低温等离子体在材料表面改性中的应用_肖梅

低温等离子体在材料表面改性中的应用_肖梅
低温等离子体在材料表面改性中的应用_肖梅

第31卷第1期2001年1月

 东南大学学报(自然科学版)JOUR NAL OF SOUTHEA ST UNIVER SITY (Natural Science Edition ) Vol .31No .1Jan .2001

低温等离子体在材料表面改性中的应用

肖 梅 凌一鸣

(东南大学电子工程系南京,210096)

摘要:概要介绍了目前低温等离子体在材料表面改性方面的研究进展.材料的许多特性,如金

属的表面硬度、耐腐蚀、耐摩擦,聚合物的表面浸润性、亲水性、粘附性以及生物功能材料的生

物相容性等,决定了材料的应用.低温等离子体并不改变材料的块材特性而仅影响材料的表面

特性.对金属如不锈钢等用氮气等离子源离子注入,可以在表面形成Fe 2N ,Fe 3N 和Fe 4N 的铁的氮化物,提高表面的硬度和耐腐蚀性能;氧气、氮气等离子体会在聚合物材料表面形成微针

孔结构,改善其浸润性、粘附性;用等离子聚合法在生物材料表面聚合高分子材料,如氯化对二

甲苯可以降低血小板的吸附.因此,低温等离子体在材料的表面改性方面有很好的应用前景.

关键词:低温等离子体;表面改性;功能材料

中图分类号:O461 文献标识码:A 文章编号:1001-0505(2001)01-0114-05

 收稿日期:2000-10-26. 作者简介:肖 梅,女,1972年生,讲师.

等离子体作为物质的第4态,是指部分或完全电离的气体,且自由电子和离子所带正、负电荷总和完全抵消.而低温等离子体是指在直流电弧放电、辉光放电、微波放电、电晕放电、射频放电等条件下所产生的部分电离气体,其中由于电子的质量远小于离子的质量,故电子温度可以在几万度到几十万度之间,远高于离子温度(离子温度甚至可与室温相当).在低温等离子体中包含有多种粒子,除了电离所产生的电子和离子(108~1017cm -3

)以外,还有大量的中性粒子如原子、分子和自由基等.故粒子间的相互作用非常复杂,有电子电子、电子中性粒子、电子离子、离子离子、离子中性分子、中性分子中性分子等.在这样一个复杂的物理体系中,由于电子、离子、激发原子、自由基的存在且相互作用,因此常可以完成在普通情况下难以完成的事.20世纪七八十年代起,等离子体表面改性开始蓬勃发展,目前已形成一个独立的研究方向,主要针对金属、聚合物,生物功能材料等方面.1 低温等离子体在金属材料表面改性中的应用

近十几年来,低温等离子体广泛用于改变金属材料的表面力学特性,即材料的磨损、硬度、摩擦、疲劳、耐腐蚀等性能.

1.1 提高金属表面抗腐蚀能力

已经有一些研究小组通过对铁和钢合金进行离子束渗氮来提高其摩擦和耐腐蚀特性[1~5].这是因为

在铁中形成了如εFe 3N 和ζFe 2N 的铁的氮化合物而在不锈钢表层形成“扩展的奥氏体”.目前采用等离子源离子注入方法[1],它区别于单能量的氮离子注入法,样品浸没在等离子体中并加上高负电压脉冲.在电场中,这些离子被加速而注入到样品中.在注入过程中,与常规束线离子注入相似,用高能离子在材料表面近距离区域注入.与其不同的是,离子从四面八方同时注入到样品上而没有视线限制,因此可以处理形状较复杂的样品,且注入粒子的能量范围宽.W .Wang 小组对轴承钢采用氮等离子源离子注入

[1],注入剂量分别为5×1016,1×1017,5×1017cm

-2,所加电压为-20kV .在Na 2SO 4溶液的腐蚀实验中,没有处理的样品的腐蚀电流为170μA ·cm

-2,在经过5×1016,1×1017,5×1017cm -2剂量注入后,腐蚀电流分别为66,40,50

μA ·cm -2.结果表明在轴承钢表面形成了诸如Fe 2N ,Fe 3N 和Fe 4N 的铁的氮化物,提高了表面的耐腐蚀的特性.注入其他的粒子,如碳或同时注入氧、氮、碳粒子也可提高金属的耐腐蚀特性

[6,7].

1.2 提高金属的硬度和磨损特性

离子注入金属表面可以形成金属固溶体和沉积物,故可提高金属材料的硬度.S .Maeindl 用氮等离子源离子注入法对奥氏体不绣钢(X6Cr NiMoTi17.12.2AI SI 316Ti )进行渗氮,结果与未渗氮的样品相比,表

面硬度增加了1 4,耐磨损能力增加了1~2个数量级[8].

表1 9Cr18马氏体不锈刚经过离子注入后的实验结果样品注入粒子显微硬度(HV )疲劳轨迹 μm 第1组未处理551.4250第2组N 680.4115第3组Ti 814.353Ta 792.660Mo 912.354W 813.952第4组Ti 845.240Ta 832.645Mo 988.740W 831.5459Cr18ω((Fe )=79.655%,ω(Si )=0.8%,ω(Mn )=0.72%,ω(P )=0.035%,ω(S )=0.03%,ω(C )=

0.96%)马氏体不锈刚由于具有很好的耐腐蚀性而广泛

地应用于航空、核能和其他一些领域内的轴承材料.Z .

M .Zeng 等对9Cr18马氏体不锈刚分别进行氮等离子源

离子注入(PIII )和金属等离子体源离子注入(MEPIII )处

理[9].分4组样品:第1组未处理9Cr18.第2组仅注入氮

离子.第3组先MEPIII 注入Ti ,Ta ,Mo 和W ;然后再进行

氮离子PIII 处理.第4组先氮离子PIII 处理,再进行ME -

PIII 且同样注入Ti ,Ta ,Mo ,W 粒子.对样品进行显微硬度

和疲劳轨迹宽度的测量,结果如表1所示.

从结果可以明显看出:经过氮离子PIII 和ME PIII 处理之后,样品的显微硬度和抗疲劳性得到很大的

提高,尤其是(Mo +N )离子的注入增加效果最大,接近79%.2 低温等离子体在对聚合物材料的表面改性中的应用

聚合物材料由于具有良好的性能而广泛地应用于包装、航空、印刷、生医、微电子、汽车、纺织等行业.但日益增长的工业发展水平对聚合物材料的表面性能如粘附性、浸润性、阻燃性、电学性能等提出了更高的要求,利用等离子体对其进行表面改性已经引起研究人员的广泛兴趣.

聚合物材料的浸润性与许多领域有关,如印刷、喷涂和染色等.但由于聚合物材料表面自由能低,故而导致浸润性能不好.用化学的方法来改善其特性不但会损坏聚合物基质,而且还会放出大量有毒性的水,同时还需消耗大量的能量,成本高;而用低温等离子体处理克服了这些缺点,即省水省电又不污染环境.

C .Jie -Rong 用氧气、氮气、氦气、氩气、氢气和甲烷等离子体来处理聚乙烯对苯二甲酸脂即PET ,研究其表面自由能的改变规律和界面中分子间力对浸润性的影响[10].结果表明,PET 膜的浸润性可以得到提高,其改善程度取决于气体种类.用氧气、氮气、氦气和氩气等离子体处理一小段时间后表面张力从

42.0×10-5N cm 增长到56.0×10-5,57.5×10-5N cm ,非极性弥散力下降50%~60%,且氢键力增长9倍,同时含氧的极性功能团大量引入.用氢气等离子体也可提高浸润性,但甲烷等离子体由于减少含氧的极性功能团降低表面自由能,从而不能提高表面浸润性.

