【最新】人教版数学七下第八章《二元一次方程组》同步练习题

合集下载

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)

人教版七年级下册数学第八章《二元一次方程组》单元练习题(含答案)一、单选题 1.方程组的解是( )A .B .C .D .2.甲,乙,丙三人共解出100道题,每人都解对其中的60道题,将其中只有1人解出的题叫做难题,2人解出叫做中等题,3人都解出的题叫做容易题,试问:难题和容易题谁多,多几题( ) A .容易题比难题多20题 B .难题比容易题多20题 C .一样多D .无法确定3.已知(2x -3y +1)2与|4x -3y -1|互为相反数,则x ,y 的值分别是( ) A .-1,1B .1,-1C .-1,-1D .1,14.若21a b +-与()224a b ++互为相反数,则+a b 的值为( ) A .1-B .0C .1D .25.下列方程组中不是二元一次方程组的是( ) .A .215x y y +=⎧⎨=⎩B .23x y =⎧⎨=⎩C .21214x y y ⎧-=⎪⎨⎪+=⎩D .220x y y x -=⎧⎨-=⎩6.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x 棵,y 棵,可列方程组为( )A .500(13%)(14%)500 3.6%x y x y +=⎧⎨+++=⨯⎩B .5003%4%500 3.6%x y x y +=⎧⎨+=⨯⎩C .500(13%)(14%)500 3.6%x y x y +=⎧⎨-+-=⨯⎩D .5003%4%500(1 3.6%)x y x y +=⎧⎨+=+⎩7.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是()A.容易题和中档题共60道B.难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道8.若方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解是()A.6.32.2xy=⎧⎨=⎩B.8.31.2xy=⎧⎨=⎩C.10.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩9.下列是二元一次方程的是()A.3x-6=x B.3x=2y C.5x+ 2y=3z D.2x-3y=xy 10.已知方程组中的,互为相反数,则的值为()A.B.C.D.11.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A.36,8 B.28,6 C.28,8 D.13,312.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy x-=⎧⎨-=⎩二、填空题13.若x a y b=⎧⎨=⎩是方程20x y -=的解,则362a b -+=_______________________.14.已知235m n -=,则用n 的代数式表示m 为________________15.关于x,y 的方程组03x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⊗⎩,其中y 的值被盖住了.不过仍能求出m ,则m 的值是___.16.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .17.已知方程8mx ny +=的两个解是32x y =⎧⎨=⎩,12x y =⎧⎨=-⎩,则m =___________,n =___________18.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1 240本,则男生志愿者有___人 ,女生志愿者有___人.19.在平面直角坐标系xOy 中,对于点() A x y ,,若点B 的坐标为() ax y x ay ++,,则称点B 是点A 的“a a -演化点”.例如,点()26A -,的“1122-演化点”为()11262622B ⎛⎫⨯-+-+⨯ ⎪⎝⎭,,即()51B ,.(1)已知点(15)P -,的“33-演化点”是1P ,则1P 的坐标为________; (2)已知点()60T ,,且点Q 的“22-演化点”是()148Q ,,则1QTQ ∆的面积1QTQ S ∆为__________;(3)己知()00O ,,() 0 8A , ,() 50C ,,() 38D ,,且点()1K k -,的“k k -演化点”为1K ,当11K AD K OC S S ∆∆=时,k =___________.20.某旅馆的客房有三人间和二人间两种,三人间每人每天80元,二人间每人每天110元,一个40人的旅游团到该旅馆住宿,租住了若干房间,且每个客房正好住满,一天共花去住宿费3680元.求两种客房各租住了多少间?若设租住了三人间x 间,二人间y 间,则根据题意可列方程组为____.三、解答题21.解二元一次方程组34 3.4 64 5.2 x yx y+=-⎧⎨-=⎩22.已知二元一次方程组3521ax yx by+=⎧⎨-=⎩的解为121xy⎧=⎪⎨⎪=-⎩,求a与b的值.23.由于近期出现新冠肺炎疫情,口罩出现热卖.某药店用8000元购进甲、乙两种口罩,销售完后宫获利2800元.进价和售价如下表:求该药店购进甲、乙两种口罩各多少盒?24.用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:由①-②,得33x =解法二:由②,得()332x x y +-=③ 把①代入③,得352x +=()1反思:上述两个解题过程中有无计算错误?若有误,哪种方法有错误? ()2请选择一种你喜欢的方法,完成解答.25.某种水果的价格如表:购买的质量(千克) 不超过10千克 超过10千克 每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?26.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发黄瓜和茄子分别多少千克?27.在等式y=kx+b中,当x=2时,y=-3;当x=4时,y=-7,求k,b的值.28.已知方程|2a+3b+1|+(3a-b-1)2=0,求a2+2ab+b2的值.29.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展觉馆,每一名学只能参加其中一项活动,共支付票款2000元,票价信息如下:请问参观历史博物馆和民俗展难馆的人数各是多少人?参考答案1.A2.B3.D4.A5.C6.A7.B8.A9.B10.D11.A12.B13.214.532n m+ =15.1 2 -16.375017.4 -2 18.12 1619.(2,14) 2020.3240 38021103680 x yx y+⎧⎨⨯+⨯⎩==.21.0.21 xy=⎧⎨=-⎩22.该药店购进甲种口罩200盒,乙种口罩160盒.23.a=16,b=0.24.(1)解法一有误;(2)12 xy=-⎧⎨=-⎩25.张欣第一次、第二次购买这种水果的质量分别为7千克、18千克.26.这天他批发黄瓜15 kg,茄子25 kg.27.21 kb=-⎧⎨=⎩28.由已知得解得∴29.参观历史博物馆的有100人,参观民俗博物馆的有50人.。

新人教(七下)七年数学下 第八章二元一次方程组AB卷(含参考答案)

新人教(七下)七年数学下 第八章二元一次方程组AB卷(含参考答案)

七年数学下 第八章二元一次方程组AB 卷(含参考答案)第八章二元一次方程组水平测试题(A )一、选择题1、若23815m n x y -+-=是关于x y 、的二元一次方程,则m n +=( ) A.1- B.2 C.1 D.2-2、以11x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩ B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .02x y x y +=⎧⎨-=-⎩3、为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种B .9种C .16种D .17种4、同时满足方程21132x y +=与325x y +=的解是( ) A .23x y ==, B .34x y =-=, C .32x y ==-, D .32x y =-=-,5、已知代数式1312a x y -与23b a b x y -+-是同类项,那么a 、b 的值分别是( ) A.21a b =⎧⎨=-⎩B.21a b =⎧⎨=⎩C.21a b =-⎧⎨=-⎩D.21a b =-⎧⎨=⎩6、2(5)23100x y x y +-+--=若,则代数式xy 的值是( ) A. 6 B.-6 C.0 D. 57、若方程组⎩⎨⎧=+=-81my nx ny mx 的解是⎩⎨⎧==12y x ,则m 、n 的值分别是( )A. m=2,n=1B. m=2,n=3C. m=1,n=8D. 无法确定8、如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是( )A.⎩⎨⎧-==+10180y x y x B.⎩⎨⎧-==+103180y x y xC.⎩⎨⎧+==+10180y x y xD.⎩⎨⎧-==1031803y x y 9、某校七年级(2100元。

人教版七年级下第八章二元一次方程组综合练习题(含答案)

人教版七年级下第八章二元一次方程组综合练习题(含答案)

