等离子体表面改性技术的研究与发展.
等离子体技术在工业加工中的应用研究

等离子体技术在工业加工中的应用研究随着科技的进步和工业化的不断发展,工业加工技术也在不断更新和改善。
等离子体技术是一种新型的加工技术,其能够将气体等离子体化并在加工物表面产生一系列物理、化学反应,从而达到改变材料性质、加工和清洁表面的目的。
本文将从等离子体技术的基本原理、应用范围和发展趋势三个方面来探讨其在工业加工中的应用研究。
一、等离子体技术的基本原理等离子体技术是一种通过高温和高能电子激发气体分子使其电离并产生等离子体的一种技术。
等离子体是一种气态物质状态,具有高温度、高密度等特征。
在等离子体中,由于气体分子电离,产生的电子、离子、自由基等活性物质会与基体表面发生反应,从而改变了其表面的化学、物理性质。
二、等离子体技术的应用范围等离子体技术具有广泛的应用范围,包括工业加工、环境保护、医疗治疗等各个领域。
在工业加工中,等离子体技术也被广泛应用。
1、表面处理等离子体技术在表面处理方面应用最为广泛。
通过利用等离子体产生的电子、离子等活性物质对材料表面进行清洗、去污、表面改性等,从而能够改善材料表面性质,提高材料的机械强度、耐腐蚀性能、附着力等。
2、材料改性等离子体技术不仅可以用于表面处理,还可以用于材料的局部改性。
通过控制等离子体化学反应的条件,可以实现材料表面的硬化、氮化、氧化等,从而提高材料性质。
3、成膜等离子体技术还可以通过在材料表面沉积一层薄膜的方法进行成膜。
由于等离子体技术可以实现高温、高能量的处理条件,从而能够制备出不同成分、形态的薄膜,为其他材料加工提供了较好的保护。
三、等离子体技术的发展趋势随着等离子体技术的不断研究和实践,其应用也越来越广泛。
未来,等离子体技术的应用将集中在以下几个方向:1、低压等离子体技术低压等离子体技术是在较低气压下产生等离子体的一种技术。
由于低压等离子体处理具有高精度、高速度等优势,未来在半导体、液晶显示器等高科技领域将会得到广泛应用。
2、微纳加工技术随着科技的发展,微纳加工技术对材料的要求越来越高。
等离子体表面改性技术(报告)

等离子体表面改性技术……吴师妹整理I前沿材料表面处理技术是U前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。
科学技术和现代工业的发展,对摩擦、磨损、腐蚀和光学性能优异的先进材料的需要日益增长,这导致了整个材料表面改性技术的发展与进步,其中等离子体表面改性技术发挥了重要作用。
等离子表面处理因其性能的优势和低廉的成本已成为材料科学领域最活跃的研究方向之一。
2等离子体表面改性的原理等离子体是一种物质能量较拓的聚集状态,它的能量范用比气态、液态、固态物质都高,被称为物质的笫四态,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化序过程。
一些粒子还会注入到材料表面引起碰撞.散射、激发、重排、异构、缺陷、晶化及非晶化,从而改变材料的表面性能。
3等离子体表面改性技术的种类根据温度不同,等离子体可分为拓温等离子体和低温等离子体(包括热等离子体和冷等离子体)。
高温等离子体的温度高达10&K〜10吆,在太阳表面、核聚变和激光聚变中获得。
. 丘/体一般为稠离子体,冷等离子体一般为稀薄等离子体。
在材料表面改性技术中,溅射、离子镀、离子注入、等离子化学热处理丄艺应用的是在低压条件下放电产生的低压(冷)等离子体,而等离r 喷涂、等离r淬火及多元共渗相•化、等离子熔覆価冶金等工艺中应用的是低温等离子体中的稠密热等离子体,通常指压缩电弧等离子束流。
3.1低压(冷)等离子体表面处理技术近年来,低压等离子体在表面镀膜、表面改性及表面聚合方面发挥着越来越重要的作用。
3.1.1溅射和离子镀溅射镀膜是基于离子轰击靶材时的溅射效应,采用的最简单装置是直流二极溅射,其它类型的溅射设备有射频溅射磁控溅射、离子束溅射等,其中磁控溅射山于沉积速率高,是U前工业生产应用最多的一种。
