基本放大电路的组成
基本放大电路

基本放大电路基本放大电路是一种常见的电子电路,用于放大输入信号的幅度。
它通常由一个放大器组成,可以将输入信号的小幅度变化放大成足够大的输出信号。
基本放大电路既可以是直流放大电路,也可以是交流放大电路,下面将介绍一个简单的基本放大电路。
在一个简单的基本放大电路中,放大器是最重要的组成部分。
通常,放大器由一个电子管或晶体管构成。
在直流放大电路中,输入信号通过一个耦合电容进入放大器的输入端,然后经过一个电阻分压电路,得到需要的直流偏置电压。
接下来,信号经过放大器放大,并经过一个耦合电容输出。
输出信号可以连接到负载,如扬声器或其他设备。
在交流放大电路中,输入信号先通过一个耦合电容进入放大器的输入端。
然后,信号经过放大器放大,并通过一个电容耦合放大器输出。
输出信号可以连接到负载,如扬声器或其他设备。
与直流放大电路不同的是,交流放大电路还包括一个输入和输出的耦合电容,以阻止直流电流通过放大器。
基本放大电路还需要注意一些关键参数和性能指标。
其中,增益是一个重要的指标,用于衡量输入信号放大的幅度。
增益可以通过输入和输出电压之比来计算。
另外,频率响应也是一个关键指标,它描述了放大器在不同频率下的放大效果。
还有输出功率、输入阻抗和输出阻抗等参数,也需要根据实际需求进行选择和调整。
总的来说,基本放大电路是一种常用的电子电路,可以用于放大输入信号的幅度。
它通常由一个放大器组成,可以根据实际需求选择直流或交流放大电路。
在设计和调整基本放大电路时,需要考虑各种参数和性能指标,以确保电路的稳定性和性能。
基本放大电路是电子电路中最常见的一种电路,用于放大输入信号的幅度。
它可以根据信号的大小变化,通过增益倍数将其放大到更大的幅度,以满足不同应用的需求。
在基本放大电路中,放大器是最关键的组件,常见的放大器包括电子管放大器和晶体管放大器。
一般来说,基本放大电路可以根据信号的性质分为直流放大电路和交流放大电路。
直流放大电路主要用于放大直流信号,例如放大直流电压或电流。
基本放大电路

功率放大器电路实物图(12张)功放电路和前面介绍的基本放大电路都是能量转换电路,从能量控制的角度来 看,功率放大器和电压放大器并没有本质上的区别。但是,从完成任务的角度和对电路的要求来看,它们之间有 着很大的差别。低频电压是在小信号状态下工作,动态工作点摆动范围小,非线性失真小,因此可用微变等效电 路法分析、计算电压放大倍数、输入电阻和输出电阻等性能指标,一般不考虑输出功率。而功率放大电路是在大 信号情况下工作,具有动态工作范围大的特点,通常只能采用图解法分析,而分析的主要性能指标是输出功率和 效率。
具有足够大的输出功率
为了获得尽可能大的功率输出,要求功放管工作在接近“极限运用”的状态。选管子时应考虑管子的三个极 限参数能小
功放工作在大信号状态下,不可避免地会产生非线性失真,而且同一功放管的失真情况会随着输出功率的增 大而越发严重。技术上常常对电声设备要求其非线性失真尽量小,最好不发生失真。而在控制电动机和继电器等 方面,则要求以输出较大功率为主,对非线性失真的要求不是太高。
前级功放 其主要作用是对信号源传输过来的节目信号进行必要的处理和电压放大后,再输出到后级放大器。 后级功放 其对前级放大器送出的信号进行不失真放大,以强劲的功率驱动扬声器系统。除放大电路外,还设计有各种 保护电路,如短路保护、过压保护、过热保护、过流保护等。前级功放和后级功放一般只在高档机或专业的场合 采用。 合并式放大器 将前级放大器和后级放大器合并为一台功放,兼有前二者的功能,通常所说的放大器都是合并式的,应用范 围较广。
功率放大器主要考虑获得最大的交流输出功率,而功率是电压与电流的乘积,因此功放电路不但要有足够大 的输出电压,而且还应有足够大的输出电流。因此,对功放电路具有以下几点要求。
效率尽可能高
功放是以输出功率为主要任务的放大电路。由于输出功率较大,造成直流电源消耗的功率也大,效率的问题 突显。在允许的失真范围内,期望功放管除了能够满足所要求的输出功率外,应尽量减小其损耗,首先应考虑尽 量提高管子的工作效率。
第三章 基本放大电路