人教版七年级下第八章二元一次方程组综合练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列方程是二元一次方程的是()A.2x+y=3z B.2x﹣1 y=2C.3x﹣5y=2D.2xy﹣3y=02.在下列方程组5231xy x=⎧⎨-=⎩、35x yx y+=⎧⎨-=⎩、3123xyx y=⎧⎨+=⎩、1111x yx y⎧+=⎪⎨⎪+=⎩、11xy=⎧⎨=⎩中,是二元一次方程组的有()个A.2个B.3个C.4个D.5个3.如图,AB⊥BC,⊥ABD的度数比⊥DBC的度数的两倍少15°,设⊥ABD和⊥DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩4.方程组1{25x yx y+=-=,的解是().A.1{2.xy=-=,B.2{3.xy,=-=C.2{1.xy==,D.2{1.xy==-,5.用代入法解方程组233210y xx y=-⎧⎨-=⎩①②将方程⊥代入⊥中,所得的正确方程是()A.3x-4x-3=10B.3x-4x+3=10C.3x-4x+6=10D.3x-4x-6=106.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .2700cm7.若31,21x t y t =+=-,用含y 的式子表示x 的结果是( ) A .253x y -=B .352y x +=C .253x y +=D .352y x -=8.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( ) A .0B .3-C .3D .69.关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x ay b =⎧⎨=⎩,若点P (a ,b )总在直线y =x上方,那么k 的取值范围是( ) A .k >1B .k >﹣1C .k <1D .k <﹣110.若方程组435,(1)8x y kx k y +=⎧⎨--=⎩的解中的x 的值比y 的值的相反数大1,则k 为( )A .3B .-3C .2D .-211.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( ) A .0B .6C .6-D .212.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( ) A .1{4250802900x y x y +=+=B .15{802502900x y x y +=+=C .1{4802502900x y x y +=+=D .15{250802900x y x y +=+=二、填空题13.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ .14.(1)若35m =,37=n ,则3m n +=________;(2)若x 、y 是正整数,且5222⋅=x y ,则x 、y 的值分别为________.15.在(1)32xy=⎧⎨=-⎩,(2)453xy=⎧⎪⎨=-⎪⎩,(3)1472xy⎧=⎪⎪⎨⎪=⎪⎩这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组3924x yx y-=⎧⎨+=⎩的解.16.若二元一次方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解,则a=_____.17.二元一次方程组321221x yx y+=⎧⎨-=⎩的解为________.18.已知|2x﹣4|+|x+2y﹣8|=0,则(x﹣y)2022=____.19.已知1,{2xy==是方程ax-3y=5的一个解,则a=________.20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.三、解答题21(2x+3y+1)2互为相反数,求x﹣y的平方根.22.我市某著名景点门票价格规定如下表:小明妈妈的公司有一项短途旅行业务,就是去该景点一日游.学完一元一次方程以后,他妈妈让他给规划一个去该景点游玩的购票方案,给他的提示是:有甲、乙两个团队共32人,其中甲团队3人以上,不足10人.经估算,如果两个团队分别购票,则应付门票费2100元.(1)两个团队各有多少人?(2)如果两个团队联合起来,作为一个团体购票,可省钱元.(3)如果乙团队临时有事不能去了,只有甲团队单独去游玩,通过计算说明如何购票最省钱?23.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元,若购甲4件,乙10件,丙1件,共需420元.现在购甲、乙、丙各一件共需多少元?24.(1)解二元一次方程组5316,350;x y x y -=⎧⎨-=⎩(2)现在你可以用哪些方法得到方程组()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解?请你对这些方法进行比较.25.先阅读下列解法,再解答后面的问题. 已知2343212x A Bx x x x -=+-+--,求A 、B 的值.解法一:将等号右边通分,再去分母,得:()()3421x A x B x -=-+-,即:()()342x A B x A B -=+-+,⊥()324A B A B +=⎧⎨-+=-⎩解得12A B =⎧⎨=⎩.解法二:在已知等式中取0x =时,有22BA -+=--,整理得24AB +=; 取3x =,有522A B +=,整理得25A B +=. 解2425A B A B +=⎧⎨+=⎩,得:12A B =⎧⎨=⎩.(1)已知21131424643x A B x x x x=+--++-,用上面的解法一或解法二求A 、B 的值.(2)计算:()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅++⎢⎥-+++++++⎣⎦,并求x 取何整数时,这个式子的值为正整数.参考答案:1.C【详解】A 、2x+y=3z 不是二元一次方程,因为有3个未知数; B 、2x -1y=2不是二元一次方程,因为不是整式方程; C 、3x -5y=2是二元一次方程;D 、2xy -3y=0不是二元一次方程,因为最高项的次数为2. 故选C . 2.B【分析】根据二元一次方程组的定义逐个判断即可.【详解】解:方程组5231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,11x y =⎧⎨=⎩符合二元一次方程组的定义,是二元一次方程组.方程组3121xy x y =⎧⎨+=⎩属于二元二次方程组,不是二元一次方程组.方程组1111x y x y ⎧+=⎪⎨⎪+=⎩中的第一个方程不是整式方程,不是二元一次方程组.故选:B .【点睛】本题考查了二元一次方程组的定义,解题关键是明确二元一次方程组的定义,准确进行判断. 3.B【详解】⊥AB⊥BC , ⊥⊥ABD+⊥DBC=90°,又⊥⊥ABD 的度数比⊥DBC 的度数的两倍少15度, ⊥当设⊥ABD 和⊥DBC 度数分别为x y 、时,由题意可得:90215x y x y +=⎧⎨=-⎩ . 故选:B. 4.D【详解】方程组1{25x y x y +=-=①②,由⊥+⊥得3x =6,x =2,把x =2代入⊥中得y =-1, 所以方程组1{25x y x y +=-=的解是2{1x y ==-. 故选D. 5.C 【解析】略 6.A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键. 7.B【分析】根据21y t =-得,t =12y +,然后将其代入31x t =+即可求解. 【详解】解:由21y t =-,得t =12y +, ⊥31x t =+=3×12y ++1=352y +, 即x =352y +. ⊥用含y 的式子表示x 的结果是x =352y + 故选:B .【点睛】本题主要考查了二元一次方程的解法,解本题关键是把方程21y t =-中含有x 的项移到等号的右边,得到t =12y +. 8.A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:⊥324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,⊥=1324=1a b a b +⎧⎨+-⎩, 解得:=3=2a b ⎧⎨-⎩,⊥23=660+-=a b , 故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程. 9.B【分析】将k 看作常数,解方程组得到x ,y 的值,根据P 在直线上方可得到b >a ,列出不等式求解即可.【详解】解:解方程组3212331x y k x y k +=-⎧⎨+=+⎩可得,315715x k y k ⎧=--⎪⎪⎨⎪=+⎪⎩, ⊥点P (a ,b )总在直线y =x 上方, ⊥b >a ,⊥731155k k +>--, 解得k >-1, 故选:B .【点睛】本题考查了解二元一次方程组,一次函数上点的坐标特征,解本题的关键是将k 看作常数,根据点在一次函数上方列出不等式求解. 10.A【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.解出方程组的解,再列出关于两解的等式,求出k . 【详解】解:由题意,解得x =51974k k +-,y =53274k k --,⊥x 的值比y 的值的相反数大1, ⊥x +y =1,即51974k k +-+53274k k --=1, 解得k =3, 故选:A .【点睛】本题主要考查解二元一次方程组和它的解,熟练掌握解二元一次方程组的方法是关键. 11.B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=⎧⎨++=⎩①② , ⊥-⊥得:30a += , 3a =- ,把3a =-代入⊥得:()130b +-+= ,2b = ,解得:32a b =-⎧⎨=⎩ , 把32a b =-⎧⎨=⎩代入代数式2x ax b ++得:232x x -+, 当1x =-时,2326x x -+=. 故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键. 12.D【分析】根据关键语句“到学校共用时15分钟”可得方程:x +y =15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x +80y =2900,两个方程组合可得方程组.【详解】解:他骑车和步行的时间分别为x 分钟,y 分钟,由题意得:152********x y x y +=⎧⎨+=⎩ 故选D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 13.