等离子体表面技术及应用..
等离子体技术在工业加工中的应用研究

等离子体技术在工业加工中的应用研究随着科技的进步和工业化的不断发展,工业加工技术也在不断更新和改善。
等离子体技术是一种新型的加工技术,其能够将气体等离子体化并在加工物表面产生一系列物理、化学反应,从而达到改变材料性质、加工和清洁表面的目的。
本文将从等离子体技术的基本原理、应用范围和发展趋势三个方面来探讨其在工业加工中的应用研究。
一、等离子体技术的基本原理等离子体技术是一种通过高温和高能电子激发气体分子使其电离并产生等离子体的一种技术。
等离子体是一种气态物质状态,具有高温度、高密度等特征。
在等离子体中,由于气体分子电离,产生的电子、离子、自由基等活性物质会与基体表面发生反应,从而改变了其表面的化学、物理性质。
二、等离子体技术的应用范围等离子体技术具有广泛的应用范围,包括工业加工、环境保护、医疗治疗等各个领域。
在工业加工中,等离子体技术也被广泛应用。
1、表面处理等离子体技术在表面处理方面应用最为广泛。
通过利用等离子体产生的电子、离子等活性物质对材料表面进行清洗、去污、表面改性等,从而能够改善材料表面性质,提高材料的机械强度、耐腐蚀性能、附着力等。
2、材料改性等离子体技术不仅可以用于表面处理,还可以用于材料的局部改性。
通过控制等离子体化学反应的条件,可以实现材料表面的硬化、氮化、氧化等,从而提高材料性质。
3、成膜等离子体技术还可以通过在材料表面沉积一层薄膜的方法进行成膜。
由于等离子体技术可以实现高温、高能量的处理条件,从而能够制备出不同成分、形态的薄膜,为其他材料加工提供了较好的保护。
三、等离子体技术的发展趋势随着等离子体技术的不断研究和实践,其应用也越来越广泛。
未来,等离子体技术的应用将集中在以下几个方向:1、低压等离子体技术低压等离子体技术是在较低气压下产生等离子体的一种技术。
由于低压等离子体处理具有高精度、高速度等优势,未来在半导体、液晶显示器等高科技领域将会得到广泛应用。
2、微纳加工技术随着科技的发展,微纳加工技术对材料的要求越来越高。
等离子体表面处理

等离子体表面处理
等离子体表面处理是一种技术,主要使用电介质形成的电场来改变表面的化学和物理性质。
等离子体表面处理技术可以应用于多种表面,包括金属、塑料、玻璃等,可以实现多种目的,如表面转化、清洁、活化、修复等。
一般来说,等离子体表面处理的方法包括气相技术、液相技术、电火花技术和激光技术等。
其中,气相技术是利用等离子体体系所产生的电场耦合效应而改变材料表面形貌、形状和结构,用于清洁、转化和活化表面,以满足不同应用要求。
液相技术是将表面物质浸入等离子体体系中,利用电场来改变物质表面,以此达到表面清洁、转化或活化的目的。
此外,还有电火花技术和激光技术等,也可以用于清洁、转化和活化材料表面。
等离子体表面处理有着广泛的应用领域。
在航空航天科技领域,等离子体表面处理技术可以有效改善结构零件表面形貌,制造出较高精度的零件;在电子行业,利用等离子体表面处理可以增加金属表面的导电性,避免抗静电污染;在生物医学及材料表面功能改性领域,等离子体表面处理可以用于改变表面结构和性质,增加材料的耐腐蚀性及生物相容性。
等离子体表面处理的研究近年来也在不断发展,未来等离子体表面处理技术可以应用于更广泛的领域,让更多的产品质量得到改善。
然而,等离子体表面处理也存在一定的不足和不完善,比如处理效率低、价格高、处理条件严格等,这些需要企业不断努力改进技术以提
高等离子体表面处理的效率和质量。
综上所述,等离子体表面处理技术是一种具有重要意义和广泛应用价值的技术,它可以帮助企业实现质量的提高,为制造商提供更好的生产力和更多的创造性。