超高系数聚乙烯纤维(UHMPE )由于具有密度低、张力模量高等很好的纺织特性且对冲撞能量有吸收能力,故被广泛应用于许多合成材料中.但其有表面惰性,在合成材料中吸附能力差.低温等离子体(尤其是氧等离子体)可以提高UH MPE 纤维化合物的粘附性.S .I .Moon 等用氩等离子体来处理UHMPE 纤维[11],表明等离子体会在UH MPE 纤维表面上产生微针孔,而这些微针孔通过在UHMPE 纤维与树脂间的机械交联作用从而增加表面粘附性.在氩等离子体处理较长时间后,会改变UHMPE 纤维表面的化学特性,减少含氧基团,从而降低机械交联作用.因此,通过机械交联作用而增加表面粘附性的前提条件是UHMPE 纤维与乙烯树脂间相互浸润.

在金属表面上聚合有机物或使聚合物的表面金属化都涉及到聚合物与金属之间的粘附性问题.如具有好的热稳定性,低介电常数的氟塑料聚合物的表面金属化在微电子工业领域中有很好的应用潜力.但由于大多数氟聚合物的物理和化学上的惰性,使得金属在其上的粘附能力很低.最近在这方面的研究相当多[12,13].如E .C .Zhang 等研究聚四氟乙烯(PTFE )与铝金属间的粘附[14]

,他们先用氩等离子体(频率为40kHZ ,功率为35W ,氩气的压强为80Pa )对PTFE 进行预处理,并暴露在大气中约10min 以产生氧化物和过氧化物,然后在其上进行丙烯酸脂甘油醇即GMA 的接枝共聚合,再进行热蒸发铝,结果使带有GMA 接枝共聚合物的PTFE 与Al 之间的粘附力是PTFE 与Al 间的22倍,是仅经过Ar 等离子体预处理的PTFE 与Al 115

第1期肖 梅等:低温等离子体在材料表面改性中的应用

116东南大学学报(自然科学版)第31卷

之间的3倍.E.Dayss分别用3种方法[15]:机械粗糙法,氧气、氮气、氩气低压等离子体和产生中间层法对聚丙烯进行处理,研究金属在其上的粘附特性,结果是机械粗糙法在提高聚丙烯与铜之间的粘附力方面有效,但等离子处理会导致更好的结果,尤其是Ar等离子体.用等离子体聚合丙烯酸中间层含有C—O键表现出非常强的粘附性.

聚合物膜可分为极性聚合膜和非极性聚合膜.非极性聚合膜的电介体在生物和医药领域作用很大,但其电核存储能力和存储稳定性并不令人满意,而极性聚合膜的电介特性很好,但价格昂贵,因此从实用出发,如何提高非极性膜的电特性是很有价值的研究工作.Wei Feng用SF6,O2和Air等离子体对聚丙烯膜表面处理,由于改性过程中有隧道效应,增加了表面阱密度,尤其是C—F,C C,C O键的引入,就像一个深阱一样可以使得存储电核的能力和稳定性提高了50%.

聚合物广泛应用于建筑材料、交通和电子工程中,但由于其独特的化学组成而易于燃烧,故阻燃性成为很重要的需求.Ser ge B ourbigot在聚酰氨6(PA6)聚合物表面上用等离子体聚合法形成1层50μm厚的聚硅氧烷,使热传导率下降30%,且产生了许多不完全阻燃反应[16].

3 低温等离子体在生物功能材料的表面改性中的应用

由于低温等离子体的独特特性,最近几年在生物医药领域中已经引起人们越来越多的注意和兴趣.如用等离子体杀菌[17];分离薄膜的等离子体改性[18,19],用于降低蛋白质的吸附解决薄膜的污染问题;在玻璃基片上用等离子体喷涂[20],或将粒子束辅助沉积与物理气相沉积中离子注入相结合;在钛金属上形成含羟基的磷灰石来研究骨移植[21];研究可用做生物材料的有机化合物、金属、聚合物等材料的生物相容性[22~26].

利用聚合物、金属材料制成的生物功能材料已广泛应用于人造器官、组织移植、血管手术等方面.由于血液对异体材料非常敏感,故材料的血液相容性在生物相容性中非常重要,这直接关系到临床使用的安全性和有效性.研究表明血液相容性与材料基片的表面特性如表面亲水性、表面的化学组成有关[27].在治疗冠状血管疾病时,常用的临床方法是做冠状血管成形术(PTCA),即在血管中用金属扩张物将血管撑开.但其中所用的金属化的斯特坦固定膜仍有较高的凝血性(这是因为金属表面常带有正电核且表面自由能高的缘故),故血管会再狭窄https://www.360docs.net/doc/472865461.html,hann等[28]在金属表面用CVD方法聚合氯化对二甲苯,再用SO2微波等离子体处理.结果表明:经过SO2等离子体处理后接触角下降到15°,材料表面的亲水性提高.在研究人类血液蛋白纤维蛋白在其上的吸附实验中发现:经过二氧化硫等离子体处理后,纤维蛋白的吸附由原先的95%下降到54%,血小板的吸附也大大下降,材料的血液相容性得到提高.又如,有一些研究小组在材料中引入某些功能团如磷,可以提高生物环境与功能材料间的血液相容性[29,30].Jui-Che Lin在研究合成生物材料的血液相容性时,分别聚合2个不同的有机亚磷酸盐,即磷酸三甲脂((CH3O)3P)和((C H3)2C HO)3P),希望产生的薄膜中含有磷的功能团;另外将磷酸三甲脂和硫酸二甲脂进行共聚合,希望产生既含有磷的功能团又含有硫功能团的薄膜材料.通过扫描电子显微镜观测3种材料对血小板吸附的实验发现,与没有处理的玻璃基片相比,等离子聚合的磷酸三甲脂((CH3)2CHO)3P)已经降低血了小板的活性,血小板的吸附也减少了,但磷酸三甲脂和硫酸二甲脂的共聚合膜的血小板吸附量更少[28].

最近,等离子体技术在生物医药领域中又有一个新的应用趋势,即等离子体化学微图形技术[31,32].用于移植、组织培养或其他用途的人造生物材料必须与所处的生物环境有生物相容性.提高聚合物材料生物相容性的早期方法是准备含与细胞外介质(EC M)相似的氮和氧的功能团的基片.目前,在发展需粘附细胞的生物相容性表面时,集中在固定EC M蛋白质于基片表面上.对于那些不需要粘附细胞,如血细胞的材料表面改性所使用的技术是产生具有高度惰性的表面,如氟化的碳氢化合物,或具有生物活性的分子禁止细胞固着,或产生具有高度亲水性的基团等.如果对于整个微图形表面生物相容性或生物惰性都能得到保证,那么微图形细胞培养可以在生物工程中发挥极大的作用.

Wei Feng,Xia J inghua,Tu De min.SF6,O2,Air glo w discharge improve the el ectret propert y of biaxially oriented pol ypropylene fil m.IEEE,1996.

99~103.

4 结 语

低温等离子体技术正广泛应用于金属材料、聚合物材料、生物功能材料的表面改性的研究,有的已经投入生产.尽管低温等离子体技术对材料的表面改性范围越来越广,但对各种粒子与表面相互作用的机理,人们还了解得不清楚,有待进行理论研究.一旦有所突破,必将对其应用产生积极作用.