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】⊥本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可⊥令1a =,1b =,得x y c += ⊥把21x y =⎧⎨=-⎩代入方程x y c +=解出1c = ⊥1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.14. 35 14x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,41x y =⎧⎨=⎩.【分析】(1)根据333m n m n +=⋅求解即可;(2)求根据5222⋅=x y 得到522x y +=即5x y +=,再由x 、y 是正整数求解即可. 【详解】解:(1)⊥35m =,37=n , ⊥3335735m n m n +=⋅=⨯=; (2)⊥5222⋅=x y ⊥522x y +=, ⊥5x y +=, ⊥x 、y 是正整数,⊥14xy=⎧⎨=⎩或23xy=⎧⎨=⎩或32xy=⎧⎨=⎩或41xy=⎧⎨=⎩.故答案为:35;14xy=⎧⎨=⎩,23xy=⎧⎨=⎩,32xy=⎧⎨=⎩,41xy=⎧⎨=⎩.【点睛】本题主要考查了同底数幂的乘法的逆用,二元一次方程,解题的关键在于能够熟练掌握相关知识进行求解.15.(1),(2)(1),(3)(1)【分析】根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.【详解】解:当32xy=⎧⎨=-⎩时,方程39x y-=的左边为:()33329x y-=-⨯-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程39x y-=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程39x y-=的左边为:534393x y⎛⎫-=-⨯-=⎪⎝⎭,方程左右两边相等,⊥453xy=⎧⎪⎨=-⎪⎩是方程39x y-=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程39x y-=的左边为:174133424x y⎛⎫-=-⨯=-⎪⎝⎭,方程左右两边不相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程39x y-=的解;当32xy=⎧⎨=-⎩时,方程24x y+=的左边为:()22324x y+=⨯+-=,方程左右两边相等,⊥32xy=⎧⎨=-⎩是方程24x y+=的解;当453xy=⎧⎪⎨=-⎪⎩时,方程24x y+=的左边为:51322333x y⎛⎫+=⨯+-=⎪⎝⎭,方程左右两边不相等,⊥453xy=⎧⎪⎨=-⎪⎩不是方程24x y+=的解;当1472xy⎧=⎪⎪⎨⎪=⎪⎩时,方程24x y+=的左边为:1722442x y+=⨯+=,方程左右两边相等,⊥1472xy⎧=⎪⎪⎨⎪=⎪⎩不是方程24x y+=的解;⊥方程组3924x yx y-=⎧⎨+=⎩的解为32xy=⎧⎨=-⎩;故答案为:⊥(1),(2);⊥(1),(3);⊥(1).【点睛】本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.16.9 7【分析】根据方程组1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解得2+93210x yx y=⎧⎨-=⎩求出x,y得值,再代入方程152aax y--=,即可解答.【详解】1523210aax yx y-⎧-=⎪⎨⎪-=⎩的解也是方程29x y+=的解∴得2+9 3210x yx y=⎧⎨-=⎩解得:41 xy=⎧⎨=⎩把41xy=⎧⎨=⎩代入方程152aax y--=得:1452aa--=解得:a=9 7【点睛】此题考查了二元一次方程组的解,解决本题的关键是明确方程组的解即为能使方程组中两方程成立的未知数的值.17.23 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:321221x yx y+=⎧⎨-=⎩①②.⊥+⊥×2得:7x=14,解得:x=2,把x=2代入⊥得:2×2-y=1解得:y=3,所以,方程组的解为23xy=⎧⎨=⎩,故答案为:23xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.1【分析】由非负数的意义求出x,y的值,再代入计算即可.【详解】解:⊥|2x﹣4|≥0,|x+2y﹣8|≥0,|2x﹣4|++|x+2y﹣8|=0,⊥2x﹣4=0,x+2y﹣8=0.⊥x=2,y=3.⊥(x﹣y)2022=(2﹣3)2022=1.故答案为:1.【点睛】本题考查非负数的意义,掌握绝对值,偶次幂的运算性质是解决问题的前提.19.11【详解】本题考查的是二元一次方程的解的定义由题意把1,{2xy==代入方程ax-3y=5即可得到结果.由题意得,20.2753x yx y+=⎧⎨=⎩【分析】根据图示可得:大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程即可.【详解】解:根据图示可得大长方形的长可以表示为x +2y ,长又是75厘米,故x +2y =75,长方形的宽可以表示为2x ,或x +3y ,故2x =3y +x ,整理得x =3y ,联立两个方程得到: 2753x y x y+=⎧⎨=⎩, 故答案为:2753x y x y +=⎧⎨=⎩【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.21.x ﹣y 的平方根为(2x +3y +1)2()22310x y ++=,再结合二次根式非负性及平方的非负性得到4302310x y x y +-=⎧⎨++=⎩,求解代值即可得到结论.【详解】解:()2231x y ++互为相反数,()22310x y ++=, ()240,2310x y x y +++≥, ⊥4302310x y x y +-=⎧⎨++=⎩,解得11x y =⎧⎨=-⎩, ⊥x ﹣y =2,⊥x﹣y 的平方根为【点睛】本题考查求代数式的平方根,涉及到相反数的性质、二次根式非负性及平方的非负性、解二元一次方程组等知识点,熟练掌握相反数的性质和常见非负式的运用是解决问题的关键.22.(1)甲团队有9人,乙团队有23人;(2)500;(3)11张【分析】(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,再根据门票的收费标准列出方程求解即可;(2)算出合在一起买的花销,然后用分开买的花销减去合买的花销即可;(3)分别算出单买和合买11张的花销,然后比较即可得到答案.【详解】解:(1)设甲团队有x 人,由题意可知,乙团队人数大于20人小于30人,列方程得8060(32)2100x x +-=解方程,得9x =这时,3223x -=答:甲团队有9人,乙团队有23人.(2)由题意得人数一共有32人,则合买的花销=3250=1600⨯ 元,⊥可省钱2100-1600=500元故答案为:500;(3)直接购买:809720⨯=(元);按团体票购买:6011660⨯=(元)⊥720>660,⊥购买11张票最省钱.答:购买11张票最省钱.【点睛】本题主要考查了一元一次方程的实际应用,解题的关键在于能够准确找到等量关系列出方程求解.23.105元【分析】先设甲、乙、丙各一件分别需要x ,y ,z 元,根据购甲3件,乙7件,丙1件,共需315元,购甲4件,乙10件,丙1件,共需420元,列出方程组求出x y z ++的值即可.【详解】解:设购甲、乙、丙各一件分别需要x ,y ,z 元,根据题意得:37315410420x y z x y z ++=⎧⎨++=⎩①② ⊥×3-⊥×2得105x y z ++=.则现在购甲、乙、丙各一件共需105元【点睛】此题考查了三元一次方程组的应用,关键是根据题意设出未知数,列出方程组,注意要把x ,y ,z 以整体形式出现.24.(1)5,3;x y =⎧⎨=⎩;(2)见解析 【分析】(1)利用加减消元法解方程组;(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为53x y x y +=⎧⎨-=⎩,再利用加减法求解.【详解】解:(1)5316350x y x y -=⎧⎨-=⎩①②, 由35⨯-⨯①②得16y =48,⊥y =3,将y =3代入⊥得x =5,⊥这个方程组的解是53x y =⎧⎨=⎩; (2)方法一:去括号得到方程组2816,280,x y x y +=⎧⎨-+=⎩再解得结果41;x y =⎧⎨=⎩; 方法二:由(1)5316,350;x y x y -=⎧⎨-=⎩解为53x y =⎧⎨=⎩,可得()()()()5316,350x y x y x y x y ⎧+--=⎪⎨+--=⎪⎩的解为53x y x y +=⎧⎨-=⎩,解得41x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.25.(1)3,2A B =-=;(2)61x -,当x 取2,3,4,7时,这个式子的值为正整数. 【分析】(1)解法一:先等式两边同乘以(6)(43)x x +-去分母,去括号化简可得一个关于A 、B 的二元一次方程组,解方程组即可得;解法二:分别取0x =和1x =可得一个关于A 、B 的二元一次方程组,解方程组即可得;(2)先将括号内的每一项拆分成两项的差的形式,再计算分式的加减法与乘法运算即可得,然后根据整数性质求出符合条件的整数x 的值即可.【详解】(1)解法一:21131424643x A B x x x x =+--++-, 等式两边同乘以(6)(43)x x +-去分母,得11(43)(6)x A x B x =-++,即11(3)46x A B x A B =-+++,则311460A B A B -+=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; 解法二:21131424643x A B x x x x =+--++-, 取0x =,得064A B +=,即230A B +=, 取1x =,得1177B A =+,即117A B +=, 联立230711A B A B +=⎧⎨+=⎩,解得32A B =-⎧⎨=⎩; (2)()111111(1)(1)(1)(3)(3)(5)(9)(11)x x x x x x x x x ⎡⎤+++⋅⋅⋅+⎢⎥-+++++++⎣⎦, ()111111111112111335911x x x x x x x x x ⎛⎫-+-+-+⋅⋅⋅+-+ ⎪-++++⎝⎭=+++, ()111112111x x x ⎛⎫-+ ⎪⎝⎭=-+, ()11112(1)(11)(11()1)11x x x x x x x ⎡⎤--+⎢⎥-+-+⎣⎦+=, ()1112(1)(11)12x x x ⋅⋅++=-, 61x =-, 要使61x -为正整数,则整数1x -的所有可能取值为1,2,3,6, 即整数x 的所有可能取值为2,3,4,7,经检验,当x 取2,3,4,7时,分式的分母均不为零,故当x 取2,3,4,7时,这个式子的值为正整数.【点睛】本题考查了分式的加减法与乘法运算、二元一次方程组的应用,读懂阅读材料中的两种解法是解题关键.。