在未来的发展中,等离子体表面处理技术将继续发挥重要作用,为企业提供更完善的表面处理解决方案。
等离子体表面处理技术在材料加工中的应用

等离子体表面处理技术在材料加工中的应用随着科技的发展和应用的广泛,等离子体表面处理技术在材料加工中的应用也越来越广泛。
等离子体表面处理技术,简单说来就是将物质置于等离子体中进行表面处理的技术。
等离子体是一种激发态的气体,具有高能量、高速度和高活性,因此可以有效改善材料表面的化学和物理性能。
下面我们将从不同的角度探究等离子体表面处理技术在材料加工中的应用。
一、改善表面性质等离子体表面处理技术可以有效改善材料的表面性质,主要包括表面清洁、脱气和改性。
在加工过程中,表面常常会有许多微观缺陷,这些缺陷会影响材料的物理和化学性质,而等离子体表面处理技术可以有效地去除这些缺陷,使得表面更加光滑。
同时,等离子体还可以使材料表面脱气,减少表面的氧化状态,从而增强材料的耐腐蚀性和导电性。
除此之外,等离子体还可以实现材料表面的改性,如提高表面光泽度、改变表面颜色、使表面硬度增加等。
二、应用于涂层制备在材料加工中,涂层技术是一种常用的表面处理方法。
通过在材料表面形成一层薄膜,可以提高材料的性能,如耐腐蚀性、磨损性等。
等离子体表面处理技术可以用于涂层制备的前处理,可以大大提高涂层的附着力和均匀性。
同时,等离子体表面处理技术还可以用于后处理,如表面抛光、刻蚀等,使得涂层更加牢固和耐用。
三、应用于工业制造等离子体表面处理技术在现代工业制造中也得到了广泛的应用。
例如,在电子行业中,等离子体表面处理技术可以用于显示器制造、电子集成电路制造等。
在航空航天等重要行业,等离子体表面处理技术可以用于加工高温材料,如钨、钼等,以及高强度合金。
此外,在精密机械加工和汽车零部件制造中,等离子体表面处理技术也可以有效提高零件表面的质量和加工精度。
需要注意的是,在等离子体表面处理技术中,需要考虑等离子体的特性和加工参数的设置。
不同等离子体条件和加工参数会对加工结果产生不同的影响,因此需要针对具体的材料和加工要求,选择合适的等离子体条件和加工参数进行加工。
表面等离子体共振技术的原理和应用

表面等离子体共振技术的原理和应用表面等离子体共振技术(Surface Plasmon Resonance,简称SPR)是一种现代分析技术,主要用于检测生物分子相互作用。
该技术基于表面等离子体共振现象,通过测量试样与金属表面的相互作用,从而推断出与试样相互作用的生物分子的性质和相互作用力的强度。
表面等离子体共振现象是指当有一束光线斜入垂直于金属表面时,会与金属表面上的自由电子相互作用产生共振,这种共振就是表面等离子体共振。
而当试样溶液在金属表面形成一层薄膜时,这层薄膜的折射率会影响共振的位置和强度,因此可以检测到试样与金属表面的相互作用。
SPR技术的检测原理是通过将金属薄膜与含有生物分子(例如蛋白质)的溶液相接触,从而使生物分子吸附在金属薄膜表面,进而测量吸附和解离过程中的表面等离子体共振信号变化。
通常情况下,自发结合和亲和力大的生物分子会在金属表面上呈现强信号,在SPR曲线上表现为峰;而不结合或结合较弱的生物分子,其曲线相对平坦,表现出较小的信号。
SPR技术的应用SPR技术具有广泛的应用,特别在生物医学、生物化学和生命科学领域具有重要意义。
以下是一些SPR技术的应用:1. 生物分子相互作用研究SPR技术可以用于生物分子之间相互作用的研究,例如酶和配体、抗体和抗原、蛋白质和DNA/RNA等。
通过检测生物分子之间的相互作用,可以揭示生物分子相互作用的动力学和热力学参数,包括关联常数、解离常数、亲和力和熵变等。
2. 药物筛选SPR技术也可以应用于药物筛选。
在药物开发过程中,药物分子需要与靶分子相互作用,以达到治疗作用。