等离子体技术在材料表面改性方面的研究进展

等离子体技术在材料表面改性方面的研究进展随着科技的不断发展,等离子体技术也被越来越多的人关注和应用。
等离子体技术广泛应用于化学、材料、医学等领域,并在这些领域取得了很好的成效。
其中,在材料表面改性领域,等离子体技术更是发挥了巨大的作用。
一、等离子体技术在材料表面改性中的应用材料的表面特性往往决定了其使用性能和使用寿命。
而等离子体技术通过对材料表面进行化学反应、物理作用和生物功能的改变,从而增强了材料表面的功能和性能。
以下是等离子体技术在材料表面改性领域的主要应用:(1) 表面清洁和改性等离子体喷涂,常用于金属材料表面的清洁和改性。
喷涂等离子体可以清洁金属表面上的油污、水气、铁锈和氧化物等污染物,也可以修复表面的缺陷、增加表面耐磨性和耐腐蚀性。
(2) 表面涂层和改性等离子体表面涂层是等离子体技术中另一个应用广泛的领域。
比如,等离子体氧化可以提高金属表面的高温氧化能力。
在等离子体氮化和碳化过程中,靶材表面会生成氮化物和碳化物层,从而增加其在高温和高应力环境下的稳定性和耐磨性。
等离子体聚合可以引入新的化学官能团,从而在表面层产生新的化学和物理特性。
(3) 表面改性和生物附着性等离子体技术在一些医学设备和生物医学工程领域也被广泛使用,例如植入材料中,等离子体技术可以为其表面引入特定的化学成份,由于不同的化学组合以及物理特性,使得表面可以达到不同的生物相容性和生物附着性。
二、材料表面改性中等离子体技术的主要优势等离子体技术在材料表面改性领域的应用还有许多优势。
(1) 高效、环保、节能等离子体技术是一种高能量、高产量、高效率的技术手段。
通过等离子体特有的物理和化学特性改变材料表面,比传统方法更加环保、能耗更少且包括处理时间在内工期也比其他生产方法明显缩短。
(2) 处理质量好、效果稳定等离子体技术可以实现对材料表面的高精度处理,并且具有很好的可重现性和可控制性。
因此,等离子体技术的改性效果很稳定、效率很高,可以有效的提高材料表面的性能和使用寿命。
等离子体高分子材料表面改性技术及应用

等离子体高分子材料表面改性技术及应用摘要:等离子体技术具有工艺简单、操作方便、加工速度快等优点,不但能改善特定环境下高分子材料的使用性能,也拓宽了常规高分子材料的适用范围。
因此,等离子体技术在高分子材料表面改性方面的应用广泛。
本文首先介绍等离子体表面改性技术内容,进一步探讨其在市场中的应用,希望可以更好的提高该技术在市场中应用的效果,进一步促进行业的长久发展。
关键词:等离子体;高分子材料;表面改性;技术;应用引言高分子材料作为新兴材料的重要组成部分,目前被应用在多个方面,比如农业生产、工业生产以及航空航天、生物医药等领域。
等离子体高分子材料表面改性技术在保持高分子材料原有性能的前提下,可使材料表面产生一系列物理、化学变化,从而提高材料的表面性能,从而达到一定功能和用途的目的。
本文将首先论述等离子体高分子材料表面改性技术的内容,进一步探讨其在我国市场方面的应用。
一、等离子体高分子材料的表面改性技术运用等离子体技术改变高分子材料的表面性能的方法主要有三类:等离子体处理、等离子体聚合和等离子体接枝。
高分子聚合物具有分子可设计性,通过等离子体表面改性作用可以在表面引入不同的基团来改善其性能,如亲水性、疏水性、润湿性、黏结性、引入具有生物活性的分子或生物酶,提高其生物相容性等。
(一)等离子体处理表面改性等离子体处理是在利用外加电压的条件下将惰性气体NH 3、O 2、CO、Ar、N 2、H 2 等进行分子击穿,并将COOH、CO、OH、NH 2 等基团、离子及原子引入材料表面,或者在材料表面上直接产生自由基的技术方法。
新引入和新产生的自由基也可以通过化学键合方式与材料表面的一些分子相连接上,使得高分子材料获得新的表面性能。