人教版初中数学7年级下册第8章二元一次方程组 同步试题及答案

人教版初中数学7年级下册第8章二元一次方程组 同步试题及答案

人教版初中数学7年级下册第8章二元一次方程组 同步试题及答案测试1 二元一次方程组学习要求理解二元一次方程﹨二元一次方程组及它们的解的含义;会检验一对数是不是某个二元一次方程(组)的解.课堂学习检测一﹨填空题1.方程2x m +1+3y 2n =5是二元一次方程,则m =______,n =______.2.如果⎩⎨⎧==2,1y x 是二元一次方程3mx -2y -1=0的解,则m =______. 3.在二元一次方程组⎩⎨⎧-==-y m x y x 32,4中有x =6,则y =______,m =______.4.若⎩⎨⎧==2,1y x 是方程组⎩⎨⎧=+=-3,0by x y ax 的解,则a =______,b =______.5.方程(m +1)x +(m -1)y =0,当m ______时,它是二元一次方程,当m ______时,它是一元一次方程. 二﹨选择题6.下列各式中,是关于x ,y 的二元一次方程的是( ). (A)2x -y(B)xy +x -2=0(C)x -3y =-1(D)02=-y x7.下列方程组中,是二元一次方程组的是( ).(A)⎩⎨⎧=-=+.31,52x y x(B)⎩⎨⎧⋅-==-y x y x 423,1)(2(C)⎩⎨⎧==+.1,122y y x(D)⎪⎩⎪⎨⎧=-=.2,1y x x y 8.已知二元一次方程组⎩⎨⎧=+=+②①923,545y x y x 下列说法正确的是( ).(A)适合方程②的x ,y 的值是方程组的解 (B)适合方程①的x ,y 的值是方程组的解(C)同时适合方程①和②的x ,y 的值是方程组的解(D)同时适合方程①和②的x ,y 的值不一定是方程组的解 9.方程2x -y =3与3x +2y =1的公共解是( ).(A)⎩⎨⎧-==.3,0y x (B)⎩⎨⎧-==.1,1y x (C)⎪⎩⎪⎨⎧⋅==21,0y x(D)⎪⎩⎪⎨⎧-==.2,21y x三﹨解答题10.写出二元一次方程2x +y =5的所有正整数解.11.已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+23,4y nx my x 的解是⎩⎨⎧-==,3,1y x 求m +n 的值.综合﹨运用﹨诊断一﹨填空题12.已知(k -2)x |k |-1-2y =1,则k ______时,它是二元一次方程;k =______时,它是一元一次方程. 13.若|x -2|+(3y +2x )2=0,则yx的值是______. 14.二元一次方程4x +y =10共有______组非负整数解.15.已知y =ax +b ,当x =1时,y =1;当x =-1时,y =0,则a =______,b =______. 16.已知⎩⎨⎧-==1,2y x 是二元一次方程mx +ny =-2的一个解,则2m -n -6的值等于_______.二﹨选择题17.已知二元一次方程x +y =1,下列说法不正确的是( ).(A)它有无数多组解 (B)它有无数多组整数解 (C)它只有一组非负整数解 (D)它没有正整数解 18.若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4 (B)-3∶4 (C)-1∶4 (D)-1∶12 三﹨解答题19.已知满足二元一次方程5x +y =17的x 值也是方程2x +3(x -1)=12的解,求该二元一次方程的解.20.根据题意列出方程组:(1)某班共有学生42人,男生比女生人数的2倍少6人,问男﹨女生各有多少人?(2)某玩具厂要生产一批玩具,若每天生产35个,则差10个才能完成任务;若每天生产40个,则可超额生产20个.求预定期限是多少天?计划生产多少个玩具?拓展﹨探究﹨思考 21.若等式0|21|)42(2=-+-y x 中的x ﹨y 满足方程组⎩⎨⎧=+=+,165,84n y x y mx 求2m 2-n +41mn 的值.22.现有足够的1元﹨2元的人民币,需要把面值为10元人民币换成零钱,请你设计几种兑换方案.测试2 消元(一)学习要求会用代入消元法解二元一次方程组.课堂学习检测一﹨填空题1.已知方程6x -3y =5,用含x 的式子表示y ,则y =______.2.若⎩⎨⎧-==1,1y x 和⎩⎨⎧==3,2y x 是关于x ,y 的方程y =kx +b 的两个解,则k =______,b =______.3.在方程3x +5y =10中,若3x =6,则x =______,y =______.二﹨选择题4.方程组⎩⎨⎧=++=143,5y x y x 的解是( ).(A)无解(B)无数解(C)⎩⎨⎧=-=.3,2y x(D)⎩⎨⎧-==.2,3y x5.以方程组⎩⎨⎧-=+-=1,2x y x y 的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ).(A)第一象限(B)第二象限(C)第三象限(D)第四象限6.下列方程组中和方程组⎩⎨⎧=+-=732,43y x y x 同解的是( ).(A)⎩⎨⎧=+=.732,11y x x(B)⎩⎨⎧=+=.732,5y x y(C)⎩⎨⎧=+--=.7386,43y x y x(D)⎩⎨⎧-==.43,1y x x三﹨用代入消元法解下列方程 7.⎩⎨⎧=+=+.53,1y x y x8.⎩⎨⎧=+=+.643,02b a b a综合﹨运用﹨诊断一﹨填空题9.小明用36元买了两种邮票共40枚,其中一种面值1元,一种面值0.8元,则小明买了面值1元的邮票______张,面值0.8元的邮票______张.10.已知⎩⎨⎧-==.2,1y x 和⎩⎨⎧==.0,2.y x 都是方程ax -by =1的解,则a =______,b =______.11.若|x -y -1|+(2x -3y +4)2=0,则x =______,y =______. 二﹨选择题12.用代入消元法解方程组⎩⎨⎧=-=+②①52,243y x y x 使得代入后化简比较容易的变形是( ).(A)由①得342y x -= (B)由①得432xy -=(C)由②得25+=y x (D)由②得y =2x -513.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A)31-=x y (B)21+=y x (C)352-=x y(D)312--=x y14.把x =1和x =-1分别代入式子x 2+bx +c 中,值分别为2和8,则b ﹨c 的值是( ).(A)⎩⎨⎧==4,3c b(B)⎩⎨⎧-==4,3c b(C)⎩⎨⎧-=-=4,3c b(D)⎩⎨⎧=-=4,3c b三﹨用代入消元法解下列方程组 15.⎩⎨⎧-=-=-.234,423x y y x16.⎩⎨⎧==-.3:4:,52y x y x拓展﹨探究﹨思考17.如果关于x ,y 的方程组⎪⎩⎪⎨⎧-=-+=-321,734k y x k y x 的解中,x 与y 互为相反数,求k 的值.18.研究下列方程组的解的个数:(1)⎩⎨⎧=-=-.342,12y x y x (2)⎩⎨⎧=-=-.32,12y x y x (3)⎩⎨⎧=-=-.242,12y x y x你发现了什么规律?19.对于有理数x ,y 定义新运算:x *y =ax +by +5,其中a ,b 为常数.已知1*2=9,(-3)*3=2,求a ,b 的值.测试3 消元(二)学习要求会用加减消元法解二元一次方程组.课堂学习检测一﹨填空题1.已知方程组⎩⎨⎧-=-=-②①138,447y x y x 方程②-①得______.2.若x -y =2,则7-x +y =______. 3.已知⎩⎨⎧==4,3y x 是方程组⎩⎨⎧=+=+256,7y a by ax 的解,那么a 2+2ab +b 2的值为______.二﹨选择题 4.方程组⎩⎨⎧=-=+7283y x y x 的解是( ).