I-Line光刻胶材料的研究进展
光刻胶项目可行性研究报告

光刻胶项目可行性研究报告光刻胶在现代半导体制造中扮演着重要角色。
它通过对于光的敏感性和可塑性,被用于制作微细图案,完成照相与沉积等工序。
本可行性研究报告将对光刻胶项目进行分析,包括市场需求、竞争优势、技术可行性和经济可行性等方面。
一、市场需求分析:光刻胶是半导体制造中必需的材料之一,其市场需求与半导体行业的发展密切相关。
目前全球半导体市场规模不断扩大,特别是高集成电路的需求不断增长。
光刻胶作为半导体制造过程中的必备材料之一,市场需求潜力巨大。
同时,在其他领域如平面显示、光学器件等也有较大的应用空间。
二、竞争优势分析:在光刻胶项目中,竞争优势是确保项目成功的关键之一、首先,我们的项目团队具备丰富的研发经验和技术实力,能够不断创新和提升光刻胶的质量和性能。
其次,我们具备完善的供应链和生产管理体系,能够确保产品的稳定供应和高效运营。
此外,与其他竞争对手相比,我们的项目还具备成本优势,使得产品价格更具竞争力。
三、技术可行性分析:光刻胶项目的技术可行性主要包括材料研发和生产工艺两个方面。
材料研发方面,我们的项目团队具备丰富的材料科学背景和研发经验,能够根据市场需求进行定制化研发,满足不同客户的需求。
生产工艺方面,我们将引入先进的设备和生产线,结合自身的生产管理经验,能够确保产品质量和生产效率。
四、经济可行性分析:光刻胶项目的经济可行性是项目投资和盈利能力的重要指标。
首先,项目投资主要包括研发费用、设备采购和生产线建设等方面。
通过市场需求和竞争优势的分析,我们预计项目投资将能够获得良好的投资回报率。
其次,由于光刻胶市场需求潜力巨大,项目的盈利能力也较高。
通过市场营销和供应链管理的优化,我们预计能够实现可观的利润。
综上所述,光刻胶项目具备较高的可行性。
基于市场需求和竞争优势的分析,光刻胶项目具有良好的发展前景。
同时,技术可行性和经济可行性的分析也支撑了项目的可行性。
为了确保项目的成功,我们将推进研发工作、加强供应链管理,并与客户建立紧密的合作关系。
半导体光刻胶及关键材料研究和产业化项目

半导体光刻胶及关键材料研究和产业化项目随着科技的不断发展,半导体行业已经成为了全球经济发展的重要引擎。
在这个过程中,光刻胶和关键材料的研究成果对于提高半导体制程的技术水平和降低生产成本具有重要意义。
本文将对半导体光刻胶及关键材料的研究和产业化项目进行详细的分析和讨论。
一、半导体光刻胶的研究与应用1.1 光刻胶的基本原理与分类光刻胶是半导体制程中的关键材料之一,主要用于在硅片上形成微细结构的图案。
光刻胶的基本原理是利用光化学反应在硅片表面固化,形成特定图案。
根据固化方式的不同,光刻胶可以分为接触式光刻胶、离子束光刻胶和激光光刻胶等。
1.2 光刻胶的研究进展近年来,随着科技的不断进步,光刻胶的研究取得了显著的成果。
例如,研究人员通过改进光刻胶的配方和工艺,实现了对图案分辨率的精确控制;还开发出了一种新型的光刻胶,具有优异的抗辐射性能和稳定性能。
这些成果为半导体制程技术的提升和产业的发展提供了有力支持。
二、半导体关键材料的研究方向与进展2.1 硅片表面处理技术的研究与应用硅片表面处理技术是半导体制程中的关键环节之一,直接影响到制程的质量和效率。
近年来,研究人员在硅片表面处理技术方面取得了一系列重要突破。
例如,通过引入新型的表面修饰剂和改性剂,实现了对硅片表面形貌的精确调控;还开发出了一种高效的硅片表面清洗工艺,有效降低了生产成本。
2.2 薄膜材料的研究与应用薄膜材料是半导体制程中的重要组成部分,对于提高器件性能和降低功耗具有重要意义。
近年来,研究人员在薄膜材料的研究方面取得了一系列重要成果。
例如,通过改进薄膜材料的制备方法和工艺,实现了对薄膜厚度和组分分布的精确控制;还开发出了一种新型的薄膜沉积技术,具有优异的生长速率和晶体质量。