等离子体处理能够改善高分子材料的表面性能,包括染色性、湿润性、印刷性、粘合性、防静电性、表面固化、亲水性与生物相容性及其他特性。
(二)等离子体聚合表面改性等离子体聚合是指利用等离子体中的电子、离子、自由基、光子及激发态分子等活性粒子使单体直接聚合的方法,如辉光放电产生等离子体的过程中,其电子拥有的平均能量为 1-10eV,相当于 104 -l0 5 K 的电子温度,而远比体系其他组成温度高。
等离子体技术在科学研究中的应用与前景

等离子体技术在科学研究中的应用与前景等离子体是一种高温、高能量的物态。
它的能量密度非常高,能够产生强烈的光、电、磁等效应,因此在科学研究中有着广泛的应用前景。
下面,我们就来探究一下等离子体技术在科学研究中的应用与前景。
一、等离子体技术在材料科学中的应用1.等离子体表面处理技术等离子体表面处理技术被广泛应用于材料表面的改性和增强。
等离子体处理可以通过改变表面的化学和物理性质,使材料的表面具有更好的柔性、防腐蚀性、耐磨性、热稳定性等特性。
目前,等离子体表面处理技术已经应用于航空航天、汽车制造、电子、医疗器械等行业。
2.等离子体辅助材料合成技术等离子体辅助材料合成技术可以通过等离子体的化学反应和沉积过程,在材料表面或内部形成纳米颗粒、薄膜、涂层等新型材料。
这些材料具有独特的光、电、磁性能,对于新型电子器件和催化剂等方面有着很大的应用前景。
3.等离子体放电合成技术等离子体放电合成技术是在等离子体的作用下,在气体中合成具有特殊功能的纳米材料。
例如,利用等离子体放电技术可以制备出一系列的纳米颗粒,如氧化铁、氧化钼、氮化硅等,这些粒子主要用于高分子复合材料、显示器件、感应器、化学传感器等领域。
二、等离子体技术在能源领域中的应用1.等离子体温度计等离子体温度计是在等离子体的辐射发射光谱法基础上发展的。
它能够测量高温、高能量等离子体的温度。
这种技术可以应用于热核聚变等领域。
2.等离子体离子源等离子体离子源可以作为高能量离子束的加速器,应用于核物理、材料学等领域。
它可以生产出高能量的粒子束,用于材料表面的改性,或用于核物理实验。
这种技术在核聚变反应堆中也有着广阔的应用前景。
三、等离子体技术在生物医学中的应用1.等离子体治疗技术等离子体治疗技术是一种新型的医学治疗方法。
它利用等离子体的化学反应、放电等特性,对生物组织进行疗效处理。
这种技术可以应用于各种肿瘤、细胞排异等治疗中。
2.等离子体消毒技术等离子体消毒技术可以在不使用化学药品的情况下,快速有效地消毒。
等离子表面冶金技术的现状与发展

内容摘要
最后,随着数字化和智能化的进步,冶金过程的远程监控和自动化控制将成 为可能,这将大大提高生产效率和产品质量。
内容摘要
总的来说,真空冶金技术作为现代工业的重要组成部分,其发展对工业进步 和科技创新具有重要意义。未来,我们期待看到真空冶金技术的进一步发展,以 满足更为复杂和多元化的应用需求,为人类社会的发展做出更大的贡献。
参考内容
内容摘要
双层辉光等离子表面冶金技术具有许多优点。首先,由于该技术是在等离子 体环境中进行,可以有效地提高材料表面的纯净度和致密性,同时减少材料表面 的氧化和污染。其次,该技术可以有效地提高材料表面的硬度和耐磨性,同时改 善材料的耐腐蚀
内容摘要
性和抗氧化性。此外,双层辉光等离子表面冶金技术还可以在材料表面形成 一层具有特殊性能的合金层,以提高材料的综合性能和使用寿命。
二等离子表面冶金技术的现状
2等离子镀膜技术:通过等离子镀膜技术在基体表面形成薄膜,实现表面的防 腐和耐磨。
3等离子注入技术:通过等离子注入技术将金属或非金属材料注入到基体表面 一定深度,实现表面的强化和耐磨。
二等离子表面冶金技术的现状
4等离子刻蚀技术:通过等离子刻蚀技术对基体表面进行加工,形成微纳米结 构,实现表面的强化和耐磨。
3、环保要求和安全问题
3、环保要求和安全问题