参考文献

1 Wang W ,Booske J H ,Baum C ,et al .Modification of bearing steel surface by nitrogen plasma source ion implantation for corrosion protection .Surface and Coating Technology ,1999(111):97~102

2 Sun Y ,Bell T .Sliding wear characteristics of low temperature plasma nitride 316austenitic stainless steel .Wear ,1998,218(1):34~42

3 Hruby V ,Kadlec J ,Pospichal M .Vacuu m arc deposited (TiW )N coatings .In :Military Acad ,ed .Le Vide Science and Technique and Applications Proceedings of the 199711th International Colloquium on Plas ma Processes .Paris :Le Mans ,Fr ,Soc Francaise du Vi -de ,1997.304~307

4 Menthe E ,Rie K T .Plasma nitridin g and plasma nitrocarburizing of electroplated hard chromium to increase the wear and the corrosion properties .In :TU Braunschweig ,ed .Surface and Coatings Technology Proceedings of 19971st Asian -European International Conference on Plas ma Surface Engineering .S witzerland :Elsevier Sequoia S A Lausanne ,1999.217~220

5 Bloy ce A ,Qi P Y ,Dong H ,et al .Surface modification of titanium alloys for combined improvements in corrosion and wear resistance .Surface and Coating Technology ,1998,107(23),125~132

6 Sun Y ,Li X ,Bell T .Low temperature plasma carburising of austenitic stainless steel for improved wear and corrosion resistance .Sur -face En gineering ,1999,15(1):49~54

7 Wierzchon T ,Fleszar A .Properties of surface layers on titanium alloy produced by thermo -chemical treatments under glow discharge conditions .Surface and Coating Technology ,1997,96(23):205~209

8 Maeindl S ,Guenzel R ,Richter E ,et al .Nitriding of austenitic stainless steels using plasma immerision ion implantation .Surface and Coating Technology ,1998,100101(13):372~376

9 Zeng Z M ,Zhan g T ,Tang B Y ,et al .Surface modification of steel by metal plas ma immersion ion implantation using vacuum arc plas -ma source .Surface and Coating Technology ,1999,120121:659~662

10 Chen Jierong ,Wang Xueyan ,Tomiii W .Wettabilit y of pol y (ethylene terephthalate )film treated with low -temperature plasma and their

surface analysis by ESCA .Journal of Applied Polymer Science ,1999,72:1327~1333

11 Moon S I ,Jang J .The mechanical interlocking and wetting at the interface bet ween argon plas ma treated UH MPE fiber and vinylester

resin .Journal of Materials Science ,1999,34:4219~4224

12 Wolan y D ,Fladung T ,Duda L ,et al .Combined TOF -SIMS XPS study of plas ma modification and metallization of polyimide .Surface

and Interface Analysis ,1999,27:609~617

13 Boerio F J ,Tsai Y M .Adhesion of natural rubber to steel substrates :the use of plasma polymerized primers .Rubber Chemistry and

Technology ,1998,72:199~211

14 Zhang M C ,Kang E T ,Neoh K G ,et al .Adhesion enhancement of thermally evaporated aluminum to surface graft copolymerized poly

(tetrafluoroethylene )film .Journal Adhesion Science Technology ,1999,13(7):819~835

15 Dayss E ,Leps G ,M einhardt J .Surface modification for improved adhesion of a polymer -metal compound .Surface and Coating Techn -

ology ,1999(116119):986~990

16 Bourbigot S ,Jama C ,Le Bras M ,et al .New approach to flame retardancy using plasma assisted surface pol ymerization techniq ues .

Polymer Degradation and Stability ,1999,66:153~155

17 Hendricks Sara K ,Kwok Connie ,Shen Mingchao ,et al .Plas ma -deposited membranes for controlled release of antibiotic to prevent

bacterial adhesion and biofilm formation .Journal of Biomedical Materials Research ,2000,50(21):60~170

18 Chen Hua ,Belfort G .Surface modification of poly (ether sulfone )ultrafiltration membranes by low -temperature plas ma -induced graft po -

lymerization .Journal of Applied Polymer Science ,1999(72):1699~1711

19 Muller M ,Oehr C .Plas ma aminofunctionalisation of PVDF microfiltration membranes :comparison of the in plasma modifications with a

grafting method using ESCA and an amino -selective fluorescent probe .Surface and Coating Technology ,1999(116119):802~80720 Ferraz M P ,Fernandes M H ,Trigo Cabbal A ,et al .In vitro growth and differentiation of osteoblast -like human bone marrow cells on 117第1期肖 梅等:低温等离子体在材料表面改性中的应用

118东南大学学报(自然科学版)第31卷

glass rein forced hydroxyapatite plas ma-sprayed coatings.Journal of Materials Science:Materials in Med icine,1999(10):567~576 21 Wang Changxian g,Chen Zhiqin g.Design of HA Tibiomedical implants with the use of ion-beam-ass isted deposition.Journal of Bio-medical Engineering,1999,16(2):140~142

22 Poncin-Epaillard F,Legeay G,Brosse J C.Plasma modification of cellulose derivatives as biomaterials.Journal of Applied Polymer Science,1992,44(9):1513~1522

23 Czarnowska E,Wierzchon T,Maranda-Niedbala A.Properties of the s urface layers on titaniu m alloy and their biocompatibility in vitro tests.In:Children's Memorial Health Inst,ed.Journal of Materials Proceeding Technology Proceedings of the1997Advances in Mate-rials and Proceedings Technologies.Switzerland:Elsevier Science S A Lausanne,1999.190~194

24 Hsu S H,Chen W C.Improved cell adhesion b y plasma-induced grafting of L-lactide onto polyurethane surface.Biomaterials,2000, l21(4):359~367

25 Trigwell S,Hayden R D,Nels on K F,et al.Effects of surface treatment on the surface chemistry of NiTi alloy for biomedical applica-tions.Surface and Interface Analysis,1998,26(7):483~489

26 Baq uey C,Palumbo F,Porte-Durrieu M C,et al.Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its sur-face.Nuclear Instruments and Methods in Physics Research B,1999(151):255~262

27 Lin J C,Chen Y F,Chen C Y.Surface characterization and platelet adhesion studies of plasma polymerized phosphite and its copol y-mers with dimethylsulfate.Biomaterials,1999(20):1439~1447

28 Lahann J,Klee D,Thelen H,et al.Improvement of haemocompatibility of metallic stents by polymer coating.Journal of Materials Science:Materials in Medicine,1999(10):443~448

29 Ishihara Kazuhiko,Iwasaki Yasuhiko,Nakabayas hi Nobuo.Novel biomedical polymers for regulating serious biological reactions.Ma-terials Science and Engineering C:Biomimetic Materials,Sensors and Systems,1998,l6(4):253~259

30 Hsiue Ging-Ho,Lee Shyh-Dar,Chang Patricia Chuen-Thuen,et al.Surface characterization and biological properties stud y of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization.Journal of Biomedical Materials Research,1998,42(1):134~147

31 Ohl A,Schroder K.Plas ma-induced chemical micropatterning for cell culturing applications:a brief review.Surface and Coating Tech-nology,1999(116119):820~830

32 Ohl A,Schroder K,Keller D,et al.Chemical micropatterning of polymeric cell culture substrates using low-pressure hydrogen gas discharge plasma.Journal of Materials Science:Materials in Medicine,1999,10(12):747~754

Application of Cold Plasma in Surface Modification

Xiao Mei Ling Yiming

(Depart ment of Electronics Engineering,Southeast University,Nanjing210096)

A bstract: This paper briefly r evie ws the research state of surface modification with c old plasma.Many properties of materials like microhardness,c orrosion resistance,and tribological pr operties of metal,wettability,hydrophilicity, and adhesion of polymer and biomaterials'biocompatibility,often deter mine their application.The cold plasma can only influence material's surface properties,but cannot change its bulk property.For exa mple,to metal like stainless steel,N2ion source ion implantation can form iron's nitrides like Fe2N,Fe3and Fe4N which can improve its micr o-hardness and c orrosion resistance;O2,N2plasma can induce the for mation of micr o-pinhole on the surface of polymer materials,that improves their wettability and adhesion properties.The high-molecular material like poly(2-chloro pa-raxylyylene)polymerized on biomaterials using plasma polymerization can reduce the adsorption of blood platelet. Therefore cold plasma has a good foreground at the modification of materials.