(A)⎩⎨⎧-=-=.1,3y x (B)⎩⎨⎧=-=.3,1y x(C)⎩⎨⎧-==.1,3y x(D)⎩⎨⎧=-=.1,3y x三﹨用加减消元法解下列方程组5.⎩⎨⎧=+=+.1543,2525y x y x6.⎩⎨⎧=-=+.05,1323n m n m综合﹨运用﹨诊断一﹨填空题7.用加减消元法解方程组⎩⎨⎧-=+=-②235,623b a b a ①时,把①×3+②×2,得_______.8.已知二元一次方程组⎩⎨⎧=+=+②①8272,y x y x 那么x +y =______,x -y =______.9.已知方程ax +by =8的两个解为⎩⎨⎧=-=0,1y x 和⎩⎨⎧==4,1y x 则a +b =______.二﹨选择题10.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大48°.设∠BAE和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的方程组是()(A)⎩⎨⎧=+=-.90,48x y x y(B)⎩⎨⎧==-.2,48x y x y(C)⎩⎨⎧=+=-.902,48x y x y(D)⎩⎨⎧=+=-.902,48x y y x11.下列方程组中,只有一组解的是( ).(A)⎩⎨⎧=+=+.033,1y x y x(B)⎩⎨⎧=+=+.333,0y x y x(C)⎩⎨⎧=-=+.333,1y x y x(D)⎩⎨⎧=+=+.333,1y x y x12.关于x ,y 的方程组⎩⎨⎧=-=+1935,023by ax by ax 的解为⎩⎨⎧-==.1,1y x 则a ,b 的值分别为( ).(A)2和3 (B)2和-3(C)-2和3(D)-2和-3三﹨用加减消元法解下列方程组13.⎩⎨⎧=-=+.732,423t s t s14.⎪⎪⎩⎪⎪⎨⎧=+-=-.732,143n m nm15.已知使3x +5y =k +2和2x +3y =k 成立的x ,y 的值的和等于2,求k 的值.拓展﹨探究﹨思考 16.已知:关于x ,y 的方程组⎩⎨⎧=++=-02254,53by ax y x 与⎩⎨⎧-=+=-53,8y x by ax 的解相同.求a ,b 的值.17.已知⎩⎨⎧=+-=++②①.15232,25c b a c b a 求b 的值.18.甲﹨乙两人同时解方程组⎩⎨⎧-=-=+.23,2y cx by ax 甲正确解得⎩⎨⎧-==;1,1y x 乙因为抄错c 的值,错得⎩⎨⎧-==.6,2y x 求a ,b ,c 的值.测试4 消元(三)学习要求能选择适当的消元方法解二元一次方程组及相关问题.课堂学习检测一﹨填空题1.二元一次方程x +y =4有______组解,有_______组正整数解.2.二元一次方程2x -y =10,当x =______时,y =5;当x =5,y =______. 3.若⎩⎨⎧⋅-==1,1y x 是方程组⎩⎨⎧-=-=+124,2a by x b y ax 的解,则a =_______,b =_______.二﹨选择题4.已知2a y +5b 3x 与b 2-4y a 2x 是同类项,那么x ,y 的值是( ). (A)⎩⎨⎧=-=.2,1y x(B)⎩⎨⎧-==.1,2y x(C)⎪⎩⎪⎨⎧⋅-==53,0y x(D)⎩⎨⎧==.0,7y x5.若x ∶y =3∶4,且x +3y =-10,则x ,y 的值为( ).(A)⎪⎩⎪⎨⎧⋅==38,2y x(B)⎪⎩⎪⎨⎧⋅-=-=38,2y x(C)⎩⎨⎧-=-=.3,1y x(D)⎩⎨⎧==.4,3y x6.在式子x 2+ax +b 中,当x =2时,其值是3;当x =-3时,其值是3;则当x =1时,其值是( ). (A)5 (B)3 (C)-3 (D)-1 三﹨选择合适的方法解下列方程组 7.⎩⎨⎧⋅-==-y x y x 2113,238.⎩⎨⎧-=++=-).3(3)1(2),3(2)1(5n m n m综合﹨运用﹨诊断一﹨填空题9.若2x -5y =0,且x ≠0,则yx yx 5656+-的值是______.10.若⎩⎨⎧==⎩⎨⎧-==2,21,1y x y x 和⎩⎨⎧==c y x ,3都是方程ax +by +2=0的解,则c =______. 11.已知方程组⎩⎨⎧=-=+3,1y x y x 与方程组⎩⎨⎧=-=+2,1by ax by ax 的解相同,则a =______,b =______.二﹨选择题12.与方程组⎩⎨⎧=+=-+02,032y x y x 有完全相同的解的是( ).(A)x +2y -3=0(B)2x +y =0(C)(x +2y -3)(2x +y )=0 (D)|x +2y -3|+(2x +y )2=013.若方程组⎩⎨⎧=+=+84,42y x my x 的解为正整数,则m 的值为( ).(A)2(B)4(C)6(D)-4三﹨解下列方程组14.⎩⎨⎧=+=+.1034,1353y x y x15.⎪⎩⎪⎨⎧=++-=-.927532,232y y x y x拓展﹨探究﹨思考16.在方程(x +2y -8)+λ(4x +3y -7)=0中,找出一对x ,y 值,使得λ无论取何值,方程恒成立.17.已知方程组⎩⎨⎧=--=-+01523,0172c a b c b a 其中c ≠0,求c b a cb a -++-的值.18.当k ,m 分别为何值时,关于x ,y 的方程组⎩⎨⎧+-=+=4)12(,x k y m kx y 至少有一组解?测试5 再探实际问题与二元一次方程组(一)学习要求能对所研究的问题抽象出基本的数量关系,通过列二元一次方程组解实际问题,培养分析问题和解决问题的能力.课堂学习检测一﹨填空题1.若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.2.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 3.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 4.如果一个两位正整数的十位上的数字与个位上的数字的和是6,那么符合这个条件的两位数的个数是______. 二﹨选择题5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x 本,乙种挂历有y 本,则下面所列方程组正确的是( ).(A)⎩⎨⎧=+=+.4700713,500y x y x(B)⎩⎨⎧=+=+.4700137,500y x y x(C)⎩⎨⎧=-=+.4700713,500y x y x(D)⎩⎨⎧=-=+.4700137,500y x y x6.甲﹨乙两数和为42,甲数的3倍等于乙数的4倍,求甲﹨乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ).(A)⎩⎨⎧==+.34,42y x y x (B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧⋅==+y x y x 43,4234 (D)⎩⎨⎧⋅==+y x y x 34,4243三﹨列方程组解应用题7.某单位组织了200人到甲﹨乙两地旅游,到甲地的人数比到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.大盒﹨小盒每盒各装多少瓶?9.某车间工人举行茶话会,如果每桌12人,还有一桌空着;如果每桌10人,则还差两个桌子.此车间共有工人多少名?综合﹨运用﹨诊断一﹨填空题 10.式子y =kx +b ,当x =2时,y =11;当x =-2时,y =-17.则k =_______,b =______.11.在公式s =v 0t +21at 2中,当t =1时,s =13;当t =2时,s =42.则v 0=_______,a =______,并且当t =3时,s =______. 二﹨选择题12.出境旅游者问某童:“你有几个兄弟﹨几个姐妹?”答:“有几个兄弟就有几个姐妹。