随着人们对环保和安全问题的度不断提高,粉末冶金技术的发展也更加注重 环保和安全。在生产过程中,降低能源消耗、减少环境污染、提高生产安全等方 面的要求越来越高,推动着粉末冶金企业不断改进工艺技术,提高环保意识和安 全生产水平。
4、产业结构调整和优化
4、产业结构调整和优化
等离子表面冶金技术的研究和应用已经涉及到多个领域,成为当前研究的热 点之一。在理论研究方面,等离子表面冶金技术的物理、化学和力学机制已经得 到了广泛的研究。在实践应用方面,等离子表面冶金技术已经在机械制造、汽车 制造、医疗器械、航空航天等领域得到了广泛的应用。
低温等离子体技术在材料表面改性中的应用

低温等离子体技术在材料表面改性中的应用引言修饰材料的表面,能够显著提高材料的性能和性质,依托于这一理念,低温等离子体技术应运而生,成为表面修饰的一种重要手段。
与传统的化学方法相比,低温等离子体技术具有绿色环保、高效便捷、非接触性等优点,被广泛应用于材料的改性领域。
本文将详细介绍低温等离子体技术在材料表面改性中的应用。
第一节:低温等离子体技术的基本原理低温等离子体技术是指在室温及其附近,通过将气体加电离,使其形成等离子态,进而实现对材料表面的改性。
低温等离子体的电离过程主要可以通过射频电场、微波电场、直流电场、电子束、离子束等方式实现。
这些电场能够将材料表面产生的等离子体束加以控制,使得材料表面分子重新排列,表面结构组成发生改变,从而实现对其性质和性能的调控。
第二节:低温等离子体技术与材料表面改性1. 表面涂层低温等离子体技术可用于制备不同性质和组成的涂层,通过气体放电产生的等离子体反应,使得各种材料表面能够接受不同的功能性或保护性涂层。
例如,利用气体氧化反应,可以在金属表面形成氧化层,提高其防腐蚀性质;而将气体和有机化合物结合,可以制备具有防水性、防腐性及耐磨性的表面涂层。
2. 表面附着能强化低温等离子体技术可以通过将材料表面暴露于某些刻蚀气体或特定的化学物质处理,使其表面产生一定程度的不同化学性质,从而进一步增强表面的附着力。
利用特定的化学处理方法,可以制备出最大程度强化表面附着力的表面结构。
3. 表面能量调控通过引入高能粒子或光子,可以使得表面产生介电影响,从而实现表面的能量峰位调控,更改表面的化学性质、形态和结构等,进而调控材料的性能。
利用此方法,可以制备出高抗磨损、高阻抗的表面结构。
4. 硬质膜制备低温等离子体技术可以通过气相反应,在材料表面形成新的结构,例如通过氮化反应在表面制备硬质膜。
硬质膜具有极高的硬度、耐磨损性及化学稳定性,被广泛应用于制造及保护功能性材料。
第三节:低温等离子体技术在实际应用中的局限低温等离子体技术虽然具有非接触性、绿色环保的优点,并且能够精密控制材料表面结构,但在实际应用中仍然存在一些局限性。
等离子体表面处理技术的原理

等离子体表面处理技术的原理理论说明1. 引言1.1 概述等离子体表面处理技术是一种改变材料表面性质的有效方法,通过利用等离子体对材料表面进行激发和修改,可以实现润湿性能提升、去除污染物、改善粘附性能等目标。
这项技术已经在多个领域得到广泛应用,如电子器件制造、材料加工和生物医学等。
1.2 文章结构本文主要围绕等离子体表面处理技术的原理和理论进行探讨,以及相关的实验验证和应用案例分析。
文章共分为五个部分:引言、等离子体表面处理技术的原理、等离子体表面处理技术的理论说明、实验验证与应用案例分析以及结论与未来展望。
1.3 目的本文的目的在于深入探讨等离子体表面处理技术的原理和机制,并通过对相关实验研究和应用案例的分析来评估该技术的可行性和效果。
同时,本文还将探讨该技术所面临的挑战并展望其在相关行业中的未来发展前景。
通过本文的撰写,旨在增进读者对该技术的了解和认识,促进其在实际应用中的推广和发展。
2. 等离子体表面处理技术的原理2.1 等离子体介绍等离子体是由加热至高温状态下电离而成的气体,其中包含了正离子、负离子和自由电子。