利用SPR技术可以对候选化合物进行筛选,通过检测不同药物候选物与目标分子之间的相互作用,从而选择最有效的药物分子。
3. 诊断应用SPR技术还可以应用于诊断,例如慢性阻塞性肺病(COPD)的检测。
据研究,COPD患者的血清中含有一特定蛋白胆固醇酯转移酶,而正常人的血清中不含。
利用SPR技术,可以检测出胆固醇酯转移酶的存在,从而诊断COPD。
表面等离子体共振的原理及其应用

表面等离子体共振的原理及其应用简介表面等离子体共振(Surface Plasmon Resonance,SPR)是一种现代生物分子相互作用研究技术,该技术基于感测芯片表面与待检测样品中生物分子之间的互作用,通过检测共振角偏移量实现实时监测目标分子与生物集体之间的互作用过程。
SPR技术的研究不仅在基础科学领域有广泛应用,同时在生物医学研究、药物研发、生物传感器等领域也得到了广泛的应用。
原理SPR是一种表面等离子体共振现象,它发生在感测芯片表面和样品中的生物分子之间。
感测芯片表面一般涂覆上金属薄层,如50纳米左右的金膜,这样能让电磁波激发芯片表面产生等离子体振动。
当感测芯片表面上有生物分子与目标物质产生相互作用时,这种振动受到阻碍,产生了共振角偏移,这个角度的值和表面等离子体共振现象发生的位置和时间相关。
应用1.生物医学研究SPR技术可以实时监测酶动力学研究、抗体识别、蛋白质相互作用、细胞膜内递质运输、病毒侵入等方面的生物分子的相互作用过程。
这些过程的实时检测可以加深我们对于生物分子的行为和功能的认识。
2.药物研发SPR技术可以用于药物研发中药物分子和蛋白质相互作用的研究,从而评估药物分子的亲和性、特异性、疗效和毒性。
3.生物传感器SPR技术通过探测生物体内发生的分子相互作用,对真实样本中的生物分子进行实时监测。
因此,SPR技术被广泛应用于生物传感器的设计和研发,可以用于疾病预警、环境污染等方面的监测。
4.生物芯片SPR技术的应用在微流控芯片技术上比较广泛,可以实现高通量、精确、标本省、操作简单、自动化等方面的检测。
因此,SPR 技术被广泛应用于病原体检测、毒素检测、药物筛选等方面,可以为医学诊断提供新的手段。
结论SPR技术是一种快速、准确、敏感的生物分子相互作用检测技术,在生命科学研究和生物医学领域有广泛应用,同时也是生物芯片和生物传感器等技术的核心。
随着新兴技术的不断涌现,可以预见,SPR技术在生命科学和生物医学领域会有更广阔的应用前景。
等离子表面处理技术的广泛应用领域

等离子表面处理技术的广泛应用领域等离子表面处理技术在许多领域都有广泛应用。
以下是一些主要的应用领域:
1. 航空航天:等离子体处理技术可以用于复合材料的界面增强,提高纤维与树脂之间的结合力,从而提高复合材料的力学性能和耐久性。
2. 汽车:等离子体处理技术可以用于提高汽车零部件的表面能,从而提高其涂装和粘接性能。
3. 电子:等离子体处理技术可以用于清洁和改性电子器件的表面,提高其亲水性和粘接性能,从而提高电子产品的质量和可靠性。
4. 医疗:等离子体处理技术可以用于医疗器械的表面处理,如导管、人工器官等,提高其生物相容性和粘接性能。
5. 建筑:等离子体处理技术可以用于建筑材料的表面处理,如玻璃、陶瓷等,提高其涂装和粘接性能。
6. 环保:等离子体处理技术可以用于处理各种污染物质,如有机物、重金属等,实现污染物的有效降解和去除。
7. 纺织:等离子体处理技术可以用于纺织材料的表面处理,如纤维、布料等,提高其亲水性和抗污性能。
8. 塑料:等离子体处理技术可以用于塑料材料的表面处理,如瓶盖、玩具等,提高其粘接性能和印刷质量。
总的来说,等离子表面处理技术可以应用于各种材料和领域的表面处理,通过改善表面能、提高亲水性和粘接性能等,实现材料性能的提升和应用的拓展。
