案

低温等离子废气处理方案引言:随着工业化的快速发展,大量的废气排放成为了环境污染和资源浪费的主要问题之一、特别是一些高温等离子废气,由于其高温和有害成分的存在,对环境和人类健康造成了严重威胁。

因此,低温等离子废气处理成为了一种重要的解决方案。

本文将介绍低温等离子废气处理的原理和具体方案。

一、低温等离子废气处理的原理低温等离子废气处理是一种利用等离子技术对废气进行除污处理的方法。

其主要原理是通过产生低温等离子体,将废气中的有害物质转化为无害物质或固体颗粒,并最终将其尽可能地净化和排放。

低温等离子废气处理的优点是能够对废气中的多种有害物质进行同时处理,从而达到高效、节能和环保的效果。

二、低温等离子废气处理的具体方案1.利用等离子体壁效应等离子体壁效应是指等离子体与壁面接触时发生的物理和化学反应。

在低温等离子废气处理中,可以通过调节等离子体与壁面的接触方式和温度,使得废气中的有害物质与等离子体发生反应,从而达到除污的目的。

2.利用等离子体的化学反应低温等离子废气处理过程中,等离子体中的电子、离子和分子之间会发生多种化学反应,从而使得废气中的有害物质得到转化或分解。

例如,通过等离子体的氧化作用,废气中的有机物可以被氧化为二氧化碳和水,同时产生一定量的能量。

3.利用等离子体的电磁场效应等离子体中存在电场和磁场效应,可以利用这些效应对废气进行处理。

通过利用电场和磁场对废气中的粒子进行加速和定位,可以使得废气中的颗粒物和有害物质被有效地去除。

4.利用等离子体的辐射效应5.利用等离子体的产热效应低温等离子废气处理中,等离子体会产生一定的热量,这个热量可以被利用来提高废气的温度,从而对废气中的有害物质进行分解和转化。

例如,通过调节等离子体的热量和温度,可以使得废气中的有机物被分解为无害的气体或固体颗粒。

总之,低温等离子废气处理是一种有效的处理方法,其原理是通过利用等离子体的物理、化学和电磁等效应对废气进行净化和除污。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
5 6 7
200
200 200 200
71
39 27 20
0.4
0.4 0.4 0.4
3.0
.6 90
初始浓度对苯净化效率的影响
No 初始浓度 净化后浓 气体流量 外加电压 净化效率 /ppm /ppm /m3/h /kV /% 1 100 9 0.4 3.4 90 2 3 4 5 6 7 200 300 400 500 600 800 27 46 79 121 221 390 0.4 0.4 0.4 0.4 0.4 0.4 3.4 3.4 3.4 3.4 3.4 3.4 86.6 84.6 80.1 75.8 63.2 51.3
2
3 4 5 6 7
86.6
76.5 59.5 54.5 40.5 17
停留时间对苯净化效率的影响
No 1 2 初始浓度 /ppm 200 200 净化后浓 /ppm 119 91 气体流量 /m3/h 0.2 0.4 外加电压 净化效率 /kV /% 3.4 3.4 40.5 54.5
3 4
5 6

通过对这些实验室的现场测定,我们不难发现,高
校实验室排放的有机废气浓度较高,且排放量较大,
持续时间长,不加治理随意排放会对学生、老师和周 围居民的身体健康产生很大的威胁。对实验室排放有 机废气的净化势在必行。
国内外有机废气治理技术的研究进展


总体来说有机废气处理分为回收法与消除法两类
回收法是通过物理方法,在一定温度、压力下,用选择 性吸附剂和选择性渗透膜等方法来分离挥发性有机化 合物(VOCs) ,主要包括活性碳吸附、变压吸附、冷凝法 和生物膜法等
气体的净化实验。实验还采用气相色谱仪分析苯与
甲醛的净化效率。 外加电压、初始浓度、气体流量、停留时间对降解
苯气体效率的影响同样重要。
Table4.1 The experimental data of effect of applied voltage on degradation efficiency
因素的研究 。
强电离降解甲醛和苯的实验总结
低温等离子体法可以在常温、常压下实现对甲醛和苯污染物的 去除,从机理上分析其最终产物为CO、CO2和H2O,无其他中
间产物。
甲醛和苯的去除率随着电场强度的增强而增大,随着气体流速 的增大而减小。随浓度增加去除率降低。
在考虑处理效率和能源利用俩方面上,可以得出苯和甲醛最佳
等离子体净化处理实验室有机废气的 研究
江苏大学环境与安全工程学院 依成武
前言
在大气污染物质体系中,气态有机污染物占很大部分,这 恶化人们的生存环境。 在近年来我国教育飞速发展,实验室数量增加,以及日益 严重的大气污染的大环境下,实验室排放的有机废气对环境的
些带有异味(臭或香)的气态污染物会严重干扰居民的日常生活,
只与强电离放电中产生的OH•反应生成CO2和H2O,实
现无污染化。在强电离放电中,OH•的浓度对有机废气 的降解作用十分重要。