这些成果为半导体器件性能的提升和产业的发展提供了有力支持。
三、半导体光刻胶及关键材料的产业化前景展望随着科技的不断进步,半导体行业正面临着前所未有的发展机遇。
在这个过程中,光刻胶和关键材料的研究成果将发挥越来越重要的作用。
光刻胶photoresist性能及发展趋势简介

光刻胶成分:树脂(resin)、感光剂(photo active compound)和溶剂(solvent)。
树脂是一种有机聚合物,他的分子链长度决定了光刻胶的许多性质。
长链能增加热稳定性,增加抗腐蚀能力,降低曝光部分的显影速度,而短链能增加光刻胶和基底间的吸附,因此一般光刻胶树脂的长度为8-20个单体。
对于正性(positive tone)光刻胶,感光剂在曝光后发生化学反应,增加了树脂在显影液中的溶解度,从而使得曝光部分在显影过程中被冲洗掉;对于负性(negative tone)光刻胶,感光剂在曝光后诱导树脂分子发生交联(cross linking),使得曝光部分不被显影液溶解。
溶剂保持光刻胶的流动性,因此通过甩胶能够形成非常薄的光刻胶。
光刻胶的主要技术参数:1.分辨率(resolution)。
通常用关键尺寸(Critical Dimension)来衡量,CD越小,光刻胶的分辨率越高。
光刻胶的厚度会影响分辨率,当关键尺寸比光刻胶的厚度小很多时,光刻胶高台会塌陷,产生光刻图形的变形。
光刻胶中树脂的分子量会影响刻线的平整度,用小分子代替聚合物会得到更高的极限分辨率1。
另外,在化学放大光刻胶(CAR)中,光致产酸剂的扩散会导致图形的模糊,降低分辨率2。
2.对比度(contrast)。
指光刻胶曝光区到非曝光区侧壁的陡峭程度。
对比度越大,图形分辨率越高。
3.敏感度(sensitivity)。
对于某一波长的光,要在光刻胶上形成1/news177697613.html2G.M. Wallraff, D.R. Medeiros, Proc. SPIE 5753 (2005) 309.图像需要的最小能量密度值称为曝光的最小剂量,单位mJ/cm,通常用最小剂量的倒数也就是灵敏度来衡量光刻胶对光照的灵敏程度和曝光的速度。
灵敏度越高,曝光完成需要的时间越小。
通过曝光曲线,我们可以直观地看到对比度、分辨率和敏感度。
上图为ABC三种光刻胶的曝光曲线。
I-Line光刻胶材料的研究进展

成 , 酚醛树脂 的微 观结 构 、 光剂 的载体 化合 物有些 发展 变化 . 但 感
2 从 gl e iie树脂 的发展变化 -n 到 -n , i l
从 显影 时溶解 抑制 机理来 看 , 脂 结 构 和组 成 的不 同造 成 了对 光刻 胶1 甲酚异 构 体 的结 构及 甲叉 键 的位 置 ;2 树 脂 的 分子 量 及 分 子 () ()
第3卷 O
第 2期
影 像 科 学 与 光 化 学
n g n ce c n o o h mit a i g S in ea d Ph t c e s
Vo . O No 2 13 .
M a ., 2 2 r 01
21 02年 3月
IL n 光 刻 胶 材 料 的 研 究 进 展 - ie
正 型光 刻胶根 据所 用曝 光波长 的不 同 , 又可 分 为 gl e 4 6n - n ( 3 m)正 胶 、 l e 3 5n 正 i ii ( 6 m) -n 胶 . 者虽然都 是 用线型 酚醛树 脂 做成膜 树脂 , 氮 萘醌 型酯 化 物作 感 光剂 , 在 酚醛 树 两 重 但 脂 及感 光剂在 微观 结构 上均有 变化 , 因此 两者 性 能 , 尤其 是分 辨 率不 一样 , 用 场合 也 不 应 同. — n gl e正胶 , 用 0 5 m 以上 集成 电路 的制作 , iie正胶 , 用 0 3 一O 5 m 集 i 适 . 而 -n l 适 . 0 .