Key words: cold plasma;surface modification;functional material

等离子体的应用

等离子体技术与应用 学号 队别 专业 姓名

摘要 等离子体作为物质存在的一种基本形态,自18世纪中期被发现以来,对它的认识和利用不断深化。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。目前,等离子体技术已被广泛的用于国防、工业、农业、环境、通信等一系列国民经济发展领域,极大地推动了信息产业的发展,促进了工业科技进步。 关键词等离子体微波放电隐身技术材料的表面改性微波等离子灯 引言 等离子体是由带电的正粒子、负粒子(其中包括正离子、负离子、电子、自由基和各种活性基团等)组成的集合体,其中正电荷和负电荷电量相等故称等离子体。他们在宏观上呈电中性的电离态气体(也有你液态、固态)。当温度足够高时,构成分子的原子也获得足够大的的动能,开始彼此分离,这一过程称为离解。在此基础上进一步提高温度,就会出现一种全新的现象,原子的外层电子将摆脱原子核的束缚而成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离。等离子体指的就是这种电离气体,它通常由光子、电子、基态原子(或分子)、激发态原子(或分子)以及正离子和负离子六种基本粒子构成的集合体。因此,等离子体也被称为物质的第四态。 内容 一、等离子的性质 物质的第四态等离子体有着许多独特的物理、化学性质。只要表现如下: 1) 温度高、粒子动能大。 2) 作为带电粒子的集合体,具有类似金属的导电性能。等离子体从整体上看是一种导体电流体。 3) 化学性质活泼,容易发生化学反应。 4) 发光特性,可以作光源。 二、等离子技术的应用 2.1微波放电等离子体技术与应用 通常,低气压、低温等离子体是在1~100pa的气体中进行直流或射频放电产生的。直流辉光发电首先被研究和应用,但该等离子体是有极放电,而且密度低、电离度低、运行气压高,这就限制了其应用的广泛性。随后,射频放电技术逐步被发展起来,这是一种无极放电,且等离子体工作与控制参数比辉光放电有所提高,因而获得了较广泛的应用。但是其密度和电离度仍较低,应用范围依然受到限制。 微波放电初始阶段的物理过程如下。微波引入反应腔中建立起电磁场,反应气体中的电子在微波场作用下获得能量,与气体分子碰撞使其电离,从而得到更多的

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

低温等离子体在材料表面改性中的应用_肖梅

第31卷第1期2001年1月  东南大学学报(自然科学版)JOUR NAL OF SOUTHEA ST UNIVER SITY (Natural Science Edition ) Vol .31No .1Jan .2001 低温等离子体在材料表面改性中的应用 肖 梅 凌一鸣 (东南大学电子工程系南京,210096) 摘要:概要介绍了目前低温等离子体在材料表面改性方面的研究进展.材料的许多特性,如金 属的表面硬度、耐腐蚀、耐摩擦,聚合物的表面浸润性、亲水性、粘附性以及生物功能材料的生 物相容性等,决定了材料的应用.低温等离子体并不改变材料的块材特性而仅影响材料的表面 特性.对金属如不锈钢等用氮气等离子源离子注入,可以在表面形成Fe 2N ,Fe 3N 和Fe 4N 的铁的氮化物,提高表面的硬度和耐腐蚀性能;氧气、氮气等离子体会在聚合物材料表面形成微针 孔结构,改善其浸润性、粘附性;用等离子聚合法在生物材料表面聚合高分子材料,如氯化对二 甲苯可以降低血小板的吸附.因此,低温等离子体在材料的表面改性方面有很好的应用前景. 关键词:低温等离子体;表面改性;功能材料 中图分类号:O461 文献标识码:A 文章编号:1001-0505(2001)01-0114-05  收稿日期:2000-10-26. 作者简介:肖 梅,女,1972年生,讲师. 等离子体作为物质的第4态,是指部分或完全电离的气体,且自由电子和离子所带正、负电荷总和完全抵消.而低温等离子体是指在直流电弧放电、辉光放电、微波放电、电晕放电、射频放电等条件下所产生的部分电离气体,其中由于电子的质量远小于离子的质量,故电子温度可以在几万度到几十万度之间,远高于离子温度(离子温度甚至可与室温相当).在低温等离子体中包含有多种粒子,除了电离所产生的电子和离子(108~1017cm -3 )以外,还有大量的中性粒子如原子、分子和自由基等.故粒子间的相互作用非常复杂,有电子电子、电子中性粒子、电子离子、离子离子、离子中性分子、中性分子中性分子等.在这样一个复杂的物理体系中,由于电子、离子、激发原子、自由基的存在且相互作用,因此常可以完成在普通情况下难以完成的事.20世纪七八十年代起,等离子体表面改性开始蓬勃发展,目前已形成一个独立的研究方向,主要针对金属、聚合物,生物功能材料等方面.1 低温等离子体在金属材料表面改性中的应用 近十几年来,低温等离子体广泛用于改变金属材料的表面力学特性,即材料的磨损、硬度、摩擦、疲劳、耐腐蚀等性能. 1.1 提高金属表面抗腐蚀能力 已经有一些研究小组通过对铁和钢合金进行离子束渗氮来提高其摩擦和耐腐蚀特性[1~5].这是因为 在铁中形成了如εFe 3N 和ζFe 2N 的铁的氮化合物而在不锈钢表层形成“扩展的奥氏体”.目前采用等离子源离子注入方法[1],它区别于单能量的氮离子注入法,样品浸没在等离子体中并加上高负电压脉冲.在电场中,这些离子被加速而注入到样品中.在注入过程中,与常规束线离子注入相似,用高能离子在材料表面近距离区域注入.与其不同的是,离子从四面八方同时注入到样品上而没有视线限制,因此可以处理形状较复杂的样品,且注入粒子的能量范围宽.W .Wang 小组对轴承钢采用氮等离子源离子注入 [1],注入剂量分别为5×1016,1×1017,5×1017cm -2,所加电压为-20kV .在Na 2SO 4溶液的腐蚀实验中,没有处理的样品的腐蚀电流为170μA ·cm -2,在经过5×1016,1×1017,5×1017cm -2剂量注入后,腐蚀电流分别为66,40,50 μA ·cm -2.结果表明在轴承钢表面形成了诸如Fe 2N ,Fe 3N 和Fe 4N 的铁的氮化物,提高了表面的耐腐蚀的特性.注入其他的粒子,如碳或同时注入氧、氮、碳粒子也可提高金属的耐腐蚀特性 [6,7].

