第一章 1.2.3 集合之间的关系(2)
集合与集合之间的关系

A=B
等 合 A 的元素,那么就说集
合 A 等于集合 B
图形语言 (Venn 图)
栏目 导引
第一章 集 合
3.性质 (1)规定:空集是__任__意__一__个__集__合___的子集,也就是说,对任意 集合 A,都有∅⊆A. (2)任何一个集合 A 都是它本身的__子__集__,即 A⊆A. (3)如果 A⊆B,B⊆C,则_A_⊆__C____. (4)如果 A B,B C,则__A___C___. (5)若 A⊆B,B⊆A,则 A=B;反之,若 A=B,则 A⊆B 且 B⊆A.
栏目 导引
第一章 集 合
已知集合 A={x|x2+x-6=0},B={x|mx+1 =0},B A,求 m 的值. 解:A={x|x2+x-6=0}={-3,2}. 因为 B A,所以 B={-3}或 B={2}或 B=∅. 当 B={-3}时,由 m·(-3)+1=0,得 m=13. 当 B={2}时,由 m·2+1=0,得 m=-12. 当 B=∅时,m=0. 综上所述,m=13或 m=-12或 m=0.
栏目 导引
第一章 集 合
4.集合关系与其特征性质之间的关系 我们可以通过判断两个集合之间的关系来判断它们的特征性 质之间的关系;或用集合特征性质之间的关系,判断集合之 间的关系.
栏目 导引
第一章 集 合
1.已知集合 M={1},N={1,2,3},能够准确表示集合 M 与 N 之间关系的是( ) A.M<N B.M∈N C.N⊆M D.M N 答案:D
(1)当 A⊆B 时,则 A=B 或 A B.
(2)判断两个集合间的关系:①用列举法表示两个集合再判断; ②分类讨论. (3)解数集问题学会运用数轴表示集合. (4)集合与集合间的关系可用 Venn 图直观表示.
中职数学基础模块上册(人教版)全套教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】了解集合的概念,掌握集合的表示方法,能够正确理解和运用集合的基本运算。
【教学内容】1. 集合的定义2. 集合的表示方法3. 集合的基本运算(并集、交集、补集)【教学步骤】1. 引入集合的概念,通过实例讲解集合的表示方法。
2. 讲解集合的基本运算,结合实例进行演示和练习。
【课后作业】1. 判断题:判断下列各题的真假。
(1)集合{1, 2, 3} 包含元素1, 2, 3。
(2)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{1, 2, 3}。
(3)集合{1, 2, 3} 的补集是{4, 5, 6}。
2. 选择题:选择正确答案。
(1)下列哪个选项是集合{1, 2, 3, 4, 5} 的补集?A. {1, 2, 3}B. {2, 3, 4}C. {1, 4, 5}D. {1, 2, 3, 4, 5}(2)设A = {x | x 是小于5 的正整数},B = {x | x 是大于等于2 且小于等于4 的整数},则A ∩B 是哪个集合?A. {2, 3, 4}B. {1, 2, 3, 4}C. {2, 3, 4, 5}D. {1, 2, 3}1.2 集合的关系【教学目标】理解集合之间的包含关系,掌握集合的并集、交集、补集的定义及运算方法。
【教学内容】1. 集合的包含关系2. 集合的并集3. 集合的交集4. 集合的补集【教学步骤】1. 讲解集合的包含关系,通过实例说明集合之间的包含关系。
2. 讲解集合的并集、交集、补集的定义及运算方法,结合实例进行演示和练习。
【课后作业】1. 判断题:判断下列各题的真假。
(1)集合{1, 2, 3} 包含于集合{1, 2, 3, 4, 5}。
(2)集合{1, 2, 3} 和集合{3, 4, 5} 的并集是{1, 2, 3, 4, 5}。
(3)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{3}。
集合间的基本关系(教学设计)高一数学(人教A版2019必修第一册)

学生优势:学生在义务教育阶段数学学习中,已经接触过集合,对于数集、点集等有了一定的感性认识.从初中到高中,从直观到抽象,了解集合的含义及其性质,并不困难学生劣势:难点在于两种关系的识别——元素与集合、集合与集合,特别是符号语言的表述,提升了这部分内容学习的抽象度,例如,{a}A与a∈A,A B与B A、A B等. 本节课的教学难点是集合基本关系的符号表述及识别,对空集的了解.预备策略:尽量创设使学生运用集合语言进行表达和交流的情境和机会,紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生更容易理解。
问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==; (2)设A 为新华中学高一(2)班女生的全体组成的集合,B 为这个班学生的全体组成的集合; (3)设{|},{|};C x xD x x ==是两条边相等的三角形是等腰三角形总结:判断集合间关系的常用方法(1)列举观察法:当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系.(2)集合元素特征法:首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用V enn 图、数轴等直观地判断集合间的关系.一般地,判断不等式的解集之间的关系,适合画出数轴. 提示:若A ⊆B 和A B 同时成立,则A B 更能准确表达集合A ,B 之间的关系.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集. 记作:()A BB A ⊆⊇或读作:A 含于B(或B 包含A).真子集:如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,就称集合A 是集合B 的真子集,记作。
1.2.3补集

1.2.3 集合的运算 —补集
观察归纳 形成概念
观察下列各组集合之间的关系
(1)U R, A {x | x 4}, B {x | x 4}; (2)U {整数}, A {奇数}, B {偶数}.