收 稿 日期 : 0 10 —4 2 1—71 ;修 回 日期 :2 1 —10 . 0 11—4
作者简介 : 郑金红 (9 7) 女, 16 一 , 教授级 高工 , 主要从 事光刻胶 的研 究及产 品开发 , — i j@ kmp rcr, Ema :zh e u.o 电 l n
光刻胶性能改良与应用研究

光刻胶性能改良与应用研究光刻技术是集光学、化学、物理和机械等多个学科于一体的高科技制造技术。
其中的光刻胶是不可或缺的材料。
光刻胶作为光刻技术的关键材料,能够在微细区域内精确传递光信息并转化成图案,是半导体工业制程中最重要的原材料之一。
随着微电子技术和半导体工业的不断发展,对光刻胶性能的要求不断提高。
硅光刻胶作为一种典型的光刻胶,其性能如分辨率、敏感度、对消显比(CDU)、图案保真度、蚀刻选择比(SER)等等,都与光刻工艺的性能密切相关,因此在光刻技术中起着非常重要的作用。
为了满足工业制程的需求,人们不断地改进和完善光刻胶的性能,开发出新型光刻胶,探索新的改良方法,如双键酮(diketone),巯基化(thiolation)、免曝曝光(Direct-write techniques)等等。
本文将从多个角度介绍光刻胶的性能改良和应用研究。
一、分辨率的提高分辨率是光刻胶的重要指标之一,能够衡量光刻胶对于细微结构的传递能力,是评价光刻工艺的关键之一。
现有的分辨率可以达到10纳米以下,但是在不断发展的工业制程中,要求更高的分辨率是必然的趋势。
分辨率的提高一方面需要提高光源的质量和强度,加强曝光过程中光与物质的相互作用。
另一方面需要注意对光刻胶的配方、溶液处理、清洁和环境控制等方面进行改良,以减小光刻胶在曝光过程中的偏差,提升分辨率。
例如,通过巯基化改性,可得到高分辨率的硅光刻胶。
对于无法通过化学改性获得高分辨率的光刻胶,可引入表面处理、控制溶液 pH 值等方法来提升分辨率。
二、敏感度的提高敏感度是光刻胶材料在曝光过程中的响应能力,它决定了光刻胶材料的曝光时间,即在光源功率一定的情况下,光刻胶材料的曝光时间越短,则敏感度越高。
在工业制程中,提高敏感度可以极大地减小光刻胶曝光的时间,加快生产效率。
通过化学改性,如引入光致酸性、巯基化等,可显著提高光刻胶材料的敏感度。
另外,还可以选用更合适的曝光波长,例如使用波长为193nm的ArF激光,比使用光波长为248nm的KrF激光,能显著提高硅光刻胶的敏感度。
光刻胶成膜树脂的研究进展

光刻胶成膜树脂的研究进展冯波;艾照全;朱超;宋梦瑶【摘要】光刻胶是集成电路和分立器件的基础工艺材料,主体成膜树脂是光刻胶的重要组分之一,不同的成膜树脂对光刻胶的性能有不同影响.主要综述了光刻胶的分类,影响光刻胶成膜树脂性能的因素,成膜树脂的发展,及光刻胶的主要技术参数.【期刊名称】《粘接》【年(卷),期】2015(000)002【总页数】5页(P78-81,86)【关键词】光刻胶;单体;成膜树脂;光敏度;化学放大光刻胶;有效含碳量【作者】冯波;艾照全;朱超;宋梦瑶【作者单位】有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062;有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062;有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062;有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北武汉430062【正文语种】中文【中图分类】TQ577.3+5光刻胶(photoresisit)又称光致抗蚀剂[1],是一种感光性高分子材料,对光和射线的灵敏度高,经紫外光、电子束、准分子激光束、离子束、X射线等的照射或辐射后,能发生光化学反应,使曝光前后胶膜溶解性质发生变化,由此可分为正性光刻胶和负性光刻胶。
光刻胶主要应用在集成电路和半导体分立器件的细微图加工上,近年来也逐步应用于光电子领域平板显示(FPD)的制作。
将其涂布在印刷线路板(PCB)[2]、半导体基片、绝缘体或其他基材的表面,经曝光、显影、蚀刻、扩散、离子注入等工艺加工后,得到所需要的微细图形[3]。
随着电子器件不断向高集成化和高速化方向发展,作为微电子技术领域关键性基础材料,光刻胶的作用越来越重要。
光刻胶一般是由主体成膜树脂、光敏剂、阻溶剂、溶剂、添加剂等组成,其中主体成膜树脂是光刻胶的重要组分之一,不同的成膜树脂对光刻胶的性能有不同影响和作用。
关于一款I线光刻胶的实验研究

关于一款I线光刻胶的实验研究
袁燕;张倩;倪烨;王君;曹玉;于海洋;孟腾飞
【期刊名称】《仪器与设备》
【年(卷),期】2024(12)1
【摘要】本文主要针对一款I线光刻胶进行工艺攻关,首先摸索该光刻胶在不同转速下的厚度。
然后摸索该光刻胶适合的前烘、后烘、曝光、显影工艺参数。
分别在接触式光刻机,投影式光刻机上进行试验,找到适用于两台光刻机的工艺窗口。
试验过程中记录胶线条以及铝线条的线宽和状态。
初步固定工艺条件后,针对同一生产任务,同时使用该光刻胶和AZ 5214-E光刻胶进行生产,并进行试制,将二者进行对比,试制结果大致相同。
初步证明该光刻胶可以代替AZ 5214-E光刻胶的反转胶性质,在生产较掩模版上线宽细的产品时,该光刻胶更有优势。
【总页数】8页(P31-38)
【作者】袁燕;张倩;倪烨;王君;曹玉;于海洋;孟腾飞
【作者单位】北京航天微电科技有限公司
【正文语种】中文
【中图分类】TN3
【相关文献】
1.S1818光刻胶工艺实验研究
2.聚合物SU-8光刻胶超声时效实验研究
3.大面积光刻胶线棒涂布工艺研究
4.一种彩膜光刻胶实验室涂膜均匀性研究
5.g-线/i-线光刻胶研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
i-line 光刻机制程

i-line 光刻机制程i-line光刻机制程引言:i-line光刻机是一种常用于半导体制造中的光刻设备。
光刻是半导体工艺中的一项关键步骤,用于将芯片上的电路图案转移到光刻胶上,以便后续步骤进行电路制造。