表面改性技术在陶瓷材料中的应用

表面改性技术在陶瓷材料中的应用 引言: 材料表面处理是材料表面改性和新材料制备的重要手段,材料表面改性是目前材料科学最活跃的领域之一。传统的表面改性技术,方法有渗氮、阳极氧化、化学气相沉积、物理气相沉积、离子束溅射沉积等。随着人们对材料表面重要性认识的提高,在传统的表面改性技术和方法的基础上,研究了许多用于改善材料表面性能的技术,主要包括两个方面:利用激光束或离子束的高能量在短时间内加热和熔化表面区域,从而形成一些异常的亚稳表面;离子注入或离子束混合技术把原子直接引进表面层中。陶瓷材料多具有离子键和共价键结构,键能高,原子间结合力强,表面自由能低,原子间距小,堆积致密,无自由电子运动。这些特性赋予了陶瓷材料高熔点、高硬度、高刚度、高化学稳定性、高绝缘绝热性能、热导率低、热膨胀系数小、摩擦系数小、无延展性等鲜明的特性。但陶瓷材料同样具有一些致命的弱点,如:塑性变形差,抗热震和抗疲劳性能差,对应力集中和裂纹敏感、质脆以及在高温环境中其强度、抗氧化性能等明显降低等。 正文: 一、陶瓷材料表面改性技术的应用 1.不同添加剂对陶瓷材料性能的影响。 由于陶瓷材料的耐高温特性经常被应用到高温环境中,特别是高温结构 陶瓷,其高温抗氧化性受到人们的关注。Si 3N 4 是一种强共价结合陶瓷,具有高 硬度、高强度、耐磨和耐腐蚀性好的性能。但是没有添加剂的Si 3N 4 几乎不 能烧结,陶瓷材料的高温强度强烈地受材料组成和显微结构的影响,而材料的显微结构特别是晶界相组成是受添加剂影响的,晶界相的组成对高温力学性能的影响极其敏感。对致密氮化硅而言,坯体中的物质传递对材料的氧化起着决定性作用,一般认为,在测试条件下,具有抛物线规律的氮化硅材料,其决定氧化的主要因素取决于晶界的添加剂离子和杂质离子的扩散速率,不同的添加剂对氮化硅陶瓷的氧化行为影响有所不同[1,2,3]。 2.离子注入技术。 离子注入就是用离子化粒子,经过加速和分离的高能量离子束作用于材料表面,使之产生一定厚度的注入层而改变其表面特性。可根据需要选择要注入的元素,并根据工艺条件控制注入元素的浓度分布和注入深度,形成所需要的过饱和固溶体、亚稳相和各种平衡相,以及一般冶金方法无法得到的合金相或金属间化合物,可直接获得马氏体硬化表面,得到所需要的表面结构和性能由于形成的改性表面不受热力学条件的限制(相平衡、固溶度),所以具有独特的优点。离子注入表面处理技术有:金属蒸汽真空弧离子源离子注入,等离子源注入等。在相同的条件下,重离子比轻离子有更强烈的辐射硬化,因此其对抗弯强度的增加更显著;由于单晶的表面缺陷少所以增加效果 更好]7,6[。

等离子体表面处理技术

等离子体表面处理技术的原理及应用 前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。 一、等离子体表面改性的原理 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。 二、等离子体表面处理技术的应用 1、在工艺产业方面的应用 1)、在测量被处理材料的表面张力 表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。最主要的表面测定方式包括测试墨水,接触角测量以及动态测量 评价表面状态 低表面能, 低于28 mN/m良好的表面附着能力,高表面能 2)预处理–Openair? 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺 常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。 使用Openair?等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

低温等离子体对材料的表面改性

低温等离子体对材料的表面改性 张 波 冷等离子体对材料的表面改性,通过放电等离子体来优化材料的表面结构,是一种非常先进的材料表面改性方法。冷等离子体的特殊性能可以对金属、半导体、高分子等材料进行表面改性,该技术已广泛应用于电子、机械、纺织等工程领域。 等离子体是“物质的第四态”,它是由许多可流动的带电粒子组成的体系。等离子体的状态主要取决于它的化学成分、粒子密度和粒子温度等物理化学参量,其中粒子的密度和温度是等离子体的两个最基本参量。实验室中采用气体放电方式产生的等离子体主要由电子、离子、中性粒子或粒子团组成。描述等离子体的密度参数和温度参数主要有:电子温度T e、电子密度n e、离子温度T i、离子密度n i、中性粒子温度T g、中性粒子密度n g。在一般情况下,等离子体呈现宏观电中性,当等离子体处在平衡状态时,n e≈n i=n g。可以用物理参量电离度η=n e/ (n e+n g)来描述等离子体的电离程度,低气压放电产生的等离子体是弱电离的等离子体(ην1),η=1时,为完全电离等离子体。 等离子体按照其组成粒子的能量大小及热力学性质,可分为高温等离子体和低温等离子体。高温等离子体中带电粒子的温度可达到绝对温度几千万度到上亿度,如太阳上的核聚变及地球上的热核聚变反应等。低温等离子体又分为热等离子体(热力学平衡)和冷等离子体(非热力学平衡),其中热等离子体中粒子的能量特别高,通常用于需要高温作业的领域,如磁流体发电,等离子体焊接、切割,等离子体冶炼,等离子体喷涂,等离子体制备超细粉等。实验室中采用低气压放电产生的等离子体,电子温度T e约为1~10eV(1eV=11600K),而离子温度T i只有数百开尔文,基本上等于中性粒子的温度,所以这种等离子体称为冷等离子体。正因为冷等离子体的宏观温度与室温相差无几,所以有着重要应用价值,如用于材料的表面改性以及光源等。 对于冷等离子体对高分子材料表面改性的作用机理,一般认为冷等离子体中含有大量电子、离子,激发态的分子和原子、自由基及紫外光等活性粒子,这些粒子的能量大多在0~20eV之间,而高分子材料大多是由C、H、O、N四种元素组成,这些分子之间的键能也多在l~10eV之间,如C-H(413eV)、C-N(219eV)、C-C(314eV)、C=C(61leV)等,恰恰在等离子体的能量作用范围之内,因而等离子体对高分子材料表面改性十分有效,可改变其表面的化学组分和化学结构。冷等离子体对高分子材料的表面改性可分为三类:第一种是非聚合性气体的等离子体表面处理,这是通过非聚合性气体(如O2、N2、N H3等)在等离子体的气氛下使材料表面化学组分和结构发生变化;第二种是聚合性气体的等离子体聚合,这是用有机物、有机硅化合物或金属有机化合物等在材料表面生成聚合物薄膜;第三种是等离子体接枝,即在被等离子体激活的材料表面引进化学基团。总之,由于冷等离子体中含有大量电子、离子,激发态的原子、分子和自由基等活性粒子,这些活性粒子和材料相互作用使材料表面发生氧化、还原、裂解、交联和聚合等各种物理和化学反应,从而优化材料表面性能,增加材料表面的吸湿性(或疏水性)、可染性、粘接性、抗静电性及生物相容性等。 冷等离子体发生装置与 真空紫外光对材料改性的影响 冷等离子体装置,在密封容器中设置特定的电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子的自由运动距离也愈来愈长,它们在电场作用下发生碰撞而形成等离子体;因这时会发出辉光,故称为辉光放电。辉光放电时的气压大小对材料处理效果有很大影响,其他影响因素还有放电功率、气体成分、材料类型等。电源作为等离子体发生装置的主要部件,功率范围一般在50~500W之间,根据电源频率的不同可分为直流、低频(50Hz~50kHz)、射频(指定频率13156MHz)、微波(常用2450MHz)。图1~图3分别是各种辉光放电装置示意图。 冷等离子体对材料表面改性的原理研究,过去一般停留在等离子体(电子、离子等)对材料表面的作用,这里介绍表面改性机制的新进展———真空紫外光(VUV)对材料的表面改性。一般认为,材料表面改性的机制,主要是自由基化学反应,但自由基扩

