二次根式的乘法 积的算术平方根

合集下载

人教版八年级数学下册_16.2二次根式的乘除

人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).

二次根式 基础知识详解+基本典型例题解析

二次根式 基础知识详解+基本典型例题解析
【总结升华】 a2 a 成立的条件是 a >0;若 a <0,则 a2 a .
【基本典型例题】(2) 类型一、二次根式的乘除
1. 计算:(1)(2014 秋•闵行区校级期中) ×(﹣2 )÷

(2)(2014 春·高安市期中) a 8a 2 a 2 1 2a 2a a
【答案与解析】 解:(1) ×(﹣2 )÷
举一反三: 【变式】下列式子中二次根式的个数有( ).
(1)
1 ;(2) 3
3 ;(3)
x2 1 ;(4)3 8 ;(5)
( 1)2 ;(6) 1 x( x 1 ) 3
A.2 B.3 C.4 D.5 【答案】B.
2. (2016•贵港)式子
在实数范围内有意义,则 x 的取值范围是( )
= ×(﹣2 )×
=﹣
=﹣
=﹣ .
(2)原式= a 8a2 a2 1 2a 2a a
2 2a2 a2 2 2a 2a 2a a
2
2a2
2a a2
2a a
4 2.
【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.
举一反三:
【变式】 2
a2 b2 6x2
即原式= a b c a c b b c a = a b c
【总结升华】重点考查二次根式的性质:
的同时,复习了
三角形三边的性质.
二、二次根式的乘除基础知识讲解+基本典型例题解析
【学习目标】 1、 掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的 乘除运算. 2、 了解最简二次根式的概念,能运用二次根式的有关性质进行化简.

16.2 二次根式的乘除

16.2 二次根式的乘除

例 6 计算:(1)-2 15÷3 3×6 5;
(2)
3
·
2

÷

2
1

2
3
;(3)3 2 × -
1
8
15 ÷
1
2
2
.
5
分析(1)利用二次根式的乘除法则计算即可;(2)先根据二次根式
的除法法则计算括号里的,再计算即可;(3)先把乘除法混合运算转
化成乘法运算,再进行乘法运算即可.
22
教材新知精讲
(4)公式里的字母可以是具体的数,也可以是值为非负数的代数
式.
(5)当二次根式前面系数不为 1 时,可以类比单项式与单项式相
乘的法则,先把系数相乘,再把被开方数相乘,即
m ·
n =mn (a≥0,b≥0).
3
教材新知精讲
知识点一
知识点二
知识点三
例 1 计算:(1)
5
×
3
知识点四
知识点五
综合知识拓展
10、阅读一切好书如同和过去最杰出的人谈话。17:50:0617:50:0617:509/12/2021 5:50:06 PM
教材新知精讲
综合知识拓展
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1217:50:0617:50Sep-2112-Sep-21
平方根的性质结合起来使用.商的算术平方根实质是二次根式除法
法则的逆用.
(5)利用商的算术平方根的性质,可以把被开方数的分母是开得尽
方的数的二次根式进行化简.
15
教材新知精讲
知识点一
知识点二

专题03二次根式的运算(知识点总结+例题讲解)-2021届中考数学一轮复习

专题03二次根式的运算(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学 专题03 二次根式的运算(知识点总结+例题讲解)一、数的乘方与开方:1.数的乘方:(1)负数的奇次幂是负数,负数的偶次幂是正数;(2)正数的任何次幂都是正数;(3)0的任何正整数次幂都是0;2.数的开方:(1)平方根:如果一个数x 的平方等于a ,那么这个数就叫做a 的平方根(或二次方根); 即:若x 2=a ,则x 叫做a 的平方根;①正数有两个平方根(互为相反数);②负数没有平方根;③0的平方根是0;(2)算术平方根:正数的正的平方根叫做算术平方根;记作“a ”。

(3)若a b =3,则b 叫做a 的立方根;①一个正数有一个正的立方根;②一个负数有一个负的立方根;③0的立方根是0;【例题1】(2020•青海)(-3+8)的相反数是 ;的平方根是 .【答案】-5;±2【解析】解:-3+8=5,5的相反数是-54,4的平方根是±2.【变式练习1】4的算术平方根是 ,9的平方根是 , -27的立方根是 。

【答案】2;±3,﹣3【解析】解:4的算术平方根是2,9的平方根是±3,﹣27的立方根是﹣3.【例题2】(2020•黄冈)计算38-= 。

【答案】-2 【解析】解:38-=-2.【变式练习2】若a=,则a 的值为( )A. 1B. 0C. 0或1D. 0或1或–1【答案】C=,∴a 为0或1;故选C 。