说明:我们在研究集合和集合之间的关系时,如 果一些集合都是某一给定集合的子集,那么称这 个给定的集合为这些集合的全集,通常用U表示.
归纳总结 概括定义
若 A 是全集 U 的一个子集,由U中所有不属于 A 的 元素构成的集合,叫做 A 在 U 中的补集,
记作: 读作:“A在U中的补集”,即
补集也可以用图示来表示:
归纳总结 概括性质
由补集的定义可知,对于任意集合A,都有
; ; .
案例分析:
例1
.
解:
.
例2 已知U {a,b, c, d, e, f },A {a, c,
例3
解:
. .
随堂练习:
作
教材 P6 习题1.2
业
再见
集合间的基本关系【新教材】人教A版高中数学必修第一册课件PPT3

集合与常用逻辑用语
1.2 集合间的基本关系
• 【素养目标】 • 1.理解集合之间包含和相等的含义,并会用符号和Venn图表示.(直观想
象) • 2.会识别给定集合的真子集,会判断给定集合间的关系,并会用符号
和Venn图表示.(直观想象) • 3.在具体情境中理解空集的含义.(数学抽象)
• 【学法解读】
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
•知识点4 Venn图 • 在 Ve数nn学图中,,这经种常表用示平集面合上的_方__法__叫_封_做_闭_图_曲_示_线的法内.部代表集合,这种图称为 • 注意:1.用Venn图可以直观、形象地表示出集合之间的关系.
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
• [归纳提升] 判断集合间关系的常用方法 • (1)列举观察法 • 当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之
间的关系. • (2)集合元素特征法 • 首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元
合 A 与集合 B 相等,记作 A=B.
符号语言
A⊆B 且 B⊆A⇔A=B
图形语言
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
集合间的基本关系课件-高一上学期数学人教A版(2019)必修第一册

解析:因为A={x|1<x<2},B={x|x<a},且A⊆B,
所以借助数轴分析知 ≥ 2.
D
)
3.已知M={a-3,2a-1,a2 +1},N={-2,4a-3,3a-1},若M=
N,求实数a的值.
解
因为M=N,则(a-3)+(2a-1)+(a2+1)=-2+(4a-3)+(3a
-1),即a2-4a+3=0,解得a=1,或a=3.
A.2个
B.4个
C.6个
B
)
D.8个
解析:根据题意,在集合A的子集中,含有元素0的子集有{0},
{0,1},{0,-1},{-1,0,1}, 共4个.
2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是(
A.{a|a≤2}
B.{a|a≤1}
C.{a|a≥1}
D.{a|a≥2}
记作: ⊆ ,或者 ⊇ ,读作包含于,包含
集合包含集合是什么意思?什么是子集?
【对子集的理解】
(1)若 ⊆ ,则有任意,
(2)当集合中存在不属于集合的元素时,我们就说集合不是集合的
子集,记作 ⊈ 或 ⊉ ,读作“不包含于”或“不包含”,
举例说明,若 = {1,2,3}, = {1,2,3,4}, = {1,2,5},则有
=
也就是说,若 ⊆ ,且 ⊆ ,则 =
【举例说明】
①若集合是0~10之间的质数组成的集合;集合 ={2,3,5,7},则 = ;
②若集合是中国的直辖市组成的集合; ={北京,上海,重庆,天津},则 = .
两个集合相等是什么意思?
【问题】怎样证明或判定两个集合相等?
区分大小关系。
2022-2023学年人教A版必修第一册 1-2 集合间的基本关系 课件(31张)
[练习 1] 能正确表示集合 M={x∈R|0≤x≤2}和集合 N={x∈R|x2-x=0}关系的 Venn 图是( B )
解析:解 x2-x=0,得 x=0 或 x=1,故 N={0,1},易得 N M,其对应的 Venn 图 如选项 B 所示.