输出
话筒
放
大
器
喇叭
应用举例
直 流 电 源
基本放大电路
输入 放大器 输出
1、定义:放大电路的目的是将微弱的变化信 号不失真的放大成较大的信号。。
2、组成:三极管、场效应管、电阻、电容、电感、 变压器等。 3、特点:
①输出信号的功率大于输入信号的功率;
②输出信号的波形与输入信号的波形相同。
基本放大电路
RC
ui
T
C2
RL
基本放大电路
3.2.2 放大器中电流电压符号使用规定含义 “小大” uBE—小写字母,大写下标,表示交、直混合量。 “大大” UBE — 大写字母,大写下标,表示直 流量。 “小小” ube—小写字母,小写下标,表示交流分量。
“大小” Ube—大写字母,小写下标,表示交流分量有效值。 uA
电路改进:采用单电源供电 +VCC RC C1 T
可以省去
C2
RB VBB
基本放大电路
+VCC RB C1 T RC C2
单电源供电电路
基本放大电路
(1)电路的简化
C1
ui (2)电路的简化画法
VCC
RB
C1
只用一个电源,减 少电源数。
T
C2
RL
RB
RC
VCC
uo
uo
不画电源符号, 只写出电源正 极对地的电位。
T
I CQ
U CEQ
(b) 首先画出放大电路的交流通路
基本放大电路
VCC
交流通路
基本 放大电路

第三节 多级放大电路
四、阻容耦合多级放大电路的分析
由两级共射放大电路采用阻容耦合组成的多级放大电路如 图7-17所示。
由图7-17可得阻容耦合放大电路的特点: (1)优点 因电容具有“隔直”作用,所以各级电路的静态
工作点相互独立,互不影响。这给放大电路的分析、设计和 调试带来厂很大的方便。此外,还具有体积小、质量轻等优 点。 (2)缺点 因电容对交流信号具有一定的容抗,在信号传输 过程中,会受到一定的衰减。尤其对于变化缓慢的信号容抗 很大,不便于传输。此外,在集成电路中,制造大容量的电 容很困难,所以这种祸合方式下的多级放大电路不便于集成。
上一页 下一页
第三节 多级放大电路
三、变压器耦合
我们把级与级之间通过变压器连接的方式称为变压器耦合。 其电路如图7-16所示。
变压器耦合的特点: (1)优点 因变压器不能传输直流信号,只能传输交流信号
和进行阻抗变换,所以,各级电路的静态工作点相互独立, 互不影响。改变变压器的匝数比,容易实现阻抗变换,因而 容易获得较大的输出功率。 (2)缺点 变压器体积大而重,不便于集成。同时频率特性 差,也不能传送直流和变化非常缓慢的信号。
分压偏置共射极放大电路如图7-12 (a)所示,发射极电阻 RE起直流负反馈作用,在外界因素变化时,自动调节工作点 的位置,使静态工作点稳定。
分压偏置共射极放大电路的直流通路如图7-12 (b)所示电路
上一页 返 回
第二节 共集电极电路
一、共集电极放大电路的组成
如图7-13 (a)所示,由于直流电源对交流信号相当于短路, 集电极便成为输入与输出回路的公共端,因此这个电路称为 共集电极放大电路,简称共集放大器,又称射极输出器它的 直流通路如图7-13 ( b)所示,交流通路如图7-13 (c)所示。
电工电子C第10章基本放大电路

iB IB Q IB
UBE
B
E 电路图 uCE -
O
输入特性
uBE
结论: 晶体管从输 入端看,可以 用一个等效 的动态电阻 rbe代替。
rbe =
26mV rbe 可以估算:rbe = 200 + ( +1) IEmA
UBE 为一个常数。 ΔIB
(2) 输出端电压和电流的关系 在放大区: IC=βIB 结论: 从输出端看,可以用一个 受 控电流源代替。
其中:R′L= RC∥RL
Ii (RB∥rbe ) U i ri = = = RB∥ rbe Ii Ii -Ic RC ro = = RC - Ic
例2:求放大电路的空载电压放大倍数、输入电阻 和输出电阻 。
解:(1) 空载电压放大倍数 RB rbe = 200 + 26 C1 IC + + 26 = (200 + 50× ) = 1 084 ui 1.47 - RC 50×2 =-92.25 = - Ao =- r 1.084 be
R
C
+ UCC C + 2 + uo -
(2) 输入电阻 180×1.084 k = 1.078 k ri = RB rbe = 180+1.084 (3) 输出电阻 ro = RC = 2 k
10.3 静态工作点的稳定
一、分压式偏置共射放大电路 1. 电路组成 (1)偏流电阻 RB2用于固定
C
Ic
Ui R B1 RB2
-
Ib
RE
βRL ′ Au =- rbe+(1+β)RE 放大倍数Au降低
思考:画出下图微变等效电路
+ UCC C1 + + ui
电工学第八章 基本放大电路