本文将介绍i-line光刻机的机制和制程。
一、i-line光刻机的机制i-line光刻机采用的是i线光源,波长为365纳米。
它通过以下几个步骤实现光刻的机制:1. 掩膜对准:首先,在光刻胶上覆盖一层掩膜,掩膜上有芯片的电路图案。
将掩膜放置在与光刻胶相接触的位置,并通过对准系统进行对准,确保掩膜上的图案与光刻胶的位置完全匹配。
2. 光刻胶涂覆:将光刻胶涂覆在硅片上,形成一层均匀的光刻胶薄膜。
光刻胶的主要成分是聚合物,可以通过旋涂的方式将其均匀涂覆在硅片表面。
3. 紫外曝光:将掩膜与光刻胶相对应的位置置于光刻机的曝光区域。
通过激活光源,发射i线波长的紫外光,光线穿过掩膜的透明部分,照射到光刻胶上。
光刻胶中的光敏剂会吸收光的能量,并引发化学反应,使光刻胶发生化学变化。
4. 显影:经过曝光的光刻胶会在显影液中发生化学反应,不同部分的光刻胶有不同的溶解性。
通过显影液的处理,将未曝光的部分去除,暴露出硅片表面。
5. 清洗:在显影之后,需要对光刻胶进行清洗,以去除残留的显影液和未固化的光刻胶。
二、i-line光刻机的制程i-line光刻机的制程主要包括以下几个步骤:1. 准备工作:包括准备硅片、掩膜和光刻胶等材料,并对设备进行检查和校准。
2. 掩膜对准:将掩膜放置在对准系统中,通过对准系统的调整,使掩膜上的图案与硅片的位置完全对准。
3. 光刻胶涂覆:将光刻胶倒在硅片上,通过旋涂的方式将光刻胶均匀涂覆在整个硅片表面。
4. 烘烤:将涂覆好的硅片放入烘烤炉中,将光刻胶烘烤,使其变得更加均匀和稳定。
5. 曝光:将掩膜与硅片对准,放入光刻机中进行曝光。
通过激活光源发射i线波长的紫外光,将图案转移到光刻胶上。
6. 显影:将曝光后的硅片放入显影液中,显影液会溶解掉未曝光的光刻胶,暴露出硅片表面的图案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I-Line光刻胶材料的研究进展郑金红【摘要】酚醛树脂-重氮萘醌正型光刻胶由于其优异的光刻性能,在g-line(436nm)、i-line(365 nm)光刻中被广泛使用.g-line光刻胶胶、i-line光刻胶,两者虽然都是用线型酚醛树脂做成膜树脂,重氮萘醌型酯化物作感光剂,但当曝光波长从g-line发展到i-line时,为适应对应的曝光波长以及对高分辨率的追求,酚醛树脂及感光剂的微观结构均有变化.在i-line光刻胶中,酚醛树脂的邻-邻′相连程度高,感光剂酯化度高,重氮萘醌基团间的间距远.溶解促进剂是i-line光刻胶的一个重要组分,本文对其也进行了介绍.%Novolak-diazonaphthoquinone photoresists have been widely used in g-line,,I-line lithography for its high performance. Although g-line and I-line photoresists are both consisted of novolak resin and diazonaphthoquinone photoactive compounds,in order to fit I-line exposure wavelength and seeking for higher resolution,novolak resin and photoactive compounds(PAC) both have difference in structure from g-line to I-line. In I-line resist,the o-o'bonding content of resin is higher,the esterfication of PAC is higher,the proximity of DNQ groups is distant. Dissolution promoter is an important component of I-line resists,some phenolic additives were very useful to control the dissolution behavior.【期刊名称】《影像科学与光化学》【年(卷),期】2012(030)002【总页数】10页(P81-90)【关键词】i-line;光刻胶;酚醛树脂;感光剂;溶解促进剂【作者】郑金红【作者单位】北京科华微电子材料有限公司,北京101312【正文语种】中文【中图分类】O64酚醛树脂-重氮萘醌正型光刻胶是由线性酚醛树脂、重氮萘醌型感光剂、添加剂以及溶剂构成.曝光时,重氮萘醌基团转变成烯酮,与水接触时,进一步转变成茚羧酸,从而使曝光区在用稀碱水显影时被除去,显影后得到的图形与掩膜版一样,故酚醛树脂-重氮萘醌光刻胶属于正型光刻胶.此类正胶用稀碱水显影时不存在胶膜溶胀问题,因此分辨率较高,且抗干法蚀刻性较强,故能满足大规模集成电路及超大规模集成电路的制作.紫外正型光刻胶根据所用曝光波长的不同,又可分为g-line(436nm)正胶、i-line(365nm)正胶.两者虽然都是用线型酚醛树脂做成膜树脂,重氮萘醌型酯化物作感光剂,但在酚醛树脂及感光剂在微观结构上均有变化,因此两者性能,尤其是分辨率不一样,应用场合也不同.g-line正胶,适用0.5μm以上集成电路的制作,而i-line正胶,适用0.30—0.5μm集成电路的制作.紫外正胶还用于液晶平面显示器等较大面积的电子产品制作.i-line光刻技术80年代中期进入开发,90年代初进入成熟,90年代中期进入昌盛并取代了g-line光刻胶的统治地位.i-line光刻胶最初分辨率只能达到0.5μm,随着i-line光刻机的性能改进,i-line正胶亦能制作线宽为0.35μm的集成电路.i-line光刻技术目前仍是最广泛应用的光刻技术,i-line 光刻胶仍将在较长一段时间内持续占据相当数量的市场份额.我国光刻胶的研究始于上个世纪70年代,最初阶段与国际水平相差无几,几乎和日本同时起步,但由于种种原因,差距愈来愈大.