二、二次根式:1.二次根式的定义:形如a (a ≥0)的式子,叫做二次根式;(或是说,表示非负数的算术平方根的式子,叫做二次根式)2.二次根式有意义的条件:被开方数≥0;(被开方数大于或等于 0 )3.二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)⎪⎩⎪⎨⎧<-=>==),(),(),(00002a a a a a a a (4)非负数的积的算术平方根等于积中各因式的算术平方根的积; 即:b a ab •=(a ≥0,b ≥0);反之:ab b a =⨯;(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根;即:b a b a =(a ≥0,b>0);反之:b a ba =;【例题3】(2020•广东)x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠-2【答案】B∴2x-4≥0,解得:x ≥2,∴x 的取值范围是:x ≥2;故选:B 。

《二次根式的乘法 22积的算术平方根》PPT课件

《二次根式的乘法 22积的算术平方根》PPT课件

能力提升练 8.计算 9a2· ba(a>0,b≥0)的结果是__3___a_b__.
能力提升练
9.计算:
(1)
15×
解:原式= 45;
15×45= 9=3.
(2)6 8×(-3 2); 解:原式=-18 16=-18×4=-72.
(3) 5×(-2 10)× 212.
解:原式=-2 5×10×52=-2 125=-2×5 5=-10 5.
能力提升练
10.已知矩形花坛与圆形花坛面积相等,矩形花坛的长为 140π m,宽为 35π m.求圆形花坛的半径.
解:设圆形花坛的半径为 r m. 由题意得 πr2= 140π× 35π,解得 r= 70(r=- 70不合题意, 舍去). 所以圆形花坛的半径是 70 m.
素养核心练
11.已知 2=a, 20=b,用含 a、b 的式子表示 0.016. 解:∵ab=2 10, 0.016=0.04 10, ∴ 0a.0b16=0.2041010=50, ∴ 0.016=a5b0=0.02ab.
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
温馨提示: 此PPT
可修改编辑
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 四、提醒类

§21.2.2-二次根式的除法

§21.2.2-二次根式的除法
正确!
1. 二次根式的除法有两种常用方法:
(1)利用公式:
a a (a 0,b 0) bb
(2)把除法先写成分式的形式,再进行分母有理化运算。
a= a
b
b
a 0,b 0
2.最简二次根式、分母有理化及有理化因式的概念;
注意: 在进行分母有理化之前,可以先观察把能化 简的二次根式先化简,再考虑分母有理化。
那么2 a - 3 b和2 a + 3 b互为有理化因式。
一般地,a x与 x互为有理化因式; a x + b y与a x - b y互为有理化因式。
练一练:
1、化简下列各式(分母有理化):
(1)-8 3 8
(2)3 2 27
(3) 5a 10a
(4)2y 2 4xy
说明;1、在进行分母有理化之前,可以先观察把 能化简的 二次根式先化简,再考虑如何化去分母 中的根号。
作业本: 第12页习题21.2 第2、 3、6题
练习本: 第11页练习 第1、2、3题 选作:第12页习题21.2 第7、8、9题
3、如图,在Rt△ABC中,∠C=900,∠A=300,
AC=2cm,求斜边AB的长
B
解:设BC x,因为在RtΔABC中,
C 900,A 300,所以,AB 2x A
解:原式 64 64 8 11 49 49 7 7
辨析训练
判断下列各等式是否成立。
× √ (1) 16 9 4 3( )(2) 3 3 ( ) 22
× × (3) 41 2 1 ( 22
)(4) 2
52 99
5(

(5) 4 4 4 4( √ )(6)5 5 5 5 ( √)

二次根式教案(精选10篇)

二次根式教案(精选10篇)

二次根式教案(精选10篇)二次根式教案 1一、教学目标1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。

2、会进行简单的二次根式的乘法运算。

3、使学生能联系几何课中学习的勾股定理解决实际问题。

二、教学重点和难点1、重点:会利用积的算术平方根的性质化简二次根式。

2、难点:二次根式的乘法与积的算术平方根的关系及应用。

重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。

积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。

二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。

本节难点是二次根式的乘法与积的算术平方根的关系及应用。

积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。

要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。

综合应用性质或乘法公式时要注意题目中的条件一定要满足。

三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。

1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。

在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2、积的算术平方根的.性质和__及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。

由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段利用投影仪。

五、教学过程(一)引入新课观察例子得到结果类似地可以得到:由上一节知道一般地,有=(a,b)通过上面的例子,大家会发现=(a,b)也成立(二)新课积的算术平方根。