RL RC//RL
返回
(3)电压放大倍数的计算
•
•
Ui I b rbe
•
•
•
UoIcRL IbRL
式中 RL RC//RL 则放大电路的电压放大倍数
•
Au
U0
•
Ui
R' L rbe
输出端开路时(未接RL)
Au
RC rbe
结 论
❖ Au与β、rbe和并联电阻 有关;
❖负载电阻RL越小,放大倍数越小; ❖ 输入电压与输出电压相位相反。
返回
放大电路可分为静态和动态两种情况来分析。
动态:输入端加上输入信号时,放大电路的工作状态。
❖ 此时,电路中电流和电压值是直流和交流分量叠加。 ❖ iB、iC、iE、uBE和uCE,称为动态值(直流分量和交流 分量的叠加) ❖ 对放大电路的动态分析就是采用放大电路的交流通道, 确定电压放大倍数Au,输入电阻ri,输出电阻ro等。 ❖ 动态分析方法:微变等效电路法和图解法 直流通道——只考虑直流信号的分电路。 交流通道——只考虑交流信号的分电路。
步骤: ❖ 用估算法确定IB; ❖ 由输出特性曲线确定IC和UCE。
由 U CE U CC ICR C 得
IC=0时, UCEUCC
UCE=0时,I C
U CC RC
返回
(1)输入输出特性曲线
如下图所示,(IBQ,UBEQ) 和( ICQ,UCEQ )分别对 应于输入输出特性曲线上的一个点,称为静态工
0.0m 4 A40A
IC IB
3.750.04
1.5mA
U CE U CC ICR C
1 2 1.5 1 0 34 130
6V
返回
第二章(简好用新)-基本放大电路..

五、实用共发射极放大电路
1.温度对工作点的影响
温度升高
UBE减小 ICBO增大
β增大
注:旁路电容的作用。接人发射极电阻 RE,一方面发射极电流的直流分量IE 通过它能起到自动稳定静态工作点的作 用;另一方面发射极电流的交流分量ie 也会产生交流压降,使uBE减小,这样 就会降低电压放大倍数,因此增加了旁 路电容,使交流信号从电容上流过。
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us
–
E B
V
us+-
Rs
RB C ui+-
RE
RL
+-uo
交流通路
二、共集电极放大电路分析 1.静态工作点的计算
VCC IBQRB U BEQ IEQRE
I BQ
VCC U BE
RB (1 )RE
ICQ I BQ I EQ
动态分析步骤:
1.先画出交流通路, 有时为了便于分析, 还要把电路变形为我 们便于分析的方式。
2.根据交流通路画微 变等效电路
E B
V
RB C ui+-
RE
RL
+-uo
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us
–
Ii B
Ib
Ic
画微变等效电路时需注意的 问题:
1.交流通路变化成微变等效
RC
C2
+-
uCE
三极管的三种基本放大电路

二、性能指标分析
IBQ = (VCC – UBEQ) / [RB + (1 + β ) RE] ICQ = β I BQ UCEQ = VCC – ICQRE
−
−
−
rbe β ib RB + RE RL uo
−
R'L = RE // RL
第3章 放大电路基础
一、电路组成与静态工作点
IBQ C1 + RB +VCC C2 RL
Ri
R’i
例3.2.1 β =100, RS= 1kΩ, RB1= 62kΩ, RB2= 20kΩ, RC= 3kΩ Ω Ω Ω Ω RE = 1.5kΩ, RL= 5.6kΩ, VCC = 15V。求:“Q ”, Au, Ri, Ro Ω Ω 。 [解] 1)求“Q” 解 ) +VCC 20 × 15 RB1 RC C2 U BQ = ≈ 3.7 ( V ) C1 + 20 + 62 + + RL 3 .7 − 0 .7 uo I RS = 2 (mA ) + CQ = I EQ = + RB2 RE us 1 .5 CE − − I BQ ≈ 2 / 100 = 0.02 (mA) = 20 µA U = 15 − 2( 3 + 1.5) = 6 ( V ) 2)求 Au、Ri、Ro 、 Aus CEQ )
–
RE = RL = Rs = 1 kΩ, VCC = 12V。求:“Q ”、Au、Ri、 Ω 。 、 Ro [解] 1)求“Q” +VCC 解 ) IBQ RB C1 IBQ = (VCC – UBE) / [RB + (1+ β ) RE]
β =120, RB = 300 kΩ, r’bb= 200 Ω, UBEQ = 0.7V Ω
基本放大电路的组成及工作原理.ppt