表面等离子共振实验技术及应用方法

表面等离子共振实验技术及应用方法表面等离子共振(surface plasmon resonance,SPR)是一种重要的实验技术,广泛应用于生物医学、环境监测等领域。
本文将介绍SPR的原理、实验方法以及应用。
一、SPR的原理SPR基于光的全反射现象,利用金属表面上的等离子体共振使得光波与金属表面上的等离子体波获得强烈的耦合。
当入射角达到特定的角度(共振角)时,反射光最弱。
这个共振角取决于金属的折射率,而折射率受溶液或界面上吸附物质的影响。
因此,通过检测反射光的强度变化,可以实时监测溶液中的生物分子相互作用、吸附行为等。
二、SPR的实验方法1. 典型实验装置SPR实验通常通过激光器、偏振器、折射率检测系统、样品池以及计算机控制系统构成。
激光器产生单色光,经过偏振器选择S波或P波,接着经过金属薄膜和与样品接触的溶液。
折射率检测系统测量反射光的强度,并将其转化为与样品相互作用的信号。
计算机控制系统负责数据采集和处理。
2. 工作原理样品溶液通过样品池流动,溶液中的目标分子与金属表面上的探针分子发生相互作用。
这些相互作用引起金属的折射率发生变化,导致共振角发生偏移。
通过测量共振角的变化,可以得到样品中目标分子的浓度或相互作用的强度。
三、SPR的应用1. 生物传感器SPR可以实现对生物分子相互作用的实时监测,因此被广泛应用于生物传感器的研究与开发。
例如,用SPR技术可以检测肿瘤标记物、病原体、药物等,用于快速、灵敏的分析和诊断。
2. 药物筛选与研究SPR也可以用于药物筛选和研究。
通过SPR技术可以实时监测药物与受体蛋白之间的相互作用,从而评估药物的效果和亲和性,加速新药研发的过程。
3. 环境监测SPR还可以应用于环境监测领域。
例如,可以利用SPR检测土壤或水中的有毒重金属、污染物等,实现对环境污染程度的快速准确分析。
4. 表面修饰和纳米材料研究SPR也被应用于表面修饰和纳米材料研究。
通过调控金属表面的化学组成和结构,可以实现对光学性质的调控,从而拓展SPR技术在生物医学、光电子等领域的应用。
等离子体技术在科学研究中的应用与前景

等离子体技术在科学研究中的应用与前景等离子体是一种高温、高能量的物态。
它的能量密度非常高,能够产生强烈的光、电、磁等效应,因此在科学研究中有着广泛的应用前景。
下面,我们就来探究一下等离子体技术在科学研究中的应用与前景。
一、等离子体技术在材料科学中的应用1.等离子体表面处理技术等离子体表面处理技术被广泛应用于材料表面的改性和增强。
等离子体处理可以通过改变表面的化学和物理性质,使材料的表面具有更好的柔性、防腐蚀性、耐磨性、热稳定性等特性。
目前,等离子体表面处理技术已经应用于航空航天、汽车制造、电子、医疗器械等行业。
2.等离子体辅助材料合成技术等离子体辅助材料合成技术可以通过等离子体的化学反应和沉积过程,在材料表面或内部形成纳米颗粒、薄膜、涂层等新型材料。
这些材料具有独特的光、电、磁性能,对于新型电子器件和催化剂等方面有着很大的应用前景。
3.等离子体放电合成技术等离子体放电合成技术是在等离子体的作用下,在气体中合成具有特殊功能的纳米材料。
例如,利用等离子体放电技术可以制备出一系列的纳米颗粒,如氧化铁、氧化钼、氮化硅等,这些粒子主要用于高分子复合材料、显示器件、感应器、化学传感器等领域。
二、等离子体技术在能源领域中的应用1.等离子体温度计等离子体温度计是在等离子体的辐射发射光谱法基础上发展的。
它能够测量高温、高能量等离子体的温度。
这种技术可以应用于热核聚变等领域。
2.等离子体离子源等离子体离子源可以作为高能量离子束的加速器,应用于核物理、材料学等领域。