二次根式的运算知识点及经典试题讲义

二次根式的运算知识点及经典试题讲义

二次根式的运算知识点及经典试题知识点一:二次根式的乘法法则:ab b a =⋅(0≥a ,0≥b ),即两个二次根式相乘,根指数不变,只把被开方数相乘. 要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是非负数;(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能化简必须化简,如416=. 知识点二、积的算术平方根的性质:b a ab ⋅=(0≥a ,0≥b ),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足0≥a ,0≥b 才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2) 二次根式的化简关键是将被开方数分解因数,把含有2a 形式的a 移到根号外面. (3)作用:积的算术平方根的性质对二次根式化简(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式即:()()⨯2②利用积的算术平方根的性质b a ab ⋅=(0≥a ,0≥b );③利用⎩⎨⎧<-≥==)0()0(2a a a a a a (一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式移到根号外;(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简知识点三、二次根式的除法法则:baba =(0≥a ,0>b ),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质bab a =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. 对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0. (2)步骤:①利用商的算术平方根的性质:bab a =(0≥a ,0>b ) ② 分别对a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化,即a a =2)((0≥a ) (3) 被开方数是分数或分式可用商的算术平方根的性质对二次根式化简知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式. 要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的带分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数; (2)被开方数是多项式的要进行因式分解; (3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外; (5)化去分母中的根号; (6)约分.3.把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关. 2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似) 要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式; (3)不是同类二次根式,不能合并 知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.知识点与讲义3二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组; (3)合并同类二次根式. 知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次 式之和或差,或是有理 式. 规律方法指导二次根式的运算,主要研究二次根式的乘除和加减. (1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.经典例题透析类型一、二次根式的乘除运算1、计算 (1)×; (2)×; (3)×; (4)×.解:(1)×=; (2)×==;(3)×==9; (4)×==.2、计算:(1); (2); (3); (4).思路点拨:直接利用便可直接得出答案.解:(1)===2; (2)==×2=2;(3)===2; (4)===2.3、化简(1); (2); (3); (4); (5).思路点拨:利用直接化简即可.解:(1)=×=3×4=12; (2)=×=4×9=36;(3)=×=9×10=90;(4)=×=××=3xy (5)==×=3.举一反三【变式1】判断下列各式是否正确,不正确的请予以改正:(1); (2)×=4××=4×=4=8.解:(1)不正确.改正:==×=2×3=6;(2)不正确改正:×=×====4.4、化简:(1); (2); (3); (4).思路点拨:直接利用就可以达到化简之目的.解:(1)=(2)=(3)=;(4)=.举一反三知识点与讲义5【变式1】已知,且x 为偶数,求(1+x)的值.思路点拨:式子=,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得,即∴6<x ≤9,∵x 为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.5、计算(1)·(-)÷(m >0,n >0); (2)-3÷()× (a >0).解:(1)原式=-÷=-==-;(2)原式=-2=-2=- a.类型二、最简二次根式的判别6、下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).思路点拨:判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是最简二次根式.解:和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.总结升华:对于最简二次根式的判断,一定要把握其实质,既要注意其中的“似是而非”,还要注意其中的“似非而是”,特别象这样的式子,带有很大的隐蔽性,更应格外小心.7、把下列各式化成最简二次根式.(1); (2); (3); (4); (5)思路点拨:把被开方数分解因数或分解因式,再利用积的算术平方根的性质及进行化简.解:(1) ;(2) ;(3) ;(4);(5) .类型三、同类二次根式8、如果两个最简二次根式和是同类二次根式,那么a、b的值是( )A.a=2,b=1B.a=1,b=2C.a=1,b=-1D.a=1,b=1思路点拨:根据同类二次根式的识别方法,在最简二次根式的前提下,被开方数相同.解:根据题意,得解之,得,故选D.总结升华:同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式1】下列根式中,能够与合并的是( ) A. B. C.D.思路点拨:首先要把不是最简二次根式的化成最简二次根式,然后比较它们的被开方数是否相同,如果相同,就能进行合并,反之,则不能合并.