《粉体材料表面改性》课程教学大纲

《粉体材料表面改性》课程教学大纲 课程代码:050542002 课程英文名称:Surface Modification of powder (A2) 课程总学时:24 讲课:24 实验:0 上机:0 适用专业:粉体科学与工程专业 大纲编写(修订)时间:2017.3 一、大纲使用说明 (一)课程的地位及教学目标 粉体表面改性是粉体科学与工程专业方向课,为选修课。本门课程讲授粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、各行业典型粉体及纳米粉体饿表面改性方法、实践及改性产品的检测及表征方法。通过本课程的学习,不仅让学生掌握粉体表面改性的相关理论,同时培养学生发现、分析与解决问题的能力和精密进行科学研究的技能。为学生将来从事粉末材料、粉体工程领域的生产、科研打下坚实的理论和实践基础。 通过本课程的学习,学生将达到以下要求: 1.掌握粉体材料表面改性工艺的方法和原理; 2.使学生掌握目前工业表面改性典型设备; 3.使学生了解表面改性剂的种类、性质、使用条件; 4.掌握粉体改性前后的物性变化及相关的检测方法; 5. 进一步结合创新创业培养目标,加强学生创新能力的培养,使学生具备独立进行粉体表面原位修饰工艺设计与设备选型的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握粉体表面改性一般知识,包括粉体表面改性的原理、方法、工艺、设备及表面改性剂的性能及应用、改性产品的检测及表征方法等。 2.基本理论和方法:掌握粉体表面的物性,粉体表面改性的基本原理、掌握粉体表面改性工艺设计和设备;了解常见工业粉体的表面改性方法及应用。 3.基本技能:掌握粉体改性工艺设计计算、独立进行设备选型的技能等。了解特种粉体的生产工艺、制备技术及行业发展趋势。具备制备、加工特种粉体的必要的基础知识和基本技能。 (三)实施说明 本课程安排在第七学期学习,共24学时,其中理论讲课24学时。根据教学的需要,有针对性地对教学内容适当增减,各部分学时数可适当调整2学时。 1.教学方法:课堂讲授中重点对基本概念、基本原理和基本方法的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;积极增加课堂教学的趣味性和互动性,充分调动学生学习的主观能动性;注意培养学生独立进行科学研究的能力。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业课,涉及到许多物粉体表面改性的设备,因此在教学中采用ppt与课堂讲授相结合的教学手段,培养学生浓厚的学习兴趣,确保在有限的学时内,高质量地完成课程教学任务。 (四)对先修课的要求

等离子体表面改性技术的研究与发展.

等离子体表面改性技术的研究与发展 摘要本论文介绍了等离子体的相关概念,主要阐述了低温等离子技术在金属材料表面改性中的两种处理方法。并对等离子体电解沉积技术做了简要介绍,分析了该技术的应用前景及存在的问题。最后对等离子体表面改性技术的发展做出展望。 关键词等离子体;表面改性;等离子体电解沉积技术 Development of Plasma Surface Modification Technology Abstract :The relate concept of plasma the means on application of cold plasma technology to surface modification of metal in this paper. This article also introduce Plasma electrolysis deposition technology, the problems and development directions of PED in the surface modification technology arc also presented. The prospects of plasma surface modification technology is also analyzed. Key words :plasma,surface modification,plasma electrolytic deposition 0. 前言 金属零部件的磨耗量是增大能耗,增加零部件更换率和提高生产运用成本,降低生产效率的重大问题,因此如何提高零部件表面的耐磨性,实施表面改性处理是十分重要的课题。随着科学技术和现代工业的发展,各种工艺对使用产品的技术要求越来越高,对摩擦、磨损、腐蚀和光学性能优异的先进材料的需要日益增长,这导致了整个材料表面改性技术的发展与进步。其中等离子体表面改性技术发挥了重要作用。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,同时开创了一门新的研究领域。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和

材料表面改性方法

材料表面改性方法 材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。 现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。现代材料表面改性技术就是应用物理、化学、电子学、机械学、材料学的知识,对产品或材料进行处理,赋予材料表面减磨、耐磨、耐蚀、耐热、隔热、抗氧化、防辐射以及声光电磁热等特殊功能的技术。 分类: 1、传统的表面改性技术: 表面热处理:通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。 表面渗碳:面渗碳处理:将含碳(0.1~0.25)的钢放到碳势高的环境介质中,通过让活性高的碳原子扩散到钢的内部,形成一定厚度的碳含量较高的渗碳层,再经过淬火\回火,使工件的表面层得到碳含量高的M,而心部因碳含量保持原始浓度而得到碳含量低的M,M的硬度主要与其碳含量有关,故经渗碳处理和后续热处理可使工件获得外硬内韧的性能. 2、60年代以来:传统的淬火已由火焰加热发展为高频加热 高频加热设备是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内磁力线通过金属材质时,使锅炉体本身自行高速发热,然后再加热物质,并且能在短时间内达到令人满意的温度。 3、70年代以来: 化学镀:是指在不用外加电流的情况下,在同一溶液中使用还原剂使金属离子在具有催化活性的表面上沉积出金属镀层的方法。 4、近30年来: 热喷涂:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

高分子材料的等离子体表面处理

高分子材料的等离子体表面处理 摘要 阐述了等离子体表面改性技术的作用原理, 总结论述了等离子体对高聚物表面作用的几种理论, 经低温等离子体处理的高分子材料表面发生多种物理和化学变化,重点介绍了低温等离子体在医用高分子材料、合成纤维材料、薄膜材料中的研究概况和进展。 关键词: 等离子体; 表面改性; 高分子材料; 0 引言 高分子聚合物材料同金属材料相比具有许多优点, 如密度小、比强度和比模量低、耐蚀性能好、成型工艺简单、成本低廉、优异的化学稳定性、热稳定性好、卓越的介电性能、极低的摩擦系数、良好的润滑作用及优异的耐候性等, 因此广泛应用于包装、印刷、农业、轻工、电子、仪表、航天航空、医用器械、复合材料等行业[1]。但其应用范围和使用效益往往会受到表面性能的制约,因此常常需按使用目的改善或变换其表面性能,如材料或部件的粘着性,高分子膜的印刷性、透过性等。 1 高分子材料的表面改性 高分子材料的各种表面性能的获得取决于材料的表面结构和相关的界面特性,所以高分子材料的界面物性控制是非常必要的。 图1 界面物控技术内容及应用领域 图1所示为界面物性控制技术的内容和相关的应用领域。为了使高分子材料适合各种应用需要,大体上有两类作法。一类是利用各种表面改性技术产生一个新的表面活性层,从而改变表面、界面的基本特性。另一类作法是借助功能性薄膜或表面层形成技术在原表面上敷膜。这两种作法的目的都是为了使材料具有或同时具有几种表面性能。为此,人们研究开发了许多种可供利用的表面处理技术。诸如化学湿法处理,利用电子束或紫外线的干式处理,利用表面活性剂的添加剂处理以及采用真空蒸渡的金属化处理等。本论文主要介绍的等离子体表面处理是利用低压气体辉光放电的干式处理技术。既能改变表面结构,控制界面物性,也可以按需求进行表面敷膜。在塑料、天然纤维、功能性高分子膜的表面处理方面有着巨大