国外用于193nm浸没式光刻的光刻胶早已产业化,EUV(极紫外)光刻胶也日渐成熟,而我国IC(集成电路)用i-line光刻胶全部需要进口.因此,在国内进行i-line光刻胶的研究,进而实现产业化生产是当务之急.与g-line光刻胶相比,i-line光刻胶仍然是由酚醛树脂、感光剂、添加剂和溶剂等组成,但酚醛树脂的微观结构、感光剂的载体化合物有些发展变化.从显影时溶解抑制机理来看,树脂结构和组成的不同造成了对光刻胶性能的影响,主要有两方面的因素:(1)甲酚异构体的结构及甲叉键的位置;(2)树脂的分子量及分子量分布.这些因素影响着显影过程的溶解促进和溶解抑制,从而影响分辨率.正型光刻胶中的成膜树脂一般为间甲酚、对甲酚与甲醛的缩合物.甲酚异构体具有不同的活性点,间甲酚具有3个活性点(图1),当间甲酚与其他酚反应时,甲叉键的位置有3种:邻-邻′相连、邻-对相连、邻′-对相连.对甲酚只有两个活性点(图2),甲叉键的位置只有邻-邻′相连.在间/对甲酚体系中,随着对甲酚含量的增加,邻-邻′相连程度增加,聚合物的规整性和刚性增加,在显影液中扩散速度慢,胶膜的溶解速率下降,感光度下降,但感光剂与高邻-邻′相连的树脂间由于氢键作用强,而展示高的溶解抑制性,使曝光区与非曝光区的溶解速率反差增大,胶的分辨率提高.因此,从g-line发展到i-line,为追求更高的分辨率,树脂的邻-邻′相连程度不断提高.获得高邻-邻′相连树脂的传统方法是在间甲酚/对甲酚体系中提高对甲酚的投料比.由于间甲酚的反应活性比对甲酚高,在间-对甲酚反应体系中,间甲酚的反应速度大约是对甲酚的9倍,间甲酚先被消耗完,残余的对甲酚要通过高温蒸馏除去,高温蒸馏时,酚醛树脂会发生重排,分子量分布变宽.而且传统的一步法是两相反应,缩聚过程中会引起甲醛的损失,因此传统的一步法制备出的酚醛树脂,分子量大小及分子量分布重复性差,批与批之间质量不稳定.这些树脂还要经过分级,变成Tandem型树脂(树脂的中间分子量所占比例下降),才能得到性能优异的i -line光刻胶[1].分级的产率只有40%—50%,造成树脂的大量浪费,并产生大量的废液.用双官能团单体BHMPC(2,6-双羟甲基-对-甲酚)替代部分对甲酚,可合成出高邻-邻′相连的树脂,分子量及分子量分布低,无对甲酚富集的齐聚物,树脂重复性好,无需分级可直接使用.与传统树脂相比,这种BHMPC树脂具有更好的光刻性能[2].BHMPC树脂是采用两步缩合法来制备的(图3).第一步:对甲酚预缩合,制备BHMPC单体;第二步:BHMPC单体与间甲酚缩合,得BHMPC树脂.或者间-对甲酚先合成低分子量齐聚物,齐聚物再与BHMPC单体聚合[3,4].如果在聚合体系中引入特定的端基,如2,4-二甲酚、2,6-二甲酚、2,5-二甲酚、3,4-二甲酚等,来控制树脂的分子量和溶解性质,制备出的树脂既具有高邻-邻′相连度的主体结构,而端基又提供了良好的溶解性和感光速度,由此而制备出的i-line正胶分辨率达0.25 μm[5,6].在聚合体系中引入二甲酚端基,还可提高树脂的耐热性.感光剂的作用是促进曝光区的溶解,抑制非曝光区的溶解.重氮萘醌型感光剂的溶解抑制不仅是因为感光剂的疏水性,还有感光剂与树脂的多种作用,如重氮萘醌基团的氢键作用、磺酰酯的氢键作用、静电作用、碱催化偶合反应等有关.感光剂的骨架结构及酯化度会影响这些作用.与g-line胶相比,i-line胶对感光剂有以下新要求:(1)光漂白后在365nm残余吸收小,透过性高.这要求感光剂的骨架在365nm 吸收小,透过性高.(2)酯化度高,重氮萘醌基团的数目多.(3)重氮萘醌基团间的距离大,重氮萘醌基团相互之间尽可能远.(4)感光剂的疏水性大.传统的二苯甲酮型骨架在g-line是完全透过的,但在i-line有较强的非光漂白性吸收,感光剂的光敏性降低,图形侧壁角减小,分辨率下降,甚至产生footing (底脚)缺陷.通过减少体系离域化程度,可使在i-line的吸收最小化,比如用长链烷基替换一个苯基(见图4),由骨架引起的非漂白吸收大部分被除去了[7].许多非二苯甲酮型化合物在i-line是完全透过的(见图5).除了考虑感光剂的吸收特性,还要考虑感光剂中重氮萘醌基团间的邻近度.酚醛树脂需要一个空间与重氮萘醌基团形成一个协同球(图6),当重氮萘醌基团靠得太近,协同球相互重叠交叉,重氮萘醌基团与树脂的接触面积减小,单位重氮萘醌基团的抑制效率下降.而远距离的重氮萘醌基团,协同球在空间上不相连,单位重氮萘醌基团有更大的溶解抑制效率.图5中螺旋二茚衍生出的感光剂,重氮萘醌单元密集,溶解抑制效率低,光刻性能受到限制.双酚A、对甲酚三聚体、重氮萘醌基团与基团间距离远,溶解抑制效率高.感光剂的酯化度越高,对树脂的溶解抑制性越强,胶的分辨率高,所以从g-line 发展到i-line,感光剂的酯化度呈升高趋势.但感光剂的酯化度升高时,其光敏性下降,溶解性变差.事实上,全酯化的感光剂由于难于溶解而无法实用.单个—OH由于空间位阻而未被酯化的感光剂与全酯化感光剂相比,溶解抑制作用没有下降,仍具有高的溶解反差,高分辨力,但光敏性、溶解性更好.这个—OH 由于周围有空间位阻导致不同位置上的OH可选择性酯化.但当未被酯化的—OH 超过一个时,感光剂的溶解抑制作用迅速下降.通过感光剂的骨架结构设计及优化反应条件可以实现选择性酯化,制备出单个—OH未被酯化的的感光剂[9-13].同样的酯化度,疏水性增加(例如在骨架上引入烷基),感光剂的溶解抑制作用增强.骨架的高透过性、高疏水性,重氮萘醌基团与基团之间布局遥远,单个位阻—OH未被酯化,沿着这一设计准则,研究者们开发了许多高性能的非二苯甲酮系感光剂,图7为一些高性能感光剂的骨架化合物[14-21].传统的高分辨率i-line光刻胶是由高分子量分级树脂与小分子量溶解速率促进剂混合而成[22,23].树脂分级后,由于低分子量组分被除去,树脂的光敏性下降;光刻胶与基板的粘附性变差,蚀刻时易发生钻蚀、剥离现象,导致抗蚀性下降.在胶中加入具有2—7个酚型羟基官能团并且分子量<1000的芳香族多羟基化合物,不但可提高胶的粘附性,还提高胶的光敏性[24-28].溶解促进剂必须符合曝光区溶解速率的增加大于非曝光区溶解速率的增加的要求.