研习 2 子集、真子集的个数问题
[典例 2] (1)已知集合 A⊆{0,1,2},且集合 A 中至少含有一个偶数,则这样的集合 A
解析:因为 A⊆B,且 A⊇B,所以 A=B,
所以2x=x=y,y2 或x2=x=y2y,,
解得yx= =22, 或yx= =1412,
或yx= =00, (舍去).
所以 x+y=4 或34.
强研习·重点难点要突破
研习 1 集合间关系的判断 [典例 1] 指出下列各对集合之间的关系: (1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)}; (2)A={x|-1<x<4},B={x|x-5<0}; (3)A={x|x 是等边三角形},B={x|x 是等腰三角形}; (4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.
[典例 3] 已知集合 A={x|-2≤x≤5},B={x|m-6≤x≤2m-1},若 A⊆B,求实数 m
的取值范围.
[解]
m-6≤2m-1, 由 题 意 得 m-6≤-2,
2m-1≥5,
解 得 3≤m≤4. 故 实 数 m 的 取 值 范 围 为
{m|3≤m≤4}.
(1)分析集合间的关系时,首先要分析、简化每个集合. (2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定 数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空 心点表示. (3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者 会想当然认为是非空集合而丢解,因此分类与整合思想是必需的.
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。
2. 能够运用集合的概念解决实际问题。
【教学内容】1. 集合的定义及表示方法。
2. 集合的性质。
3. 集合之间的基本关系。
【教学重点】1. 集合的概念及表示方法。
2. 集合的性质。
【教学难点】1. 集合的表示方法。
2. 集合之间的基本关系。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。
2. 讲解集合的定义及表示方法,如列举法、描述法等。
3. 讲解集合的性质,如无序性、确定性、互异性。
4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。
5. 课堂练习:让学生运用集合的概念解决实际问题。
1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。
2. 能够运用集合之间的关系解决实际问题。
【教学内容】1. 集合之间的子集、真子集关系。
2. 集合之间的并集、交集关系。
3. 集合的补集概念。
【教学重点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学难点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。
2. 讲解集合之间的子集、真子集关系。
3. 讲解集合之间的并集、交集关系。
4. 讲解集合的补集概念。
5. 课堂练习:让学生运用集合之间的关系解决实际问题。
第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。
2. 能够运用函数的概念解决实际问题。
【教学内容】1. 函数的定义及表示方法。
2. 函数的性质。
【教学重点】1. 函数的概念及表示方法。
2. 函数的性质。
【教学难点】1. 函数的表示方法。
2. 函数的性质。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。
2. 讲解函数的定义及表示方法,如解析式、表格法等。
集合间的基本关系
栏目 导引
第一章 集合与常用逻辑用语
已知集合 A={0,1},B={-1,0,a+3},且 A⊆B,则 a =________. 解析:因为 A⊆B,所以 a+3=1,即 a=-2. 答案:-2
栏目 导引
第一章 集合与常用逻辑用语
集合间关系的判断 指出下列各对集合之间的关系: (1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)}; (2)A={x|-1<x<4},B={x|x-5<0}; (3)A={x|x 是正方形},B={x|x 是矩形}; (4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.
栏目 导引
第一章 集合与常用逻辑用语
子集、真子集的个数问题 (1)(2019·安庆检测)已知集合 A={x∈R|x2-3x+2=0}, B={x∈N|0<x<5},则满足条件 A C B 的集合 C 的个数为
() A.1 C.3
B.2 D.4
栏目 导引
第一章 集合与常用逻辑用语
(2)已知集合 A={x∈R|x2=a},使集合 A 的子集个数为 2 的 a
栏目 导引
第一章 集合与常用逻辑用语
4.真子集的概念 文字语言
如果集合 A⊆B,但存在元 素___x_∈__B_,__且___x_∉_A____, 就称集合 A 是 B 的真子集
符号语言
A______B (或 B A)
图形语言
栏目 导引
第一章 集合与常用逻辑用语
■名师点拨 (1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A=B,则 A⊆B, 且 B⊆A. (2)若两集合相等,则两集合所含元素完全相同,与元素排列顺 序无关. (3)在真子集的定义中,A B 首先要满足 A⊆B,其次至少有一 个 x∈B,但 x∉A.