材料表面技术16

1.表面技术概念:广义:是直接与各种表面现象或过程有关的,是能为人类造福或被人类利用的技术;通过物理、化学或机械以及复合方法,使金属表面具有与基体不同的组织结构、化学成分和物理状态,从而赋予表面与基体不同的性能; 通过物理、化学或机械以及复合方法,使金属表面具有与基体不同的组织结构、化学成分和物理状态,从而赋予表面与基体不同的性能; 2.按照作用原理分类(matton分类): (1)原子沉积:以原子、离子、分子和粒子集团等原子尺度沉积在基体表面上,如电镀,化学镀,PVD,CVD等; (2)颗粒沉积:以宏观尺度形态在基体上形成覆盖层,如热喷涂,冷喷涂,或搪瓷涂层;(3)整体覆盖:沉积材料同一时间整体涂覆在基体上,如热浸镀,涂装,堆焊和包箔等;(4)表面改性:用物理、化学、机械等方法改变材料表面形貌,化学成分,组织结构和应力状态灯,如喷丸,喷砂,化学热处理; 3.基体表面预处理: 概念:用物理、化学方法除去基体表面的油污,氧化皮及其它污染物,使基体表面呈现出一定的粗糙度和清洁度; 前处理包括:(1)表面整平:使表面平整,光滑,达到要求的粗糙度,抛光,磨光,滚光;(2)除油(脱脂):有机除油,化学法,电化学法; (3)除锈(酸洗):化学、电化学; (4)弱腐蚀(活化):电镀、化学镀,除去表面钝化膜,露出新鲜晶格组织稀酸稀碱中处理; 4.喷砂:定义:利用压缩空气把磨料高速喷到零件表面,对其清理的方法。钢砂,石英砂,氧化铝,碳化硅; 应用范围:(1)可清除热处理件(锻件、铸件)表面氧化皮,型砂; (2)可除去工件表面毛刺,锈蚀,油污; (3)对于不宜用酸洗除氧化皮工件,可用喷砂代替; (4)对于某些表面技术,如热喷涂,涂装,可用喷砂产生一定粗糙度,产生“锚固效应”;喷丸:与喷砂原理和设备类似,只是采用的磨料不同, 应用范围:①是零件产生压应力,从而提高零件的疲劳强度和抗应力及抗腐蚀能力。②代替一般冷热成型工艺,可对大型薄壁铝制零件进行成型加工,这样可避免零件表面残留的张应力而形成有利的压应力。③对扭曲的薄壁零件进行校正,经喷丸后的零件使用温度不能太高,以防消除喷丸产生的压应力,使用温度范围因材料而定,一般钢铁件为260-290℃,铝零件为170℃。 5.覆盖能力:使工件最凹处沉积上金属的能力; 均镀(分散)能力:使金属镀层厚度均匀分布的能力; 分散能力好,深度能力肯定好;深度能力好,均镀能力不一定好; 电流效率:电极上实际析出(溶解)物质的质量与理论计算得到的析出(溶解)物质的质量的比; 6.电镀:指在含有欲镀金属的盐类溶液中,以被镀基体金属为阴极,通过电解作用,使镀液中欲镀金属的阳离子在基体金属表面沉积出来,形成镀层的一种表面加工方法; 使电镀分散能力强措施:工件形状越简单越好,加入络合剂,提高溶液导电性,加入导电盐,离阳极距离远一些,可以使镀层分散能力更好; 7.阴极极化:当电流通过电极时,电极电位会偏离平衡电极电位,随电流密度增加电极电位不断变负,即阴极极化; 电化学极化:由于阴极上电化学反应速度小于外电源供给电极电子的速度,从而使电极电位向负的方向移动而引起的极化作用;

粉体表面改性

粉体表面改性学习报告 前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。 因此小尺寸颗粒有如下几个特征: 1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。 2.颗粒状态易于流动,具有与液体相类似的流动性。 3.实现分散、混合、均质化控制材料的组成与构造。 4.易于成分分离,有效地从天然资源或废弃物中分离有用成分。 5. 由于比表面积大,因此粉体粒子容易聚集,吸附。 6. 具有与气体相类似的压缩性,具有固体的抗变形能力。 因此,利用这些特点,对矿物粉体进行表面改性,然后运用于农业、化工、造纸、塑料、橡胶、涂料等产品中。特别是经过改性的矿物粉体用于有机物填料不仅可以降低材料的成本,而且还可以改善材料的各方面性能。常用的矿物填料有碳酸钙、云母、硅灰石、滑石、高岭土、等因为具有独特的物理化学性质,能改善聚合物的物理性能、力学性能、加工性能和热性能,在聚合物中的应用发展很快。无机填料在聚合物中的作用,概括起来就是增量、增强和赋予新功能,但是由于无机填料与高聚物的相容性差,如果直接添加,会造成分散不均,甚至引起应力集中,降低材料的力学性能,这些弊端不但限制了填料在聚合物中的添加量,而且还严重影响制品性能,所以通过对无机填料进行表面改性,改变了无机填料原有的表面性质,改善无机填料与聚合物的亲合性,相容性,以及加工的流动性,分散性,还可以提高填料与聚合物相界面之间的结合力,使聚合物材料的综合性能得到显著提高,从而使非功能的无机填料转变为功能无机填料。近年来,随着聚合物的迅猛发展无机填料的表面改性也受到了前所未有的关注。 一、无机粉体表面改性机理 由于无机矿物材料是极性或强极性的亲水旷物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。如滑石粉可作为塑料填料,提高塑料制品的电绝缘性、抗酸性耐火性等; 云母可作为塑料增强填料,提高塑料制品的弯曲弹性模量和拉伸弹性模量;高岭土具有优良的电绝缘性能和一定的阻燃作用,可作为聚氯乙烯等聚烯烃绝缘电线包皮; 石英对热塑性树脂和热固性树脂具有较高的补强作用,并且能提高制品的刚硬度,对提高塑料制品的电绝缘性也能起一定的作用; 金红石型二氧化钛作为塑料填料可增大光的反射率,起到光屏蔽剂的作用。赤泥、粉煤灰均为塑料填料,既可消除污染,又可降低成本。目前无机粉体表面改性技术在保证改性效果的前提下力求降低成本,并根据无机粉体的具体情况,如粒度大小、颗粒分布、表面极性、浸润性、电性、酸碱性以及应用目的和要求等来选择适当的表面改性剂和相应的改性工艺。由于无机粉体种类的多样性以及表面改性剂的不断更新,无机粉体改性的方法很多。根据表面改性剂和粉体粒子之间有没有发生化学反应,可以将无

低温等离子体射流聚合物表面改性实验报告

低温等离子体射流聚合物表面改性实验 姓名:张博 学科、专业:物理0904 学号:200921134 指导教师:闫慧杰 完成日期:2011年5月 16日 大连理工大学 Dalian University of Technology

一.摘要 本实验是采用大气压下氩气低温等离子体射流对聚合物(聚乙烯薄膜)进行表面处理,以改善聚合物的表面能,提高其表面亲水能力与表面粘接强度。通过实验认识大气压放电等离子体的发生与其基本应用,包括低温等离子体射流的产生,了解大气压低温等离子体射流放电的一些基本现象。通过测量处理前后聚合物表面水接触角的变化,认识与了解大气压放电等离子体的发生与其基本应用,并进一步从等离子体物理与化学角度分析其内在机理。 二.引言 大气压等离子体的运行与操作都相对比较简单,运行成本也大大降低,而且可以很方便地实现在线运行,所以其利用范围与领域被极大拓宽,在材料表面处理、臭氧产生、废气处理、污水处理、薄膜制备等方面获得了广泛的应用.大气压放电等离子体目前主要有电弧放电、电晕放电、火花放电、流光放电等基本形式.产生方法主要有介质阻挡放电、尖端电晕放电、空心阴极放电以及大气压低温等离子体射流等.低温等离子体射流是目前被广泛研究的一种大气压等离子体放电形式.由于其具有移动性比较好的特点,所以目前在材料表面处理、薄膜制备、消毒灭菌以及水处理方面都得到广泛应用。 三.实验仪器与原理 中频放电功率源,大气压低温等离子体射流发生装置,气瓶,气体流量计,水接触角测试仪。 1.介质阻挡放电 大气压条件下,气体击穿需要很高的电压,所以空间电场通常很强,再加上大气压条件下电子碰撞电离概率比较高,所以气体放电很容易过渡到弧光放电。为了抑制弧光放电的产生,可以采取介质阻挡放电形式。介质阻挡放电又称无声放电,在外电场E1的作用下,气体中的电子被加速,当E1达到某一值E 年是就会产生电子雪崩。气体被击穿,放电空间产生大量电子和离子。电子在电极表面的绝缘层沉积下来并建立一个内电场E2,该内电场的方向与外电场的方向相反。若忽略空间电荷场,则放电空间的总电场由(E1+E2)决定。随着放电的发展,电极上积累的电荷足够多时,总电场地道不能再是电子加速到足够能量而产生碰撞电离。则放电熄灭。所以阻挡放电是一个不断产生熄灭的交替过程,产生的等离子体是典型的非平衡态低温等离子体。 介质阻挡放电(Dielectric Barrier Discharge,DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电或无声放电。介质阻挡放电能够在高气压和很宽的频率范围内工作,通常的工作气压为10~10000。电源频率可从50Hz至1MHz。电极结构的设计形式多种多样。在两个放电电极之间充