人教版七年级数学下册 8-1 二元一次方程组(同步练习)

人教版七年级数学下册 8-1 二元一次方程组(同步练习)

第8章二元一次方程组8.1二元一次方程组班级:姓名:知识点1二元一次方程的概念1.下列四个方程中,是二元一次方程的是()A.x-3=0B.2x-z=5C.3xy-5=8D.3x-2y=12.已知下列方程,其中是二元一次方程的是(填序号).①3x+2=2y;②2x+y=a;③x 2+y=2;④1x+3-2y;⑤x +2y3=1;⑥3x=1.3.若方程2x 2m+3+3y 5n-9=4是关于x,y 的二元一次方程,求m 2+n 2的值.4.判断下列各式是否是二元一次方程:(1)x+2y=2;(2)xy+y=2-x;(3)7-x+5y=0;(4)7x+2y=z;(5)8x-y;(6)5x+2y=7;(7)x+π=3;(8)x-2y 2=3.不是的请说明理由.知识点2二元一次方程组的概念5.下列方程组中是二元一次方程组的是()A.{xy =1,x +y =2B.{5x -2y =3,1x+y =3C.{2x +z =0,3x -y =15D.{x =5,x 2+y3=76.x,y 是未知数,下列方程组中,不是二元一次方程组的有()A.{x +1=0,y +4=0 B.{x -2y =3,y =-1C.{x +2y =-1,3x -2y =1D.{xy=1,x -y =37.下列方程组①{3x =2y +3,x +y =3x -7;②{x +y =-1,3x +z =5;③{x 2+y =1,4x -y =2;④{x +2=0,y -3=0中,是二元一次方程组的是(填序号).8.小明有1元和5角的硬币共9枚,小明能买到单价为1.5元的圆珠笔4支,若设一元的硬币有x 枚,5角的硬币有y 枚,根据题意可列出方程组,这是一个方程组.知识点3二元一次方程的解的概念9.二元一次方程x-2y=1有无数多组解,下列四组值中不是该方程的解的是()A.{x =0,y =-12B.{x =1,y =1C.{x =1,y =0D.{x =-1,y =-110.二元一次方程3x+2y=11()A.只有一个解B.只有两个解C.任何一对有理数都是它的解D.有无数个解11.若{x =1,y =2是关于x,y 的二元一次方程ax-3y=1的解,则a 的值为()A.-5B.-1C.2D.712.在方程2x+4y=7中,用含x 的代数式表示y,则y=.用含y 的代数式表示x,则x=.13.写出二元一次方程2x+3y=15的两组解:、.知识点4二元一次方程组的解的概念14.二元一次方程组{x -y =4,x +y =2的解是()A.{x =3,y =-7B.{x =1,y =1C.{x =7,y =3D.{x =3,y =-115.已知一个二元一次方程组的解是{x =-1,y =-2则这个方程组是()A.{x +y =-3x -y =-2 B.{x +y =-3x -2y =1C.{2x =y x +y =-3D.{x +y =03x -y =516.已知{x =12,y =-1是二元一次方程组{ax +y =1,2x -by =3的解,则a=,b=.17.下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组{3x -2y =11,2x +3y =16的解?为什么?①{x =1,y =-4;②{x =5,y =2;③{x =7,y =23;④{x =15,y =6.综合点1二元一次方程组与求代数式的值的综合应用18.已知方程x 2m-1-2y 3n+4=100是二元一次方程,则(m+n)2013的值为.19.若{x =a ,y =b是方程3x-2y=2的一个解,求12a-8b+3的值.20.若{x =-1,y =2是方程2x+3y=m 和5x+2y=n 的解,求m 2-n 的值.21.甲、乙两同学共同解关于x,y 的方程组{ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a,得到方程组的解为{x =-3,y =-1,乙看错了方程②中的b,得到方程组的解为{x =5,y =4,求a 2009+()-110b2008的值.综合点2列二元一次方程(组)22.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是()A.{x +y =78,3x +2y =30B.{x +y =78,2x +3y =30C.{x +y =30,2x +3y =78D.{x +y =30,3x +2y =7823.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能用二元一次方程组表示题中的数量关系吗?24.根据下列条件,设适当的未知数列出二元一次方程或二元一次方程组.(1)甲数的8%与乙数的11%的和是甲、乙两数和的10%;(2)有父子两人,已知10年前父亲的年龄是儿子年龄的3倍,现在父亲的年龄是儿子年龄的2倍;(3)某同学到书店去买甲、乙两种书共用去39元,其中购甲种书的钱比购乙种书的钱多1元.拓展点1由解写方程或方程组25.请写出一个以x,y 为未知数的二元一次方程组,且同时满足下列条件:①由两个二元一次方程组成;②方程组的解为{x =2,y =3.这样的方程组可以是.26.请你用方程组{x +y =38,2x -y =1编写一道具有实际背景的题,使列出的方程组为上述方程组.拓展点2二元一次方程的整数解27.求方程3x+2y=10的正整数解.28.求方程3y=9-6x 的非负整数解.第8章二元一次方程组8.1二元一次方程组答案与点拨1.B(点拨:x-3=0是一元一次方程;2x-z=5是二元一次方程;3xy-5=8是二元二次方程;3x-2y=1不是整式方程.故选B.)2.①⑤(点拨:根据二元一次方程的定义判定.②含有三个未知数,不是二元一次方程;③中x 2的次数是2,不是二元一次方程;④中1x不是整式,所以不是二元一次方程;⑥中只有一个未知数,不是二元一次方程.只有①⑤符合二元一次方程的定义.)3.由题意可得:{2m +3=1,5n -9=1,解得{m =-1,n =2.由此可得m 2+n 2=(-1)2+22=5.4.二元一次方程有(1),(3);因为(2),(8)含未知数的项有2次,故它们不是二元一次方程;(4)含有3个未知数;(5)不是方程;(6)不是整式方程;(7)中的π不是未知数,它是一元一次方程,所以它们都不是二元一次方程.5.D(点拨:选项A 第一个方程中的xy 是二次的;选项B 的第二个方程有1x,不是整式方程;选项C 含有3个未知数;选项D 符合二元一次方程组的定义.故选D.)6.D(点拨:二元一次方程组的每一个方程都是二元一次方程(或一元一次方程).)7.①④(点拨:②是三元一次方程组,③是二元二次方程组.)8.{x +0.5y =6,x +y =9二元一次9.B(点拨:把四个选项逐一代入二元一次方程x-2y=1,选项B 不能使方程成立.)10.D(点拨:由二元一次方程的解的特性求解.)11.D(点拨:把{x =1,y =2代入方程ax-3y=1中即可求出a 的值,即a-3×2=1,解得a=7.)12.7-2x 4或()74-12x7-4y 2或()72-2y (点拨:表示y(x)则把x(y)看作常数,解方程即可.)13.{x =3,y =3{x =6,y =1(点拨:用一个未知数x(或y)表示出另一个未知数y(或x),然后给x(或y)一个值,求出y(或x)就可得到一组解.答案不唯一.)14.D(点拨:把{x =3,y =-1代入方程组{x -y =4,x +y =2,成立.)15.C(点拨:把{x =-1,y =-2分别代入方程组,使方程组成立即可.)16.42(点拨:把x,y 的值代入方程组得12a-1=1,1+b=3.)17.①②是方程3x-2y=11的解,②③是方程2x+3y=16的解.②是方程组{3x -2y =11,2x +3y =16的解.因为方程组的解必须是方程组中两个方程的公共解.18.0(点拨:由二元一次方程的定义可得2m-1=1,3n+4=1.解得m=1,n=-1.把m=1,n=-1的值代入(m+n)2013可得(m+n)2013=(1-1)2013=0.)19.把{x=a,y=b代入方程3x-2y=2得3a-2b=2,①又因为12a-8b+3=4(3a-2b)+3,②把①式代入②式可得12a-8b+3=4×2+3=11.20.把{x=-1,y=2代入方程可得{2×(-1)+3×2=m,5×(-1)+2×2=n,∴m=4,n=-1,则可得m2-n=42-(-1)=17.21.由于甲看错了①,则{x=-3,y=-1符合4x-by=-2,则可得4×(-3)-b×(-1)=-2,③由于乙看错了②,则{x=5,y=4符合ax+5y=15.则可得5a+20=15,④由③④可得b=10,a=-1.把a=-1,b=10代入a2009+()-110b2008=(-1)2009+(-1)2008=-1+1=0.22.D(点拨:根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵数+女生种树的总棵数=78棵,根据等量关系列出方程组即可.)23.本题的等量关系可表示为:钢笔的单价=笔记本的单价+2元,10支钢笔的价钱+15本笔记本的价钱= 100元-5元.设钢笔每支为x元,笔记本每本为y元,根据题意得{x=y+2,10x+15y=100-5.24.(1)设甲数为x,乙数为y,8%x+11%y=(x+y)10%.(2)设今年父亲x岁,儿子y岁,{x-10=3(y-10),x=2y.(3)设购甲种书用x元,购乙种书用y元,{x+y=39,x-y=1.25.答案不唯一,如{x+y=5,2x-2y=-226.小明昨天上街买了一支钢笔和一个书夹共花去38元钱,已知两个书夹比一支钢笔贵1元,问钢笔和书夹的单价各是多少?(答案不唯一)27.由3x+2y=10,得y=5-32x.设x=2k,则y=5-3k.故3x+2y=10的整数解为{x=2k,y=5-3k.(k为整数)又∵x>0,y>0,∴{2k>0,5-3k>0,则0<k<53.∴k=1,则{x=2,y=2.28.∵3y=3(3-2x),∴y=3-2x.又∵y≥0,x≥0,∴0≤x≤32,x为整数,∴x=0或1.则非负整数解为{x=0,y=3;{x=1,y=1.。

人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)

人教版数学七年级下册第八章二元一次方程组单元测试卷(含答案)