它是在放大器中的独立电压源短路或独立电流源开路、 保留受控源的情况下, 从RL两端向放大器看进去所呈现的电 阻。因此假如在放大器输出端外加信号电压U, 计算出由U产 生的电流I,则ro=U/I, 如图2.1.4(c)。 ro,ri只是等效意义上 的电阻。如在放大器内部有电抗元件, ro,ri应为复数值。
第2章 基本放大电路
2.1
2.2 放大电路分析方法
2.3
2.4 多级放大电路与组合放大电路
2.5 放大电路的频率特性
2.6 放大电路设计举例
返回主目录
第2章
2. 1
2.1.1放大电路的组成
在生产实践和科学研究中需要利用放大电路放大微弱的 信号,以便观察、测量和利用。一个基本放大电路必须有如 图2.1.1(a)所示各组成部分:输入信号源、晶体三极管、输出 负载以及直流电源和相应的偏置电路。其中,直流电源和相 应的偏置电路用来为晶体三极管提供静态工作点,以保证晶 体三极管工作在放大区。就双极型晶体三极管而言,就是保 证发射结正偏,集电结反偏。
2. 增益
增益,又称为放大倍数,用来衡量放大器放大信号的能 力。有电压增益、电流增益、功率增益等。
2.
当在放大器的输入端加入正弦交流信号电压ui时,信号电 压ui将和静态正偏压UBE相串连作用于晶体管发射结上,加在
uBE=UBE+ui
如果选择适当的静态电压值和静态电流值,输入信号电压 的幅值又限制在一定范围之内,则在信号的整个周期内,发 射结上的电压均能处于输入特性曲线的直线部分, 2.1.2(a),此时基极电流的瞬时值将随uBE变化,如图2.1.2(b)。
uo=uce (2.1.3)
把输出电压uo和输入信号电压ui进行对比,我们可以得到 如下结论:
电工学第15章基本放大电路

制
作
电 工
习题15.3.1
学
I
电 用微变等效电路法对固定偏置共射放大电路进行动态分析。
子
技 术
+UCC
部 分
RB
RC
C2
C1
RS
U• S
ui
uo
RL
哈 理
工
大 学
王 亚 军 制 作
电 工
例题15.3.1
学 I
电 用微变等效电路法对固定偏置共射放大电路进行动态分析。
子
技 【解】
术
I• b B
画交流通路的方法 ui
电容视为短路; 直流电源视为短路;
哈
理
工
uo
大 学
王
亚 军 制
作
电 工
15.3 放大电路的动态分析
学 I
电 子
一、微变等效电路法
技
术 部
1 放大电路的交流通路
分 因电容对交直流的作用不同,所
以交直流所走的路径是不同的。
不同的信号可以分别在不同的通
路来进行分析。
ube
Ube
uBE
学 王
亚
军
制
作
电 工
15.2 放大电路的静态分析
学
I
电 子
三、用放大电路的直流通路确定静态值
技
术 部
1 放大电路的直流通路
分 因电容对交直流的作用不同,所 以交直流所走的路径是不同的。
+UCC
不同的信号可以分别在不同的通 路来进行分析。
RB
直流通路
RC
C2
直流通路是在直流电源
基本放大电路