等离子体在物理、化学和工程领域中广泛应用,尤其在表面处理方面有着重要的作用。
2.2 等离子体表面处理的基本原理等离子体表面处理技术是利用含能量较高的等离子体对材料表面进行物理和化学改变的过程。
通过将某种气体加热至高温并施加电场或直接暴露在电弧中,可形成稳定的等离子态。
这些带电粒子与材料表面相互作用时会产生各种效应,包括清洁、去除污染物、增强润湿性能、提升附着力等。
2.3 受控等离子体处理技术的发展和应用随着科技进步和相关研究的不断深入,受控等离子体处理技术在多个领域得到了广泛运用。
例如,在纳米制造、光电器件加工、涂层改性、材料表面改良等方面都有广泛的应用。
受控等离子体处理技术不仅能够提高材料表面的物理和化学性能,还可实现对材料性质的调控和优化。
以上是关于等离子体表面处理技术原理的基本说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等离子体表面改性技术的研究与发展摘要本论文介绍了等离子体的相关概念,主要阐述了低温等离子技术在金属材料表面改性中的两种处理方法。
并对等离子体电解沉积技术做了简要介绍,分析了该技术的应用前景及存在的问题。
最后对等离子体表面改性技术的发展做出展望。
关键词等离子体;表面改性;等离子体电解沉积技术Development of Plasma Surface Modification TechnologyAbstract :The relate concept of plasma the means on application of cold plasma technology to surface modification of metal in this paper. This article also introduce Plasma electrolysis deposition technology, the problems and development directions of PED in the surface modification technology arc also presented. The prospects of plasma surface modification technology is also analyzed.Key words :plasma,surface modification,plasma electrolytic deposition0. 前言金属零部件的磨耗量是增大能耗,增加零部件更换率和提高生产运用成本,降低生产效率的重大问题,因此如何提高零部件表面的耐磨性,实施表面改性处理是十分重要的课题。
随着科学技术和现代工业的发展,各种工艺对使用产品的技术要求越来越高,对摩擦、磨损、腐蚀和光学性能优异的先进材料的需要日益增长,这导致了整个材料表面改性技术的发展与进步。
其中等离子体表面改性技术发挥了重要作用。
等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,同时开创了一门新的研究领域。
这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。
正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速发展起来。
1. 概述1.1 等离子体等离子体(plasma)一词最先出现在19世纪30年代Langmuir的物理文献中。
用它来表示气体放电中正负电荷相等而呈电中性的区域。
更早可追述到1879年不列颠协会的威廉·克鲁克斯(Willamcrooks),他在做气体导电实验时确认放电管中存在物质的第四态(等离子体)。
[1]等离子体是一种电离度超过0.10%的气体,是由离子、电子和中性粒子(原子和分子)所组成的集合体。