人教版数学七年级下册第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是( )A .x +y =aB .3x −y =0C .x +xy =10D .4x =3y2.用代入法解方程组{y =1−x ①x−2y =4②时,把①代入②正确的是( )A .x -2−x =4B .x−2−2x =4C .x -2+2x =4D .x−2+x =43.方程x−y =−1与下面方程中的一个组成的二元一次方程组的解为{x =3y =4,那么这个方程可以是( )A .3x−4y =16B .13x +14y =0C .4(x +y)=7yD .3x +2y =154.已知关于x ,y 的方程组{3x +2y =42x−7y =4m−9的解也满足方程x−y =3,则m 的值为( )A .3B .4C .5D .65.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x 、y 的值为( )A .x=3,y=2B .x=2,y=3C .x=0,y=5D .x=5,y=06.若点P (x,y )满足方程组{2x−y =5x +y =1,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.甲乙两人练习跑步,若乙先跑10m ,则甲5s 就可以追上乙;若乙先跑2s ,则甲4s 就可以追上乙,若设甲的速度x m/s ,乙的速度y m/s ,则( )A .x =4,y =6B .x =6,y =4C .x =3,y =5D .x =5,y =38.我国古代数学名著《算法统宗》中记载:“今有里长值月议云每里科出银五钱依帐买物以辨酒席多银三两五钱每里科出四钱亦多五钱问合用银并里数若干”.意为:里长们(“里”是指古代的一种基层行政单位)在月度会上商议出银子购买物资办酒席之事.若每里出5钱,则多出35钱;若每里出4钱,则多出5钱.问办酒席需多少银子,里的数量有多少个?若设里的数量有x 个,办酒席需要用y 钱银子,则可列方程组为( )A .{5y =x +354y =x−5B .{5y =x +354y =x +5C .{5x =y +354x =y−5D .{5x =y +354x =y +59.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有( )A .1种B .2种C .3种D .4种10.图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x 的值应为( ).A .-4B .-3C .3D .4二、填空题11.将方程4x−3y =12变形为用关于x 的代数式表示y ,则y = 12.请你写出一个解为 {x =1y =−1的二元一次方程组:.13.若关于x ,y 的二元一次方程3x +ay =1有一个解是{x =2y =1,则a = .14.已知m 、n 满足{23m +24n =3124m +23n =16,则m 2−n 2的值是.15.已知方程组{2x +3y =13x +2y =2的解满足x−y =m ,则m 的值为 .16.已知{x−3y +2z =03x−3y−4z =0,则x:y:z =.17.已知方程组{5x +y =3mx +5y =4 与{x−2y =55x +ny =1有相同的解,则m−n = .18.实数m 取何值,方程x−2my +mx−6=0总有一个固定的解,请直接写出这个解 .三、解答题19.解方程组:(1){x +2y =9y−3x =1(2){x +4y =14x−33−y−33=11220.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时,两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米,请求出两人的速度分别是多少?21.甲乙两人同时解方程组{ax+by=8cx−3y=−2,甲正确解得{x=1y=−1;乙因为抄错c的值,解得{x=2y=−6.求a,b,c的值.22.2024年五一假期期间,太原市某中学开展以“红色经典”为主题的研学活动,组织七年级师生参观红色文化传承实践教育基地.原计划租用45座甲型客车若干辆,但有15人没有座位;若租用同样数量的60座乙型客车,则多出三辆车,且其余客车恰好坐满.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆甲型客车?(2)若同时租用甲、乙两种型号的客车,要使每位师生都有座位且无空位,有哪几种租车方案?23.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.阅读下述材料,再按要求解答.如果一个关于x、y的一次方程可化为形如:ax+by+1=0(a,b都是不为0的常数)的形式,并且满足a+b=1,那么我们就把这个一次方程叫做具有“1性质”的方程.(1)若关于x,y的方程ax+76y+1=0是具有“1性质”的方程,则a的值为______.(2)若关于x,y的方程m−n2x−(m+n)y=1是具有“1性质”的方程,且{x=1y=2是该方程的一个解,试求m,n的值.参考答案1.D2.C3.C4.C5.D6.D7.B8.D9.B10.A11.4x−12312.{x+y=0x−y=2(答案不唯一)13.-514.−1515.116.9:5:317.1218.{x=6y=319.(1){x=1y=4;(2){x=3y=11420.小明速度为5.5千米/时.小亮速度为4.5千米/时21.{a=10b=2c=−522.(1)参加此次研学活动的师生人数是600,原计划租用13辆甲型客车(2)有三种租车方案,分别是租用甲型客车4辆,乙型客车7辆;租用甲型客车8辆,乙型客车4辆;租用甲型客车12辆,乙型客车1辆23.(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.24.(1)−16 (2){m=−4n=2。

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

七年级下册数学第八章《二元一次方程组》单元练习题一、单选题 1.已知,那么x+y 的值是( )A .0B .5C .﹣1D .12.已知单项式 23x m y -- 与 2323n m nx y - 是同类项,那么m ,n 的值分别是A .31m n =⎧⎨=-⎩B .31m n =⎧⎨=⎩C .31m n =-⎧⎨=⎩D .31m n =-⎧⎨=-⎩3.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少? 设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是( )A .30()40080()400x y y x +=⎧⎨-=⎩B .30()40080()400y x x y -=⎧⎨+=⎩C .30()40080()400x y x y +=⎧⎨-=⎩D .30()40080()400x y x y -=⎧⎨+=⎩4.《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x 只,怪鸟为y 只,可列方程组为( ).A .62464276x y x y +=⎧⎨+=⎩B .64762246x y x y +=⎧⎨+=⎩C .62764246x y x y +=⎧⎨+=⎩D .22766246x y x y +=⎧⎨+=⎩5.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔20s 相遇一次,若同向而行,则每隔300s 相遇一次,已知甲比乙跑得快,设甲每秒跑x 米,乙每秒跑y 米,则可列方程为( )A .30020x y x y +=⎧⎨-=⎩B .20300x y x y +=⎧⎨-=⎩C .2020300300300300x y x y +=⎧⎨-=⎩D .2030030030020300x y x y +=⎧⎨-=⎩6.已知|2x+y+3|+(x-y+3)2=0,则(x+y )2019等于( ) A .2019B .-1C .1D .-20197.把方程7215x y =-写成用含x 的代数式表示y 的形式,得( ) A .2517x y -=B .1527yx +=C .7152x y -=D .1572xy -=8.在一个古代文献里记录了一个“鸡免同笼”问题,翻译内容如下:在一个笼子里混装有鸡和兔子若干只,已知共有头45个,脚160个,设鸡x 只,兔子y 只,根据题意可列出方程组( )A .4524160x y x y +=⎧⎨+=⎩B .4522160x y x y +=⎧⎨+=⎩C .452160x y x y -=⎧⎨+=⎩D .4524160x y x y +=⎧⎨-=⎩9.如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =⎧⎨=-⎩D .21x y =-⎧⎨=-⎩10.如果方程x ﹣y =3与下面的方程组成的方程组的解为47x y =-⎧⎨=-⎩,那么这一个方程可以是( )A .2(x ﹣y )=6yB .3x ﹣4y =16C .1x 2y 54+=D .1x 3y 82+=二、填空题11.二元一次方程3x +2y =15共有_______组正整数解.... 12.已知24280x x y -++-=,则()2019x y -=_____________.13.已知关于x ,y 的二元一次方程组3522x y k x y k +=⎧⎨+=-⎩的解互为相反数,则k 的值是_______14.方程组26{0x y x y -=+=的解是 . 15.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.16.已知关于 x ,y 的二元一次方程组2122x y k x y k -=+⎧⎨-=-+⎩,则 x ﹣y 的值是_____17.《九章算术》是我国东汉年间编订的一部数学经典著作,其中有一个问题是:“今有三人公车,二车空;二人公车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,若每3人坐一辆车,则有2辆空车;若每2人坐一辆车,则有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为_________.18.若7353x y x y +=⎧⎨-=-⎩,则5x ﹣3y 的值是_____.三、解答题19.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b== ,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.20.如果264(1)(2)12x x A B Cx x x x x x +-=++-+-+,求A,B,C 的值.21.甲、乙两车将一批抗疫物资从A 地运往B 地,两车各自的速度都保持匀速行驶.甲出发0.5h 后乙开始出发,结果比甲早0.5h 到达B 地.甲、乙两车离A 地的路程1s ()km 、2s ()km 与甲车行驶时间行驶的时间()t h 之间的函数关系如图所示.(1)求2s ()km 与t ()h 之间的函数关系式; (2)图中a =_______;b =______;(3)若甲、乙两车之间的路程不小于20km ,则t 的取值范围是________.(直接写出答案)22.对于两个不相等的实数a 、b ,我们规定符号max{a ,b}表示a 、b 中的较大值,min{a ,b}表示a 、b 中的较小值.如:max{2,4}=4,min{2,4}=2.按照这个规定:解方程组:{}{}1max ,3min 39,3114x x y x x y ⎧-=⎪⎨⎪++=⎩23.已知关于x ,y 的方程组3+5223x y m x y m =+⎧⎨+=⎩的解满足x +y =-10,求式子m 2-2m +1的值.24.学完二元一次方程组的应用之后,老师写出了一个方程组如下:254340x y x y -=⎧⎨+=⎩,要求把这个方程组赋予实际情境. 小军说出了一个情境:学校有两个课外小组,书法组和美术组,其中书法组的人数的二倍比美术组多5人,书法组平均每人完成了4幅书法作品,美术组平均每人完成了3幅美术作品,两个小组共完成了40幅作品,问书法组和美术组各有多少人?小明通过验证后发现小军赋予的情境有问题,请找出问题在哪?25.对于实数a ,b ,定义关于“⊕”的一种运算:a ⊕b=2a+b ,例如3⊕4=2×3+4=10.若x ⊕(-y )=2,(2y)⊕x=1,求x+y 的平方根.26.开学初,小芳和小亮去学校商店购买学习用品,小芳用17元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.求每支钢笔和每本笔记本的价格.27.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,试计算两种笔记本各买了多少本?答案1.B2.B3.A4.C5.C6.B7.C8.A9.C10.B 11.2 12.1- 13.4 14.2{2x y ==- 15.22. 16.117.()3229y x y x ⎧-=⎨+=⎩18.1119.(1) 6,10;(2)02x y =⎧⎨=⎩。