数学人教B必修1第一章121 集合之间的关系
1、2、1 集合之间的关系1。
子集一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A、读作“A包含于B",或“B包含A".理解子集的定义要注意以下七点:(1)“A是B的子集”的含义:集合A中的任意一个元素都是集合B中的元素,即由任意x∈A,能推出x∈B、例如:{1,2,3}⊆N,N⊆R,{x|x为山东人}⊆{x|x为中国人}等.(2)当集合A中存在着不是集合B的元素,我们就说A不是B的子集,记作“A B”(或B A),读作“A不包含于B”(或“B不包含A”)。
例如:A={1,2,3}不是B={2,3,4,5,6}的子集,因为集合A中的元素1不是集合B中的元素。
(3)任意一个集合是它本身的子集.因为对于任意一个集合A,它的任意一个元素都属于集合A本身,记作A⊆A、例如:{1,5}⊆{1,5}等。
(4)空集是任意一个集合的子集,即对于任意一个集合A,都有∅⊆A、(5)在子集的定义中,不能理解为子集A是B中的“部分元素"所组成的集合.因为若A =∅,则A中不含任何元素;若A=B,则A中含有B中的所有元素。
但在这两种情况下集合A都是集合B的子集.(6)包含关系具有传递性:对于集合A,B,C,若A⊆B,B⊆C,则A⊆C、(7)写集合的所有子集时,注意按一定顺序写出,避免遗漏和重复.【例1】已知集合M={0,1},集合N={0,2,1-m},若M⊆N,则实数m=__________、解析:∵M⊆N,M={0,1},∴1∈N、∴1-m=1,即m=0、答案:0点技巧有限集合子集的确定技巧(1)确定所求的集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合自身,看它们是否能取到。
2。
真子集如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B 的真子集,记作A B或B A,读作“A真包含于B”,或“B真包含A”.例如:{1}{1,2,3}.关于真子集注意以下四点:(1)空集是任何非空集合的真子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{0} ⊂ ,1} {0,
, ∅⊂{0,1} ≠
{1} ⊂{0,1} , {0,1} ⊆ {0,1 } , ,Байду номын сангаас
≠ ≠
例1
写出集合A={1,2,3}的所有子集. , , 的所有子集 的所有子集. 写出集合 的所有子集是: 解:集合A的所有子集是:
真子集: 真子集:
真子集 是:
∅
,
{1},{2},{3}, { { {1,2},{1,3},{2,3}, 2 { }{ 3 {1,2,3}. 23
(5) ∅⊆{ x | x ≤ 10}×
(6)
{ (3) {2} ⊂ x | x ≤ 10} √
≠
√ ∅⊂{ x | x ≤ 10} ≠
集合与元素的关系 集合与元素的关系 集合与集合的关系 集合与集合的关系
从属关系 包含关系
∈
∉
通过这堂课的学习, 通过这堂课的学习, 你有什么收获? 你有什么收获?
包含于B 读作: 包含于 A⊆ B 读作 A包含于 ⊆ 读作: 包含 包含A B ⊇ A 读作 B包含
符号开口朝向大的集合 符号开口朝向大的集合 开口朝向
规定:任何一个集合A都是它本身的子集, 都是它本身 规定:任何一个集合 都是它本身的子集,即A ⊆A . 集是任何集合的子集,即 ∅ ⊆ A 集是任何集合的子集, 任何集合的子集
真子集的概念
空集是任何非空集合的真子集。 空集是任何非空集合的真子集。 非空集合的真子集 如果A是 的子集 的子集, 如果 是B的子集, 子集 并且B中至少有一个元素不属于 ,那么A叫做 叫做B的真子集. 并且 中至少有一个元素不属于A,那么 叫做 的真子集 中至少有一个元素不属于 记作: 记作 读作: A ⊂B 读作 ≠ A真包含于 真包含于B 真包含于
如果集合的元素个数是n个 那么其真子集的个数是 如果集合的元素个数是 个,那么其真子集的个数是2n-1个。 真子集的个数是 个
例2
判断下列关系是否正确? 判断下列关系是否正确?
(1) 2 ⊂{ x | x ≤ 10}× ≠
(4) ∅∈{x | x ≤ 10}×
(2) 2∈{ x | x ≤ 10}√
1.2.3 集合之间的关系 集合之间的关系(2)
子集的概念
如果集合A的任意一个元素都是集合 的元素 如果集合 的任意一个元素都是集合B的元素,那么集 的任意一个元素都是集合 的元素, 叫做集合B的子集. 合A叫做集合 的子集 叫做集合 记作: 记作 记作: 记作:
韦 恩 图 表 示
A B A(B)
符号开口朝向大的集合 符号开口朝向大的集合 开口朝向
⊃ 读作: 真包含A 真包含 记作: 记作 B ≠ 读作 B真包含 A
A
B
A(B)
A⊆ B ⊆
A ⊂B ≠ A =B
A ⊂B ≠
A =B
, ∅ ⊆{0,1} {0} ⊆{0,1} , {1} ⊆ {0,1} , {0,1} ⊆ {0,1 } , ,