表面改性技术综述

表面改性技术综述 表面改性是指采用某种工艺和手段使材料获得与其基体材料的组织结构性能不同的一种技术。材料经过改性处理之后,既能发挥材料基体的力学性能,又能使材料表面获得各种特殊性能,如耐磨,耐腐蚀,耐高温,合适的射线吸收等。 金属表面改性技术在冶金、机械、电子、建筑、轻工、仪表等各个工业部门乃至农业和人们日常生活中都有着广泛的用途, 其种类繁多。除常用的喷丸强化、表面热处理等传统技术外, 近些年还快速发展了激光、电子和离子等高能束表面处理技术。今后, 随着物理学、材料学等相关学科的迅速发展, 还将不断涌现出新的表面改性技术。尤其是复合表面技术的发展, 有可能获得意想不到的效果。金属表面改性技术的飞速发展和不断创新, 将进一步推动其在工农业生产中的应用, 带来显著的经济效益。 传统的表面改性技术有:表面形变强化、表面热处理、表面化学热处理、离子束表面扩渗处理、高能束表面处理、离子注入表面改性等。 1、喷丸强化 喷丸处理是在受喷材料再结晶温度以下进行的一种冷加工方法, 是将弹丸在很高速度下撞击受喷工件表面而完成的。喷丸可应用于表面清理、光整加工、喷丸成型、喷丸校正、喷丸强化等方面。喷丸强化又称受控喷丸, 不同于一般的喷丸工艺, 要求喷丸过程中严格控制工艺参数, 使工件在受喷后具有预期的表面形貌、表层组织结构和残余应力场, 从而大幅度提高疲劳强度和抗应力腐蚀能力。实施喷丸时, 弹丸由专用的喷丸机籍助压缩空气、高压水流或叶轮, 高速射向零件受喷部位。常用弹丸有球形铸铁丸、铸钢丸和其它非金属材料制成的弹丸。喷丸强化的效果用喷丸强度来表示, 与弹丸种类和形状、碰撞速度和密度、喷射方位和距离、喷丸时间等因素有关。表面喷丸提高金属材料疲劳强度的机理比较复杂, 涉及到塑性变形层(通常为011~018mm 厚) 的组织结构变化(如位错密度、亚晶粒尺寸) 和残余应力的变化。因此, 只有合理控制表面变形层内的变化, 才可能获得预期的喷丸强化效果。 早在20 世纪20 年代, 喷丸强化就应用于汽车工业。目前已成为机械制造等工业部门的一种重要的表面技术, 应用广泛。涉及的材料除普通钢外,还有高强度钢和各种有色金属; 涉及的零件类型有弹簧、轴、齿轮、连杆、叶片、涡轮盘和飞机起落架组成件等。 2、传统表面热处理改性 传统的表面热处理技术可分为表面淬火和化学热处理两大类。它主要用来提高钢件的强度、硬度、耐磨性和疲劳极限。在机械设备中, 许多零件(如齿轮轴、活塞销、曲轴等) 是在冲击载荷及表面磨损条件下工作的。这类零件表面应具有高的硬度和耐磨性, 而心部应具有足够的塑性和韧性。因此, 为满足其使用性能要求, 应进行表面热处理。 ○1表面淬火 表面淬火是把零件的表层迅速加热到淬火温度后快冷, 使零件表面层获得淬火马氏体而心部仍保持未淬火状态的一种淬火方法。表面淬火的目的是使零件获得高硬度的表层, 以提高工件的耐磨性和疲劳性能, 而心部仍具有较好的韧性。其设备简单、方法简便, 广泛用于钢铁零件。根据加热方法的不同, 可分之为火焰加热表面淬火和感应加热表面淬火。火焰加热表面淬火的淬透层一般为2 -6mm。其特点是设备简单, 但加热温度高及淬硬层不易控制, 淬火质量不稳定, 使用上有局限性。感应加热表面淬火的特点是: 加热速度快, 零件变形小, 生产效率高, 淬火后表面能获得优良的机械性能; 淬透层易控制, 淬火操作易实现机械化。但设备较贵, 形状复杂零件的感应器不易制造, 不宜单件生产。 ○2化学热处理 化学热处理是将金属零件放在某种介质中加热、保温、冷却, 使介质中的某些元素渗入

粉体表面改性的研究进展

粉体表面改性技术的研究进展 姓名:黄政杰 学号:200839110324 专业:无机非金属材料 班级:0803班 早在20世纪50年代,研究人员就已经注意到,对无机颜料,如钛白粉,用二氧化硅或三氧化铝等进行表面复合或者包膜处理可以改善其保光性和耐候性。但是作为技术加工研究表面改性是在近一二十年的事情,尤其是现代有机/无机复合材料、无机/无机复合材料、涂料或涂层材料、吸附与催化材料、环境材料以及超细粉体和纳米粉体的制备和应用具有重要意义。 粉体表面改性的研究进展 粉体工程表面改性或者表面处理与很多学科,如粉体工程,物理化学,表面与胶体化学,有机化学,无机化学,高分子化学,无机非金属材料,高分子材料,复合材料,结晶学,光学,电学磁学等学科密切相关。可以说,粉体表面改性是粉体工程或者颗粒制备技术与其他众多学科相关的边缘学科。粉体工程改性主要包括四个方面。 1粉体改性的原理和方法 2 表面改性剂 3表面改性工艺与设备 4粉体表面改性产品的检测与表征 一粉体表面改性的原理 利用物理、化学机、械等方法对颗粒表面进行处理,根据应用的需要有目的地改变颗粒表面的物理化学性质,如表面晶体结构和官能团表面能、界面润湿性、电性、表面吸附和反应特性等,以满足现代新材料,新工艺和新技术发展的需要。 二表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、微胶囊包覆、机械力化学、等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、微胶囊包覆改性法和机械化学改性法及原位聚合改性法。

(1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、高分子分散剂改性和接枝改性。 (2)微胶囊包覆改性法 微胶囊的制备首先是将液体.固体或者气体囊心物质分细,然后以这些微粒为核心,使聚合物成膜材料在其上沉积.涂成形成一层膜,将囊心微粒包覆。依据囊壁形成机制合成囊条件,微胶囊化方法大致分为三类,即化学法(界面聚合法,原位聚合法,锐孔法),物理法(喷雾干燥法,空气悬浮法,真空蒸发沉积法,静电结合法,溶剂蒸发法,包结络合物法,挤压法等)和物理化学法(水相分离法、油相分离法融化分散冷凝法等)。 (3)机械化学改性法 是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。能够对颗粒进行激活的粉碎设备主要有各种类型的球磨机,气磨机和机械冲击式磨机等。 (4)原位聚合改性法 利用粉体在乳液单体中均匀分散,然后用引发剂引发聚合,从而形成带有弹性包覆层的核一壳结构的纳米粒子。由于外层是有机聚合物,所以可以提高粉体与有机物的亲和力再者它是一种内硬外软的核一壳结构的纳米粒子可以填充到塑料或者橡胶中时可以改变它们的力学性能原位聚合改性法可分为无皂乳液聚合包覆法,预处理乳液聚合法和微乳液聚合法等。 三表面改性剂 粉体的表面改性,主要是依靠表面改性剂在粉体颗粒表面的吸附、反应,包覆或包膜来实现的。因此,表面改性剂对于粉体的表面改性或表面处理具前应用的表面改性剂主要有偶联剂、表面活性剂、有机硅、不饱和有机酸及有机低聚物,超分散剂、水溶性高分子等。

相关文档
最新文档