等离子体分解破坏挥发性有机污染物的两种途径如下
(1)高能级电子直接作用于污染物分子: e + 污染物分子 —— 各种碎片分子
(2)高能级电子间接作用于污染物分子:
e +O2 (N2,H20) ——2O(N,N*,OH) +污染物分子 — —中性分子
200 300 400 500 600
净化后浓 /ppm 8
18 38 60 97 175
气体流量 /m3/h 0.4
0.4 0.4 0.4 0.4 0.4
外加电压 /kV 3.4
3.4 3.4 3.4 3.4 3.4
净化效率 /% 92
91 87.33 85 80.6 70.83
气体流量对净化甲醛效率的影响
No 初始浓度 /ppm 200 200 200 200 净化后浓 /ppm 15 18 29 72 气体流量 /m3/h 0.2 0.4 0.6 0.8 外加电压 净化效率 /kV /% 3.4 3.4 3.4 3.4 92.5 91 85.5 64
1 2 3 4
5
6 7
200
200 200
78
105 143
强电离降解苯的实验结果
在对苯进行处理的过程中,实验考虑了电压、流量、初始浓 度等影响因素,通过对比实验数据,我们发现苯的净化影响因 而初始浓度的影响相对较小。在电压为3.4kV,流量为0.4 m3/h 时,处理效率最高。因此在今后有机废气的处理中应着重这些
素跟甲醛相似,在这些条件中,电压、流量的影响依旧比较大,
实验项目的凋整与增多、科研团队的不断壮大、学生人数的增 加、学生进入实验室时间的延长以及实验室开放力度的不断加
大,因此实验室承担着更加繁重的教学和科研任务。而许多学
科实验室进行的实验及研究大多要用到化学分析方法,实验材 料的使用所引发“三废”环境污染问题已到了不容忽视的地步。

以下仅以江苏大学数间较易产生有机废气的实验室
与之相对应的我国各类场所空气中甲醛浓度的限量
No 使用场所 民用建筑工程室内 标准依据 GB50325- 2001 限量值(ppm) Ⅰ类8 备注
1
环境污染物浓度限量 室内空气质量标准
居室空气中甲醛的卫生标准 公共场所卫生标准 室内空气质量卫生规范
表 GB/ T18883-2002 表1
GB/ T16127- 1995 GB966~9673-1996 卫法监发(2001)255号
如医学院解剖实验室,化学实验室,环境工程大气实
验室为例证,对排放的气体进行定性及含量分析。

在江苏大学医学院解剖实验室通风橱的排放口,经
一个月不间断的测量得知解剖实验室排放的甲醛浓度
50ppm-230 ppm之间。 材料与化学化工综合实验室及基础化学实验室排放 的污染物种类繁多,经过收集到的气样进行分析,发 现排放的有机废气主要由苯 (21-250 ppm),甲醛 (30-500 ppm),二甲苯( 3-170 ppm)组成。 环境工程大气实验室排放甲醛的浓度7-210ppm,苯 的浓度范围为10-230ppm。
200 200
200 200
81 47
27 18
0.6 0.8
1.0 1.2
3.4 3.4
3.4 3.4
59.5 76.5
86.6 91
利用气相色谱仪分析苯的处理效率
图中峰1是载气氮气,峰2是苯。
由图可见,经过等离子体净化后,
苯的净化效率很好,在经过等离子 体的净化,苯的去除率达到85%以 上,并且无其他物质产生。

消除法是通过化学或生物反应,用光、热、催化剂和 微生物等将有机物转化为水和二氧化碳,主要包括热氧 化、催化燃烧、生物氧化、电晕法、等离子体分解法、
光分解法等。

去除甲醛和苯方法众多,而本次PPT将采用等离子体
反应器,利用强电离放电产生的羟基自由基,使实验
室排放的甲醛和苯废气降解成无害无毒气体。
等离子体治理有机废气的基本原理
外加电压对甲醛净化效率的影响
No 初始浓度 /ppm 200 200 200 200 200 净化后浓 /ppm 175 170 125 60 30 气体流量 /m3/h 0.4 0.4 0.4 0.4 0.4 外加电压 /kV 2.0 2.5 2.8 3.0 3.2 净化效率 /% 12.5 15 37.5 70 85

综上所述,采用强电场电离放电极端物理方法,可 以把H2O、O2电离后按羟基分子结构直接加工出高浓度
大产量的羟基自由基。可以有效的把可挥发性有机污
染物VOCs最终降解为CO2、H2O等无害物质。
强电离放电降解甲醛实验流程图

实验采用强电离放电方式,主要从外加电压、初 始浓度、气体流量、停留时间来进行甲醛气体和苯
气体流量对苯净化效率的影响
No
1
初始浓度 /ppm 200 200
200 200 200 200 200
净化后浓 /ppm 18 27
47 81 91 119 166
气体流量 /m3/h 0.2 0.4
0.6 0.8 1.0 1.2 1.6
外加电压 净化效率 /kV /% 3.4 91 3.4
3.4 3.4 3.4 3.4 3.4
使用气相色谱分析中间产物及甲醛处理效率
先利用恒流采样器采样等离 子体反应器反应之前和反应 之后的烟气吸收到乙醚溶液
中,并利用进样针取1µ m溶
液进到气相色谱仪进行分析。 图中可以看到,甲醛气体的 出峰时间为5.864min。从出 峰情况看,净化后的气体进 行GS分析后发现无其他有 机物质产生并可以看到甲醛 气体的净化效率可达到90% 以上。
1.0
1.2 1.6
3.4
3.4 3.4
61
52.5 28.5
气体停留时间对甲醛净化效率的影响
No 1 2 3 4 5 6 初始浓度 /ppm 200 200 200 200 200 200 净化后浓 /ppm 15 18 40 72 78 105 气体流量 /m3/h 0.2 0.4 0.6 0.8 1.0 1.2 外加电压 /kV 3.4 3.4 3.4 3.4 3.4 3.4 净化效率 /% 92.5 91 80 64 61 52.5
Ⅱ类12 ≤10
≤8 ≤ 12 ≤(8~ 12)
供验收用
2
3 4 5
小时平均
最高容许浓度
小时平均
6
7 8
饭馆(餐厅) 卫生标准
人防工程平时使用环境卫生标准 工作场所有害因素职业接触限值
GB16153- 1996
GB/ T17216- 1998 GBZ. 2- 2002
≤ 12
≤ 12 50 最高容许浓度
相关文档
最新文档