酚羟基的极性大小决定了它提供H的能力,如感光剂会优先与供H能力最强的酚类化合物形成氢键,因此非曝光区的溶解速率降低;而曝光区,由于感光剂的分解,无氢键作用,低分子量酚类化合物会增加曝光区的溶解速率,从而提高曝光区与非曝光区的溶解速率反差,达到提高分辨率的目的.一些溶解促进剂的结构如下所示[29-35]:i-line光刻胶还可根据需要加入其他添加剂,如加入表面活性剂来提高胶的流平性,防止条痕的产生,提高膜厚均匀性;加入粘附促进剂,提高光刻胶与基板的粘附性;加入紫外线吸收剂,防止因光的反射而形成驻波.化学增幅型光刻胶具有感光速度快、分辨率高的特点.如果化学增幅型光刻胶能用于i-line光刻,那么i-line光刻胶的性能将得到提高.但传统的产酸剂在紫外区吸收低,造成感光灵敏度低,限制了化学增幅型i-line光刻胶的发展.随着一些在i-line具有高灵敏度、高产酸效率的产酸剂的开发,化学增幅型i-line光刻胶已成为可能[36].线性酚醛树脂,三嗪类产酸剂、胺类交联剂组成的化学增幅型负型i-line光刻胶,不仅具有感光速度快、分辨率高的特点,而且能经受苛刻的离子注入工艺,已广泛地应用于LED(发光二极管)制造中.线性酚醛树脂或聚羟基苯乙烯树脂、噻吩类产酸剂、双乙烯醚类交联剂组成化学增幅型正型光刻胶,采用高温前烘工艺,使酚醛树脂或聚羟基苯乙烯树脂与双乙烯醚类交联剂在前烘时发生交联.在PEB (曝光后烘烤)期间,在曝光区,酸催化已交联的树脂分解,得高灵敏度(<30mJ/cm2)、高分辨率正图(分辨率可达0.25 μm),且具有高耐热性(>140℃)[37].理论上讲,用于248nm、193nm及EUV光刻中的化学增幅型光刻胶中的聚合物,如果匹配在i-line具有高产酸效率的产酸剂,均有可能用于i -line光刻,如t-BOC protected tetra-C-methyl calix[4](特-丁氧基羰基保护的-C-甲基杯芳烃[4])与产酸剂diphenyliodonium 9,10-dimethoxy anthracene-2-sulfonate(二苯基碘鎓9,10-二甲氧基蒽-2-磺酸酯)组成的光刻胶在i-line曝光,灵敏度高达13mJ/cm2,图形反差高达12.6[38].然而这些为248nm、193nm及EUV光刻设计的聚合物,制备费用比酚醛树脂昂贵得多,这也是化学增幅型正胶没有成为i-line光刻胶主流的原因.随着集成电路集成度的提高、加工线宽的缩小,对光刻胶分辨率的要求越来越高.根据瑞利原则,缩短曝光波长可以提高光刻分辨率,因此光刻技术经历了从g -line、i-line光刻,到深紫外248nm、193nm光刻以及即将量产化的EUV光刻,相对应于各曝光波长的光刻胶也应运而生.随着曝光波长变化,光刻胶的组成与结构也不断地变化,以使光刻胶的综合性能满足对应集成工艺制程的要求.我国的光刻胶也必然从g-line、i-line光刻胶朝着深紫外248nm、193nm光刻胶以及EUV光刻胶的方向发展.【相关文献】[1] Hanabata M,Oi F,Furuta A.Novolak design for high-resolution positive photoresists(IV):tandem-type novolak resin for high-performance positivephotoresists[J].Proc.SPIE,1991,1466:132-140.[2] Jeffries A,Brzozowy D,Greene N,Kokubo T,Tan S.Novel novolac resins produced from 2,6-bishydroxymethyl-p-cresol,p-cresol,and m-cresol:a method to more evenly distribute p-cresol units throughout a novolac resin [J].Proc.SPIE,1993,1925:235-245.[3] Baehr G,Westerwelle U,Gruetzner G.Tailoring of novolac resins for photoresist applications using a two-step synthesis procedure[J].Proc.SPIE,1997,3049:628-638.[4]东京应化工业株式会社.正型光致抗蚀剂组合物以及抗蚀剂图形的形成方法[P].中国专利,200410005582.9,2004-02-18.Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition and process for forming resist pattern[P].China patent,200410005582.9,2004-02-18.[5] Xu C B,Zampini A,Sandford H F,Lachowski J,Carmody J.Sub-0.25-μm i-line photoresist:the role of advanced resin technology[J].Proc.SPIE,1999,3678:739-750.[6] Zampini A,Monaghan M J,Xu C B,Cardin W J.Effect of end group on novolak resin properties[J].Proc.SPIE,1998,3333:1241-1250.[7] Brunsvold W R,Eib N K,Lyons C F,Miura S S,Plat M V,Dammel R R.Novel DNQ PACs for high-resolu-tion i-line lithography[J].Proc.SPIE,1992,1672:273-285.[8] Uenishi K,Kawabe Y,Kokubo T,Slater S G,Blakeney A J.Structural effects of DNQ-PAC backbone on resist lithographic properties[J].Proc.SPIE,1991,1466:102-116.