解:合并,故选B.知识点与讲义7总结升华:同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式.【变式2】若最简根式与根式是同类二次根式,求a 、b 的值.思路点拨:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;• 事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=•2,2a-b+6=4a+3b .解:首先把根式化为最简二次根式:==|b|·由题意得,∴,∴a=1,b=1.类型四、二次根式的加减运算 9、计算(1)+(2)-思路点拨:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并. 解:(1)+=2+3=(2+3)=5(2)-=4-8=(4-8)=-4总结升华:一定要注意二次根式的加减要做到先化简,再合并. 举一反三 【变式1】计算(1)3-9+3; (2)(+)+(-);(3); (4).解:(1)3-9+3=12-3+6=(12-3+6)=15; (2)(+)+(-)=++-=4+2+2-=6+;(3)(4)【变式2】已知≈2.236,求(-)-(+)的值.(结果精确到0.01)解:原式=4---=≈×2.236≈0.45.类型五、二次根式的混合运算10、计算:(1)(+)× (2)(4-3)÷2.思路点拨:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2;(2)(4-3)÷2=4÷2-3÷2=2-.11、计算(1)(+6)(3-);(2)(+)(-).(3)()()200020013232______________-+=思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3;(2)(+)(-)=()2-()2=10-7=3.(3)略类型六、化简求值12、已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:4x2+y2-4x-6y+10=04x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3知识点与讲义9原式=+y2-x 2+5x=2x +-x +5=x+6当x=,y=3时,原式=×+6=+3.举一反三【变式1】先化简,再求值.(6x +)-(4y +),其中x=,y=27.解:原式=6+3-(4+6)=(6+3-4-6)=-,当x=,y=27时,原式=-=-.【变式2】.已知x=2+1,求(22121x x x x x x +---+)÷1x 的值.类型七、二次根式的应用与探究13、一个底面为30cm ×30cm 长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是多少厘米? 解:设底面正方形铁桶的底面边长为x ,则x 2×10=30×30×20,x 2=30×30×2, x=×=30.答:铁桶的底面边长是30厘米.14、如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)15、探究过程:观察下列各式及其验证过程.(1)2=验证:2=×====(2)3=验证:3=×====同理可得:45,……通过上述探究你能猜测出: a=_______(a>0),并验证你的结论.解:a=验证:a====.总结升华:解答此类问题的特点是根据题目给出的条件,寻找内在联系和一般规律,然后猜想所求问题的结果,有利于提高综合分析能力.【变式1】对于题目“化简求值:1a+2212aa+-,其中a=15”,甲、乙两个学生的解答不同.甲的解答是:1a+2212aa+-=1a+21()aa-=1a+1a-a=2495aa-=知识点与讲义11乙的解答是:1a +2212a a+-=1a +21()a a -=1a +a -1a =a=15 谁的解答是错误的?为什么?跟踪练习21.1 二次根式: 1. 使式子4x -有意义的条件是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形如 a (a≥0)的式子叫做二次根式。 它必须具备如下特点: 1、根指数为2; 2、被开方数必须是非负数(正数或零)
注意 在实数范围内,
当a≥0时, a有意义。 当a< 0时, a 没有意义,
二、提出问题,引出新知 1. 试一试:
(1) 4 25 ___ ___ 4 25 ____ _____
(3) 12x5y3
例3. 化简
(2) x4 x2 y2
a • b a • b (a≥0,b≥0) 积的算术平方根,等于积中各因式的算术平方根的积。
问题1: (4)(9)× 4 9 ? 问题2: 9 16× 9 16 ?
× 52 32 52 32
注意: × a b a b
六、想一想:
(1) abc与 a b c是否相等? a、b、c有什么限制?
(2)化简:4a 4bc4
学习小结
1.二次根式的乘法法则是什么?(计算)
a b a b a 0,b 0
2.积的算术平方根的性质: (化简)
a b a ba 0, b 0
利用(1)(2)进行计算和化简二次根式.
(2).
1 2
3 2 2
32 3 2
((23).)1.2 232 312 322 16 6 4
(4). 2 3 6
4 原式 2 3 6
36 6
计算: (3) 0.25 8 (4) 1 1 4 45
(2).3 2 5 8
(3).5 x • 3 x3
计算
3x 15x
a 3ab
(1) 12, (2) 4a3 , (3) a4b
注意隐含条件
五、师生互动,运用新知
练习化简: (1) 27 (2) 32
(3) 48
(4) 45 (5) 27
(6) 72
化简
(1) 9 25 (3) 202 162
(2) 2 24 3
(4) (-4)(-25)
练习化简: (1) 16a2b (2) 8a3b2c
b3 a3
a
b
2 xy 1 x
2.积的算术平方根
思考:
等式 a • b a • ( b a 0,b 0) 反过来写是怎样的呢?
ab a • ( b a 0,b 0)
积的算术平方根,等于各因式算术平方根的积
用途:二次根式的化简
如何化简二次根式 例题2 化简 使被开方数不含完全平 方的因式(或因数)
(2) 16 9 ___ ___ 16 9 ____ _____
提问:观察以上计算结果,你能发现什么?
概括:
a b ab
注意: a、b 必须都是非负数,上式才能成立。
两个二次根式相乘,将它们的被开方数相乘
用途:二次根式的运算
三、师生互动,运用新知
例题1:计算
解:3 2 3 2
(1). 7 6(1)7163 627 422
22.2二次根式的乘除法 1.二次根式的乘法
2.积的算术平方根
一、复习提问,引出新知 :
1. 下列式子哪些是二次根式,哪些不是 二次根式?
(1) 160 (4) a
(2) -130 (5) 3a2 5
(3)3 27 (6) 4a 2
2. 计算下列各题:(1)Βιβλιοθήκη 0.5)2(3)( 7 )2
(2) 144 (4) (-5)2
相关文档
最新文档