耦合电容C1和C2 :用来隔断直流、耦合交流。电容 值应足够大,以保证在一定 的频率范围内,电容上的 交流压降可以忽略不计,即对交流信号可视为短路。
7.1.2 放大电路的分析
一、分析三极管电路的基本思想和方法
基本思想
非线性电路经适当近似后可按线性电路对待, 利用叠加定理,分别分析电路中的交、直流成分。 直流通路(ui = 0)分析静态。 交流通路(ui 0)分析动态,只考虑变化的电压和电流。 画交流通路原则:
7.2sint (mV)
ib
u be r be
5.5sin t (A)
iC = ( 2.4 + 0.55sint ) mA uCE = ( 5.5 – 0.85sint ) V
ic i b 0.55sin t (mA )
IBQ
12 0.7 470
0.024 (mA)
ICQ = IBQ = 2.4 mA UCEQ = 12 2.4 2.7 = 5.5 (V)
r be
200 (1 ) 26
I EQ
200 26 1 283 () 0.024
② 交流通路 iC
C2
③ 小信号等效
+
+
C1
RS + uS –
1.微变等效电路法
动态分析的目的:确定放大电路的电压放大倍数 , 输入电阻和输入电阻。
分析方法:微变(小信号)等效电路分析法。
B ib + ube
–
ic C
+
uce
E
–
IB
IB
Q IB
rbe
UBE IB
ube ib
300() (
1) 26(mV ) IE (mA )
基本放大电路的组成

基本放大电路的组成
基本放大电路主要由以下部分组成:
1. 电源:为放大电路提供能量,保证晶体管的发射结正偏,集电结反偏。
2. 放大器:核心元件为晶体管。
晶体管利用其基极小电流控制集电极较大电流的作用,使输入的微弱电信号通过直流电源Ucc提供能量,获得一个能量较强的输出电信号。
3. 输入和输出:基本放大电路可以将输入信号的弱信号变成较强的信号,以便输出到功率器件中。
此外,基本放大电路中还可能包含集电极电源(Ucc)、集电极电阻(Rc)等元件。
这些元件的作用分别是为放大电路提供能量、将集电极的电流变化转换成晶体管集、射极间的电压变化,以实现由放大电路负载上获得电压放大的目的。
基本放大电路 电路知识讲解

0.7V,对硅管 0.3V,对锗管
Rb IBQ B +UCC RC
对输入回路,由KVL得: UCC I BQ Rb U BEQ
I BQ U CC U BEQ Rb
ICQ C
T E UCEQ
根据三极管的电流放大作用,有: ICQ I BQ
对输出回路,由KVL得: UCC IC RC UCEQ
U CEQ U CC I CQ RC
UBEQ
2. 用图解分析法确定静态工作点 采用该方法分析静态工作点,必须已知三极 管的输入输出特性曲线。
IB + VBE 共射极放大电路
IC + VCE -
直流通路
首先,画出直流通路
对输入回路,由KVL得: 则:
IB U 1 U BE CC Rb Rb
VCE VCC Rc I C 12V - 2k 9.6mA 7.2V
VCE不可能为负值,
I CM VCC VCES 12V 6mA Rc 2k
其最小值也只能为0.3V,即IC的最大电流为:
此时,Q(120uA,6mA,0.3V), 由于 I B I CM
+
+ -+
uo -
UCC
ui -
E
输出回路
基本放大电路的组成(4)
放大电路中电压、电流符号说明 由于放大电路中同时存在直流与交流量,因此在对其 进行分析时,为了表达明确,特对电压、电流符号作如下 规定(以三极管基极电流为例): IB:符号与下标均大写,表示直流分量。 ib:符号与下标均小写,表示交流分量的瞬时值。 Ib:符号大写、下标小写,表示交流分量的有效值。
用近似估算法求静态工作点
基本放大电路的组成及各元件的作用

基本放大电路的组成及各元件的作用放大电路是一种用于增加输入信号幅度的电路。
它由多个元件组成,其中包括放大器、电源、输入设备和输出设备。
这些元件共同合作,使得输入信号经过放大电路之后,可以得到更大的幅度输出信号。
下面我们将对放大电路的组成和各元件的作用进行详细的介绍。
1.放大器放大器是放大电路的核心部分,它起到信号放大的作用。
在放大器中,常见的有运放放大器和功放放大器两种类型。
运放放大器是一种用于放大微小信号的集成电路,它具有高输入阻抗和低输出阻抗,可以实现对输入信号的精确放大。
而功放放大器则是用于对功率信号进行放大的电路,常见于音响设备和功率放大器中。
2.电源电源是放大电路的能量来源,它为放大电路提供所需的电压和电流。
在放大电路中,常见的电源包括直流电源和交流电源。
直流电源一般用于供给运放放大器等低频信号放大电路,而交流电源则多用于功放放大器等高频信号放大电路。
3.输入设备输入设备是放大电路接收信号的部分,它可以将外部的信号输入到放大电路中。
在不同的应用中,输入设备可以是不同的传感器或信号源,比如麦克风、传感器、摄像头等。
4.输出设备输出设备是放大电路输出信号的部分,它可以将放大后的信号输出到外部设备中。
在不同的应用中,输出设备可以是不同的载体或显示设备,比如扬声器、显示器、执行器等。
以上是放大电路的基本组成和各元件的作用,下面我们将分别对这几个部分进行详细介绍。
首先是放大器部分。
放大器作为放大电路的核心部分,它可以将输入信号的幅度进行放大,从而得到更大的输出信号。
在放大器中,运放放大器和功放放大器是两种常见的放大器类型。
运放放大器(Operational Amplifier,简称Op-Amp)是一种集成电路,它通常含有多个放大电路、反馈电路和其他辅助电路。
运放放大器具有高输入阻抗、低输出阻抗、大增益和低失真等特点,可以对微小信号进行精确放大。
在实际应用中,运放放大器通常需要外部电源进行供电,并通过外部电路进行连接和控制。
三种放大电路结构