[9] Jeffries A T,Brzozowy D J,Naiini A A,Gallagher P M.Novel combination of photoactive species:photoresists formed from selectively esterified novolacs and polyfunctional photoactive compounds[J].Proc.SPIE,1997,3049:746-756.[10] Hanawa R,Uetani Y,Hanabata M.Design of PACs for high-performance photoresists(I):role of di-esterified PACs having hindered-OH groups [J].Proc.SPIE,1992,1672:231-241.[11] Uenishi K,SakaguchiS,Kawabe Y,Kokubo T,Toukhy M A,Jeffries A T,Slater A G,Hurditch R J.Selectively DNQ-esterified PAC for high-performance positive photoresists[J].Proc.SPIE,1992,1672:262-272.[12] Hanawa R,Uetani Y,Hanabata M.Design of PACs for high-performance photoresists(II):effect of number and orientation of DNQs and-OH of PACs on lithographic performances[J].Proc.SPIE,1993,1925:227-234.[13] Pandya A,Trefonas P,Zampini A,Turci P.Highly regioselective PACs for i-line resist design:synthetic reaction model,dissolution kinetics and lithographic response[J].Proc.SPIE,1994,2195:559-575.[14] Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition and processing and synthesizing polyphenol compound[P].US patent,6492085,2001-12-10.[15]三星电子株式会社.光刻胶组合物、其制备方法和用其形成图纹的方法[P].中国专利,00118160.2,2000-03-30.Samsung Electronics Co.,Ltd.Photoresist composition,method of preparation thereof and process for forming resist pattern[P].China patent,00118160.2,2000-03-30.[16] Fuji Photo Film Co.Ltd.Micropattern-forming material having a low molecular weight novolak resin,aquinone diazide sulfonyl ester and a solvent[P].US patent,5380618,1995-01-10.[17] Tokyo Ohka Kogyo Co.Ltd.Positive working photosensitive resin composition containing 1,2-naphthoquinone diazide esterification product of triphenylmethane compound[P].US patent,5401605,1995-03-28.[18] Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition and processing and synthesizing polyphenol compound[P].US patent,6106994,2000-08-22.[19] Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition and process for forming contact hole[P].US patent,6177226,2001-01-23.[20] Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition[P].US patent,6312863,2001-11-06.[21] Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition and process for forming resist pattern[P].US patent,6406827,2002-06-18.[22] Rahman M D,Lu P H,Cook M M,Kim W K,Khanna D N.Novolak resin for ultrafast high-resolution positive i-line photoresist compositions[J].Proc.SPIE,1998,3333:1189-1200.[23] Yu J J,Meister C C,Vizvary G,Xu C B,Fallon P.Sub-0.30-μm i-line photoresist:formulation strategy and lithographic characterization[J].Proc.SPIE,1998,3333:1365-1380.