等离子体整体呈中性,但有相当数量的电子和离子,表现相应的电磁学等性能,如等离子中有带电粒子的热运动和扩散,也有电场作用下的迁移。
等离子体是一种物质能量较高的聚集状态,它的能量范围比气态、液态、固态物质都高,所以被称为物质的第四态。
其主要特征是:粒子间存在长程库仑相互作用,等离子体的运动与电磁场的运动紧密耦合,存在极其丰富的集体效应和集体运动模式。
1.2 等离子体的分类等离子体的分类方法很多,按温度可将等离子体划分为热力学平衡态和非热力学平衡态等离子体。
当电子温度与离子温度、中性粒子温度相等时,等离子体处于热力学平衡状态,称之为平衡态等离子体。
因其温度一般在5×103K以上,故又称其为高温等离子体(Thermal Plasma)。
高温等离子体的温度可以高达l06K~l08K,在太阳表面、核聚变和激光聚变中获得。
当电子温度大于离子温度时,称之为非平衡态等离子体,其电子温度高达104 K以上,而其离子和中性粒子的温度却低至300~500 K,因此,整个体系的表观温度还是很低的,故又称之为低温等离子体(Cold Plasma)。
低温等离子体又包含热等离子体和冷等离子体,其中热等离子体一般为稠密等离子体,而冷等离子体一般为稀薄等离子体。
高温等离子体技术主要利用等离子体的物理特性,由于高温等离子体的电子温度和气体(离子)温度达到平衡,不仅电子温度高,重粒子温度也很高,在此温度下,难以实现材料表面改性的目的,甚至会损坏基体材料,故在金属材料的表面改性中主要利用低温等离子体。
[2]低温等离子体技术则利用其中的高能电子参与形成的物理、化学反应过程。
通过这些物理化学过程可以完成许多普通气体及高温等离子体难以解决的问题。
1.3等离子体技术的应用等离子是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质,这种电离气体是由原子、分子、原子团、离子和电子组成。
根据其中存在微粒的不同,其具体可以实现对物体处理的原理也各不相同,加之输入气体以及控制功率的不同,都实现了对物体处理的多样化。
并且各种粒子在对物体处理过程中所表现出来的作用也各不相同的,原子团(自由基)主要是实现对物体表面化学反应过程中能量传递的“活化”作用;电子对物体表面作用主要包括两方面:一方面是对物体表面的撞击作用,另一方面是通过大量的电子撞击引起化学反应;离子通过溅射现象实现对物体表面的处理;紫外线通过光能使物体表面的分子键断裂分解,并且增强穿透能力。
粒子作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。
使得等离子表面处理技术在材料科学、高分子科学、生物医药材料学、微流体研究、微电子机械系统研究、光学、显微术和牙科医疗等领域得到广泛应用。
尤其在粘接材料、纺织纤维材料和金属材料等的改性中的应用更为可观,本论文主要介绍等离子技术在金属材料改性中的应用。
2. 低温等离子体表面改性处理方法表面改性技术(surface modified technique)是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。
它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等薄膜镀层、物理气相沉积、化学气相沉积等)和非金属涂层技术等。
这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。
使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命。
低温等离子体对金属材料的改性处理可以分为低温等离子体涂覆,低温等离子体表面扩渗两种方法。
2.1 低温等离子体涂覆改性(PCVD)将低温等离子技术应用于化学气相沉积(CVD),强化了化学反应过程,使气相沉积技术得到了新的发展,这种技术简称为低温等离子体化学气相沉积(PCVD)。