它可以生产出高能量的粒子束,用于材料表面的改性,或用于核物理实验。
这种技术在核聚变反应堆中也有着广阔的应用前景。
三、等离子体技术在生物医学中的应用1.等离子体治疗技术等离子体治疗技术是一种新型的医学治疗方法。
它利用等离子体的化学反应、放电等特性,对生物组织进行疗效处理。
这种技术可以应用于各种肿瘤、细胞排异等治疗中。
2.等离子体消毒技术等离子体消毒技术可以在不使用化学药品的情况下,快速有效地消毒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等离子表面技术的应用
• 改变材料表面浸润性
左图,PTFE,聚四氟乙烯表面的疏水性极强,对水的浸润角可达140 度。 右图,经等离子体处理处理后,PTFE环表面亲水性大大提高,浸润 角有25度(见右图)。几滴水滴到一个填料环上,就会浸润整个表面, 而且水膜稳定,不会破碎。除PTFE外,其他的材质,如PVC,PP的 材料经等离子体改性也都会大大提高传质效果。
等离子表面技术原理
2) 引入官能基团:高分子材料用N2、 NH3、O2、SO2等气体的等离子体处理, 可以改变表面的化学组成,引入相应新的官 能基团: -NH2、-OH、-COOH、-SO3H 等.这些官能团可使聚乙烯,聚丙烯,聚苯乙烯, 聚四氟乙烯等这些完全惰性的基材变成官 能团材料,可以提高表面极性,浸润性,可粘结 性,反应性,极大地提高了其使用价值。与 氧等离子体相反,而经含氟气体的低温等离 子体处理, 可在基材表面引入氟原子, 使基
等离子表面技术的应用
上图,聚四氟乙烯(PTFE)塑料板浸润性很差, 滴上的水滴成球形,可以在板面上滚动,浸 润角达133度,做复合材料很难粘结。 右图,这种0.05mm的聚四氟乙烯薄膜用常规 的萘钠腐蚀法活化,很难控制碳化程度,而 且颜色难看。这里经等离子体表面清洗和活 化以后,粘结性,浸润性大大改善,10微升 的水滴上去马上就散开了.膜的颜色也根本 没有改变。
等离子表面技术的应用
• 表面清洗
在用等离子体清洗工件时,工作气体往往用氧气,它被轰击 成氧离子、自由基后,氧化性极强。工件表面的污物,如油脂,助焊 剂,感光膜,冲床油等,很快就会被氧化成二氧化碳和水,而被真空 泵抽走,而达到清洁的目的。 等离子体清洗也是所有清洗方法中最为彻底的剥离式的清洗,特 别适于精密清洗,如电子元器件、电真空元件(阴极帽、销钉、阳极 帽)、继电器触头、印制线路板、半导体硅片、芯片封装、液晶显示 板、精密机械(千分尺的丝杠、块规、液压件),并不会对工件产生电 击损伤。等离子体清洗属于干法清洗,不用任何清洗剂,去离子水, 免除一切运输、储存、回收、再生装置,不会产生任何环境污染,在 很大程度上可以替代氟里昂等危害大气层的清洗剂。往往几瓶气体就 可以代替数千公斤清洗液,因此清洗成本会大大低于湿法清洗。
等离子表面技术的应用
左图中是一个展示用的用等离 子体技术只处理一半的聚四氟 乙烯(PTFE) 填料环。稍一淋水就可以看到 处理的右一半挂上了均匀水膜, 而且它很稳 定,不破裂,不收缩,最后直 至水份蒸发干;没处理的左一 半挂上的水在 几秒只内就收缩成一些水高模高强聚乙烯纤维是表面惰性很强的高分子材料,因此它的应 用受到很大影响,通过等离子体处理,在表面引入极性基团,从而使纤 维的浸润性,染色性能,抱合性能和黏合性得到提高,使用价值大大提 高。右图,显现碱性品红水溶液果然在等离子体处理过的PE丝上比空白 的丝上爬的高,说明了等离子体处理使PE表面引入了极性基团,增加了 浸润性,也会使未来的复合材料的强度更高。
等离子表面技术原理
4) 等离子体的接枝:
就是通过等离子体前处理使高分子材料表面生成活性自由基,由此引 发乙烯基单体在材料表面上聚合。等离子体还可以引发一些不规则的 表面(如瓶子的内壁) 进行接枝反应。选择适当的接枝单体,控制恰当的 接枝反应条件可改变材料的亲水或拒水性、粘附性、防腐、耐磨、导 电性及渗透选择性及生物相容性等。因此等离子体接枝是极富创造性 和应用前景的。
等离子表面技术的应用
• 改善复合材料粘附性
表面能低,浸润性差是聚合物材料的一大特点, 但在复合材料、印 刷、涂层、粘接、印染等生产领域都需要材料表面具有良好的浸润性 和粘附性能。而等离子体技术可以在不损害基材本体优良性能的同时 在表面引入极性基团, 提高表面能和浸润性。氟塑料,包括PTFE, PVDF,PFA, FEP是很难粘结的高分子材料,利用等离子体技术可以 接枝上不同的基团,而与不同的粘合剂相配合,提高了粘结的可能性, 可很方便地用于耐腐蚀衬里,导轨贴条,高温压敏胶胶带,氟辊和食 品生产的抗粘结层。与强酸强碱、强氧化剂处理、火焰处理、机械磨 砂等表面处理等方法相比, 低温等离子体处理是最可取的.等离子体处 理不改变基材的颜色,这是对有外观要求的产品是很重要的.有些高档 耐强酸强碱的量筒,烧杯是PFA、EFP注射成型制品,通过等离子体活化 技术,可以在上面印刷上刻度和商标,提高了它的使用价值.
等离子表面技术的应用
聚乙烯无纺布经等离子体处理,改变它的浸润性,可以制成燃料电池和锂离 子电池隔膜.
等离子表面技术的应用
应用领域: 1、清洗光学器件、电子元件、激光器件、镀膜基片、芯片 • 清洗光学镜片、电子显微镜片等多种镜片和载片 • 移除光学元件、半导体元件等表面的光阻物质 • 清洗ATR元件、各种形状的人工晶体、天然晶体和宝石 • 清洗半导体元件、印刷线路板 • 清洗生物芯片、微流控芯片 • 清洗沉积凝胶的基片 2、牙科领域:对硅酮压模材料和钛制牙移植物的预处理,增强其浸润性 和相容性 3、医用领域:修复学上移植物的表面预处理,增强其浸润性、粘附性和 相容性,医疗器械的消 毒和杀菌 4、改善粘接光学元件、光纤、生物医学材料、宇航材料等所用胶水的粘 和力 5、去除金属材料表面的氧化物 6、使玻璃、塑料、陶瓷、高聚合物等材料表面活化,增强其表面粘附性、 浸润性、相容性 7、高分子材料表面修饰
等离子表面技术的应用
介入治疗用的心脏冠状动脉支架,经等离子体清洗之后还要用等离子体涂敷 上抗血凝和抗表皮增生材料
等离子表面技术的应用
聚苯乙烯制造的细胞培养皿,经等离子体处理后,大大提高了贴壁培养细 胞的能力.
等离子表面技术的应用
通过等离子体接枝技术可以在聚碳酸酯鼓泡式氧合器的内表面固定具有抗血凝作用 的低分子肝素.
等离子表面技术的应用
• 生物医用材料 • 是指用于医疗的能植入生物体或能与生物组织相结合的材料。 因此作 为生物医用材料,除了要具有一定的功能特性和力学性能外,还必须满 足生物相容性的基本要求。包括血液相容性和组织相容性两部分。前 者表示材料与血液之间相互适应的程度,而后者反映材料与除了血液以 外的其他组织之间相互适应的能力。 通过等离子体技术在聚合物表面涂覆水凝胶薄层或直接在材料表 面固定抗血栓物质如肝素,就可以提高血液相容性和组织相容性而不损 伤基材的物理和化学性质. 介入治疗用器械、透析设备、胸外科手术 用的心肺机的构件、人工骨、人工关节、人工牙、缝合线、眼科用的 隐形眼镜、人工晶体、储血袋等都可以经等离子体处理而大大提高他 们的血液相容性和组织相容性。等离子体在表面改性的同时,等离子 体的高活性粒子具有还有极强的消毒、灭菌的作用,而且与环氧乙烷法 相比,不会有毒性残留。
等离子表面技术的应用
血液过滤器的内壁和滤芯都需要等离子体的抗血凝处理,以提高其过滤能力 和使用寿命.