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

新人教版初中数学七年级下册第8章《二元一次方程组》单元测试卷(含答案解析)

人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组一、填空题(本大题共8小题,共32分)1.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.2.方程mx -2y=x+5是二元一次方程时,则m________.3.若2x 2a-5b +y a -3b =0是二元一次方程,则a=______,b=______. 4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax+ay -b=7的一个解,则代数式(x+y )2-1•的值是_________5.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________. 6.已知都是ax+by=7的解,则a=_______,b=______.7.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.8.在等式y =kx +b 中,当x =1时,y =1;当x =2时,y =4,则k =__________,b =__________.二、选择题(本大题共8小题,每小题4分,共32分。

)9.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 10.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-1 11.若关于x 、y 的方程组⎩⎨⎧=-=+k y x k y x 73的解满足方程2x +3y =6,那么k 的值为( ) A .-23 B .23 C .-32 D .-23 12.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 213.方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、114.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =m ,x -y =4m 的解为3x +2y =14的一个解,那么m 的值为( ). A .1 B .-1 C .2 D .-215.六年前,A 的年龄是B 的年龄的3倍,现在A 的年龄是B 的年龄的2倍,A 现在的年龄是( ).A .12岁B .18岁C .24岁D .30岁16.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,其中属于二元一次方程组的个数为( )A .1B .2C .3D .4三、解答题(本大题共6小题,共36分)17.(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y(3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 45133218.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.19.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x yx y+=⎧⎨+=-⎩中第一个方程y的系数和第二个方程x的系数看不到了,现在已知小丽的结果是12xy=⎧⎨=⎩,你能由此求出原来的方程组吗?20.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学下第8章《二元一次方程组》试题及答案§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2= 。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( ) A 、2 B 、-2 C 、2或-2 D 、以上答案都不对.6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y xD 、⎩⎨⎧+==132y x y x7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( =)A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

§8.2消元——二元一次方程组的解法一、用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2)⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x(5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 451332二、用加减法解下列方程组 (1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x(3)⎩⎨⎧=--=-7441156y x y x (4)⎩⎨⎧-=+-=-53412911y x y x(5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( 其中a 为常数)三、解答题1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。

2、求满足方程组⎩⎨⎧=-=--20314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy+ 的值。

3、列方程解应用题一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。

§8.3实际问题与二元一次方程组列方程解下列问题1、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?2、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?3、某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。

4、某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?5、甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。

求A、B两人骑自行车的速度。

(只需列出方程即可)6、已知甲、乙两种商品的原价和为200元。

因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。

求甲、乙两种商品的原单价各是多少元。

7、2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车各运多少吨垃圾。

8、12支球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分。

若有一支球队最终的积分为18分,那么这个球队平几场?9、现有A 、B 、C 三箱橘子,其中A 、B 两箱共100个橘子,A 、C 两箱共102个,B 、C 两箱共106个,求每箱各有多少个?第八单元测试一、选择题(每题3分,共24分) 1、表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=222,11x y x x y x 2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( )A 、⎩⎨⎧=-=;3,1y x B 、⎩⎨⎧-==;1,3y x C 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.3,1y x3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x ( )A 、12B 、121-C 、12-D 、.1214、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A 、;3,2-B 、;2,3-C 、;3,2-D 、.2,3- 5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。

A 、23B 、-13C 、-5D 、13 7、关于关于y x 、的方程组⎩⎨⎧-=+-=-5m212y 3x 4m113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )A 、0B 、1C 、2D 、21 8、方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( )A 、01043=--x xB 、8543=+-x xC 、8)25(23=--x xD 、81043=+-x x二、填空题(每题3分,共24分) 1、21173+=x y 中,若,213-=x 则=y _______。

2、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

3、如果⎩⎨⎧=-=+.232,12y x y x 那么=-+-+3962242yx y x _______。

4、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___, b =__。

5、购面值各为20分,30分的邮票共27枚,用款6.6元。

购20分邮票_____枚,30分邮票_____枚。

6、已知⎩⎨⎧==⎩⎨⎧=-=310y 2x y x 和是方程022=--bx ay x 的两个解,那么a = ,b = 7、如果b a a b y x y x 4222542-+-与是同类项,那么 a = ,b = 。

8、如果63)2(1||=---a x a 是关于x 的一元一次方程,那么aa 12--= 。

三、用适当的方法解下列方程(每题4分,共24分)1、⎩⎨⎧=-=+-6430524m n n m2、⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x3、⎩⎨⎧=-=+110117.03.04.0y x y x4、⎪⎩⎪⎨⎧=+=+-722013152y x y x 5、⎩⎨⎧-=+=--c y x c y x 72963112(c 为常数) 6、⎩⎨⎧-=++=--cd y x dc y x 23434(d c 、为常数)四、列方程解应用题(每题7分,共28分)1、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

问一工多少名学生、多少辆汽车。

2、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。

3、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。

(用两种方法求解)4、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。

答案 第八章§8.1一、1、-4,-0,34,38-- 2、y x xy 33,33-=-=3、-1,14、2,35、⎩⎨⎧==⎩⎨⎧==12,31y x y x 6、2.75 7、,23⎩⎨⎧==y x 8、11.5二、ADDBCCAADB三、1、当32≠≠a a 且时,=x 32-a 2、略 3、⎪⎩⎪⎨⎧==232y x§8.2一、1、⎪⎪⎩⎪⎪⎨⎧-==75720y x 2、⎩⎨⎧-=-=118y x 3、⎩⎨⎧-==12y x 4、⎩⎨⎧-=-=21y x 5、⎪⎪⎩⎪⎪⎨⎧-==196195y x6、⎪⎪⎩⎪⎪⎨⎧=-=75673y x二、1、⎪⎩⎪⎨⎧==212n m 2、⎪⎪⎩⎪⎪⎨⎧-==2123y x 3、⎪⎪⎩⎪⎪⎨⎧-==221163y x 4、⎪⎩⎪⎨⎧==733y x 5、⎪⎪⎩⎪⎪⎨⎧==17121714y x 6、⎩⎨⎧==0y a x 三、1、⎩⎨⎧-==43b a 2、3 3、长3216、宽322§8.31、⎩⎨⎧==250150y x2、⎪⎩⎪⎨⎧===163050z y x 3、2.25Km 4、体操队10人,排球队15人,篮球队12人 5、设甲的速度是x 千米/小时,乙的速度是y 千米/小时, ⎪⎩⎪⎨⎧=-=+2130302y x yx 6、7、⎩⎨⎧==24y x 8、平5场或3场或1场 9、⎪⎩⎪⎨⎧===545248C B A第八单元测试一、DBCABDCD 二、1、4 2、1169,9611+-y x 3、2 4、718 5、15 6、2,31- 7、53,115- 8、2-=a三、1、⎪⎩⎪⎨⎧=-=143y m 2、⎪⎪⎩⎪⎪⎨⎧==11121130y x 3、⎩⎨⎧==11y x 4、⎪⎪⎩⎪⎪⎨⎧==1136225y x 5⎪⎪⎩⎪⎪⎨⎧-==c y c x 2145 6、⎪⎪⎩⎪⎪⎨⎧+-=+=1361113115d c y d c x四 1、240名学生,5辆车 2、及格的70人,不及格的50人 3、原数是684、A的速度5.5千米/时,B的速度是4.5千米/时。

相关文档
最新文档