PVCD是一项表面改性新工艺,已引起了人们的极大关注。
PCVD法就是将反应气体(一般两种以上)通入反应室内,然后辉光放电产生高能粒子,这些粒子将击断气体分子的化学键,使气体分子分解,进而开始化学反应生成所需的固体产物并沉积在基体表面上。
2.1.1 改性原理其中等离子体与金属材料发生的反应如下:A(g) + B (g)—C (s) + D (g) [2]两种以上气体在等离子体态反应,生成固体和新的气体。
在等离子体中生成的电子、离子、自由基等与气相单体分子碰撞,使单体分子激发活化,随之与未活化的单体碰撞发生链增长,当两个正在增长的链相碰撞时就会失去活性,则链增长终止,终止反应形成微细的球状粉末,逐渐在基体材料表面沉积,在基体材料表面上再与吸附的单体反应,生成薄膜而形成涂覆层,以获得晶体结构、化学成分和性能有别于基体材料的涂覆层,从而使金属表面改性。
2.1.2 PCVD的应用利用等离子体与反应气体可以形成许多薄膜,如SiC、SiN、TiN,、TiNC、TiC等等,这些薄膜具有各种性能,如高硬度,耐磨,耐蚀,防潮等等,从而使基体材料的性能得到改善。
其中,由于TiN薄膜具有金黄色外观和较高的硬度,近年来,人们对TiN膜的研究较多。
用PCVD沉积TiN时,使用的气体是HZ 、NZ 、TiCl4等,这些气体在600℃以下便可在工件表面形成TiN涂层。
用PCVD TiN成膜温度低,沉积速率高,沉积层结合力强,膜层具有高硬度,从而大大提高了工件的耐磨性,并具有耐腐蚀、抗高温氧化的特性。
在一定条件下,利用PCVD法使低碳烃气体发生等离子体聚合,还可以制得具有金刚石结构的碳薄膜。
金刚石结构的碳薄膜电阻率大,是绝缘体,但导热系数与金属相近,故可作为IC或半导体激光元件的受热器等的绝缘薄膜;该膜透明,折射率大,可用于各种光学零件;硬度也大,可应用于工具表面的硬质膜涂层、固体润滑膜涂层、X射线掩蔽基板等。
在硬质合金刀具上涂覆类金刚石薄膜1~5um,硬度可达原刀具的5倍,寿命提高3~5倍。
2.2 等离子体表面扩渗低温等离子体与金属材料发生的另一反应如下:A(g) + B (g)—C(s)反应为固体和气体反应,在固体表面生成新的固体的反应,称为等离子体表面扩渗,它是利用等离子体使金属或非金属离子在金属表面形成化合物扩散层,金属或非金属离子通过扩散层向基体金属内部扩散,从而使金属表面改性。
其原理为等离子体中的离子通过等离子体场中的电位差而被加速,打击固体表面,被固体表面吸附,在固体表面再结合生成稳定的分子基团,形成化合物扩散层,固体表面吸附的分子通过扩散层向固体内部扩散。
利用低温等离子体技术在表面扩渗最常见的有渗碳、渗氮和碳氮共渗处理,通常所用的技术为等离子体电解氧化技术。
[2] 此技术在下文中会作介绍。
2.2.1 低温等离子体氮化利用低温等离子体技术在表面渗氮的方法,可以显著提高金属材料表面的力学性能。
与其他氮化技术相比,其优点在于:①等离子体氮化能较好地控制工件表面的成份、结构和性能。
氮化后不会产生脆性的混合相。
对于有色金属材料、铸铁和合金钢来说,这是极为有利的。
②低温等离子体氮化可在低于常规氮化的温度下进行,从而可以保持工件本体性能不变。
③低温等离子体氮化过程所排放的气体无毒非爆,无环境污染。
④低温等离子体氮化处理使工件表层的尺寸稳定性极好,没有脆性化合物剥落的倾向,也没有表面变粗的迹象。
所以,低温等离子体氮化后,无需精磨或抛光就能直接使用。
等离子渗氮工艺的应用已很普遍。
不锈钢工件在低温等离子体氮化后能提高表面硬度和耐磨性,而耐蚀性损失很小或几乎没有损失。
大多数铝合金也可以进行低温等离子体氮化,但附着在铝件表面的氧化铝层对氮化起阻碍作用,不过可在氩等离子体中处理除去这一阻挡层。
在模具方面的应用最为广泛,如3Cr2W8V 钢压铸模、Cr12MoV钢压延模、M2钢冷挤压模、SCrMnMo钢热锻模经离子渗氮处理后的寿命一般可提高2--4倍。