等离子表面技术的应用
医学免疫测试用的测试板和测试管经等离子体的官能团化以后,实现了抗体在上面的共价结合, 克服了以前只 靠物理吸附,产品不稳定,变异系数大,成本高的缺点.
等离子表面技术的应用
生物传感器的电 极碳膜经过等离 子体活化,提高了 酶和抗体固定的 稳定性,可以实现 电极重复使用.
等离子表面技术原理
• 3. 等离子体种类
1) 高温等离子体和低温等离子体。在低压体气的场合产生的等离子 体称为低温等离子体;气体处于高压状态并从外界获得大量能量,得 到的等离子体称为高温等离子体。由于高温等离子体对物体表面的作 用过于强强烈,因此在实际应用中很少使用,目前投入使用的只有低 温等离子体。 2) 活泼气体和不活泼气体等离子体。根据产生等离子体时应用的气 体的化学性质不同划分。不活泼气体如氩气(Ar)、氮气(N2)、 氟化氮(NF3)、四氟化碳(CF4)等,活泼气体如氧气(O2)、氢 气(H2)等,不同类型的气体在清洗过程中的反应机理是不同的, 活泼气体的等离子体具有更强的化学反应活性。
等离子表面技术原理
• 4. 等离子体与物体表面作用
等离子体和工件表面的化学反应和常规化学反应有很大不同,由 于高速电子的轰击,很多在常温下很稳定的气体或蒸汽都可以以等离子 体的形式和工件表面反应,产生许多奇特的、有用的效果: 1) 清洗和刻蚀: 例如,在进行清洗时,工作气体往往用氧气,它 被加速了的电子轰击成氧离子、自由基后,氧化性极强。工件表面的 污物,如油脂、助焊剂、感光膜、脱膜剂、冲床油等,很快就会被氧 化成二氧化碳和水,而被真空泵抽走,从而达到清洁表面,改善浸润性 和粘结性的目的。低温等离子处理仅涉及材料的浅表面( <10nm),不 会对材料主体的性质产生影响。由于等离子体清洗是在高真空下进行 的,所以等离子体中的各种活性离子的自由程很长,他们的穿透和渗 透能力很强,可以进行复杂结构的处理,包括细管和盲孔。
等离子表面技术原理
3) 聚合: 很多乙烯基单体,如,乙烯、 苯乙烯、都可以在等离子体条件下,不要其 他任何催化剂和引发剂而在工件表面实现 聚合,甚至甲烷,乙烷,苯这些在常规聚合条件 下不能聚合的物质, 都可以在等离子体条件 下在工件表面实现交联聚合。这种聚合层 可以达到非常致密,并且和基材结合的非常 结实。在国外塑料啤酒瓶和汽车油箱就采 用等离子体聚合上这样一层致密层,用以防 治微量的泄漏。 高分子的生物医学材料表 面也可以通过这种致密层阻止塑料中的增 塑剂等有毒物质向人体组织中扩散。光学 元件常可用等离子体聚合方法在表面加上
等离子表面技术的应用
左图,阳极帽需要和真空玻壳很好的熔接,等离子体清洗可以达 到对清洁的要求. 右图,另一种电真空元件,要求极端清洁,才能参与放电,保障真 空管内良好的真空.
等离子表面技术的应用
用等离子体可以清洗150毫米的半导体硅片在切割和抛光过程带 来的油脂和灰尘.
等离子表面技术的应用
多层复合印制板(环氧树脂或聚四氟乙烯)上有成百上千钻出的0.2mm的细微 的孔,只有用等离子体清除孔内塑料钻污,增加了孔内表面的浸润性后,沉铜 液才能进入微孔中,保证每个孔内都能沉上铜。
等离子表面技术的应用