电压跟随器作用及应用场景
电压跟随器作用
电压跟随器是一种特殊的共集放大电路,其主要作用是隔离前后级电路,减小输出阻抗,提高电路的 带负载能力。
应用场景
电压跟随器广泛应用于各种需要缓冲或隔离的电路中,如音频放大器、数据采集系统、电源电路等。
输入电阻、输出电阻和带宽特性
输入电阻
带宽特性
共集放大电路的输入电阻较高,可以 减小信号源内阻对电路的影响,提高 电路的抗干扰能力。
带宽要求
明确信号频率范围,确保放大 电路在该范围内具有稳定的增 益。
失真要求
规定输出信号的最大失真度, 以保证信号质量。
噪声要求
确定放大电路所需噪声水平, 以满足系统整体噪声指标。
选择合适拓扑结构和元器件类型
拓扑结构
根据设计需求选择共射、共基或共集电极等放大 电路拓扑结构。
元器件类型
选用合适的晶体管、场效应管、运算放大器等元 器件,以满足性能指标要求。
电源电压与极性检查
确保电路元件、连接方式和参数与设计图 一致。
确认电源电压符合设计要求,极性正确无 误。
元器件筛选与检测
仪器仪表校准
对使用的元器件进行筛选,确保其性能参 数符合要求;对于关键元器件,需进行详 细的性能检测。
对所使用的信号源、示波器、万用表等仪器 仪表进行校准,确保其测量准确。
信号源、示波器等仪器使用方法
失真度
在正常工作条件下,三种放大电路结构的失 真度均较低。然而,在极端条件下(如输入 信号过大、电源电压不稳定等),共射放大 电路可能出现较严重的失真现象;共集和共
基放大电路相对较为稳定。
应用场景选择建议
01
共射放大电路
适用于需要高电压放大倍数、较宽频率响应范围以及对失真度要求不高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本放大电路的组成
基本放大电路一般是指由一个三极管组成的三种基本组态放大电路。
1. 放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。
2. 输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。
放大电路的结构示意图见图1。
图1 放大概念示意图
1. 基本放大电路的组成
共射极接法基本放大电路如图6所示。
图6 共射极接法基本放大电路
基本组成如下:
三极管T ——起放大作用。
负载电阻RC,RL ——将变化的集电极电流转换为电压输出。
偏置电路VCC,Rb ——使三极管工作在线性区。
耦合电容C1,C2 ——输入电容C1保证信号加到发射结,不影响发射结偏置。
输出电容C2保证信号输送到负载,不影响集电结偏置。
2. 静态和动态
静态: vi=0 时,放大电路的工作状态,也称直流工作状态。
动态:vi≠0时,放大电路的工作状态,也称交流工作状态。
放大电路建立正确的静态,是保证动态工作的前提。
分析放大电路必须要正确地区分静态和动态,正确地区分直流通路和交流通路。
3. 直流通路和交流通路
放大电路的直流通路和交流通路如图03.07中(a),(b)所示。
直流通路,即能通过直流的通路。
从C、B、E向外看,有直流负载电阻、Rc 、Rb。
交流通路,即能通过交流的电路通路。
如从C、B、E向外看,有等效的交流负载电阻、Rc//RL、Rc。
直流电源和耦合电容对交流相当于短路。
因为按迭加原理,交流电流流过直流电源时,没有压降。
设C1、C1 足够大,对信号而言,其上的交流压降近似为零,在交流通路中,可将耦合电容短路。
(a)直流通路 (b)交流通路
图7 基本放大电路的直流通路和交流通路
4. 放大原理
输入信号通过耦合电容加在三极管的发射结,于是有下列过程:。