[24] Uetani Y,Tomioka J,Moriuma H,Miya Y.Contrast enhancement by alkali-decomposable additives in quinonediazide-type positive resists[J].Proc.SPIE,1998,3333:1280-1287.[25] Wanat S F,Rahman M D,Dixit S S,Lu P H,McKenzie D S,Cook M M.Novel novolak block copolymers for advanced i-line resists[J].Proc.SPIE,1998,3333:1092-1102.[26] Cook M M,Rahman M D,Lu P H.Effects of structural differences in speed enhancers(dissolution promoters)on positive photoresist composition [J].Proc.SPIE,1998,3333:1180-1188.[27] Miyamoto H,Nakamura T,Inomata K,Ota T,Tsuji A.Study for the design ofhigh-resolution novolak-DNQ photoresist:the effects of low-molecular-weight phenolic compounds on resist systems[J].Proc.SPIE,1995,2438:223-234.[28] Shih H I,Reiser A.Dissolution promotion in novolac-diazoquinone resists [J].Proc.SPIE,1997,3049:340-344.[29]东京应化工业株式会社.正型光致抗蚀剂组合物以及抗蚀剂图形的形成方法[P].中国专利,03154301.4,2003-08-14.Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition and process for forming resist pattern[P].China patent,03154301.4,2003-08-14.[30] Tokyo Ohka Kogyo Co.Ltd.Positive working naphthoquinone photoresist containing a cyclohexyl-substituted triphenylmethane compound[P].US patent,5501936,1996-03-26.[31] Miyamoto H,Nakamura T,Inomata K,Ota T,Tsuji A.Study for the design of high-resolution novolak-DNQ photoresist:the effects of low-molecular-weight phenolic compounds on resist systems[J].Proc.SPIE,1995,2438:223-234.[32] Kawabe Y,Tan S,Nishiyama F,Sakaguchi S,Kokubo T,Blakeney A J,Ferreira L.Effect of low-molecularweight dissolution-promoting compounds in DNQ-novolac positive resist[J].Proc.SPIE,1996,2724:420-437.[33]东京应化工业株式会社.正型光致抗蚀剂组合物[P].中国专利,200410071372.X,2004-07-23.Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition [P].China patent,200410071372.X,2004-07-23.[34] Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition[P].US patent,5702861,1997-12-30.[35] Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition and process for forming resist pattern using same[P].US patent,6379859,2002-04-30.[36] Asakura T,Yamato H,Matsumoto A,Ohwa M.Novel photoacid generators for chemically amplified resists with g-line,i-line and DUV exposure[J].Proc.SPIE,2001,4345:484-493.[37]东京应化工业株式会社.正型光致抗蚀剂组合物[P].中国专利,200510064839.2,2005-07-23.Tokyo Ohka Kogyo Co.Ltd.Positive photoresist composition [P].China patent,200510064839.2,2005-07-23.[38] Kwon Y G,Kim J K,Fujigaya T,Shibasaki Y,Ueda M.A positive-working alkaline developable photoresist based on partially tert-Boc-protected calix[4]resorcinarene and a photoacid generator[J].J.Mater.Chem.,2002,12:53-57.。