范文:高电压技术实验实验报告(二)
高电压技术泄漏电流测量及直流耐压试验报告

实验报告
备注:序号(一)、(二)、(三)为实验预习填写项
五、程序调试及实验总结
实验过程:
实验数据:
实验电压(KV)泄漏电流(uA)
5 1.07
10 2.8
15 5.18
20 8.22
25 11.82
30 16
实验总结:
我在实验课上使用虚拟仿真实验软件做了高电压技术的泄漏电流测量及直流耐压试验,通过这次实验,我收获了很多知识和技能。
首先,我了解了直流高压装置的组成及其工作原理,包括直流高压发生器、直流高压分压器、直流高压电压表、直流高压电流表、直流高压绝缘试验台等。
我知道了直流高压发生器是利用电容器的充放电原理产生高压脉冲,然后经过整流和滤波得到稳定的直流高压输出。
我也知道了直流高压分压器是利用电阻分压的原理将高压信号分成若干个低压信号,以便于测量和控制。
我还知道了直流高压电压表和电流表是利用电压互感器和电流互感器将高压和高电流转换为低压和低电流,然后通过指针或数字显示器显示出来。
我更知道了直流高压绝缘试验台是用来测试被试品的绝缘性能的装置,它可以提供不同的电压等级和时间参数,以模拟不同的工作环境和应力条件。
其次,我掌握了泄漏电流的测量方法,我知道了泄漏电流是指在绝缘体上或内部由于电场的作用而产生的电流,它是反映绝缘体老化程度的重要指标。
总的来说,通过这次实验,我不仅加深了对高电压技术的理论知识的理解,而且提高了自己的实验技能和分析能力。
我也体会到了虚拟仿真实验软件的优势,它可以模拟真实的实验环境和设备,让我在不受时间和空间的限制的情况下,进行安全、方便、高效的实验学习。
高电压工程实验报告

沿面放电实验(一)实验目的:1.了解沿面放电的基本概念。
2.研究介质沿面放电的基本现象及影响沿面放电的一些因素。
(二)实验内容:固体介质处于不均匀电场中,且介质界面电场具有强垂直分量。
当所加电压还不高时,电极附近首先出现电晕放电,然后随着所加电压的不断升高,放电区域逐渐变成由许多平行的火花细线组成的光带,即出现辉光放电。
火花细线的长度随着电压的升高而增大,当电压超过某一临界值后,放电性质发生变化,出现滑闪放电。
当电压再升高一些,放电火花就将到达另一电极,发生沿面闪络。
仔细观察沿面放电的整个过程,了解各个阶段沿面放电现象的特点,并阐明发生沿面放电现象的原理。
(三)实验用仪器设备:1.800kV无局放工频试验变压器2.JJFB-1交流峰值电压表3.平板式电极〔小圆柱和平板为电极〕(四)实验用详细线路图或其它示意图:图1 沿面放电试验线路图图2 平板式电极〔小圆柱和平板为电极〕(五)实验有关原理及原始计算数据,所应用的公式:实验的有关原理请参考文献[4]和上述〔四〕中部分实验的原理图。
(六)实验数据记录:放电阶段施加电压放电特点电晕放电辉光放电滑闪放电表1空气间隙放电实验记录表的参考式样(七)实验结果的计算及曲线:本次实验沿面放电分为三个阶段:电晕放电、辉光放电和滑闪放电。
图3 电晕放电阶段图4 辉光放电阶段图5 滑闪放电阶段(八)对实验结果、实验中某些现象的分析讨论:思考并完成下述问题:1.进行高电压试验时为什么要特别注意安全?应采取那些安全措施?〔1〕因为在高电压下工作,由于疏忽,人体与带高电压设备部分的距离小于安全距离时极可能发生人身伤亡事故;因错接试验电路或错加更高的试验电压很可能使试验设备或被试设备发生损坏。
〔2〕为了保证实验安全的进行,可采取以下安全措施:○1充分做好实验前的准备工作,拟定好实验方案,严格按照相关规程和实验老师的的指导进行实验;○2多人协同工作,明确分工,同时相互提醒,也可专设一人负责安全监察;○3实验中,全体人员必须思想集中,全神贯注,不能闲聊、随意走动,更不可随意触碰;○4时刻注意与带电高压设备保持安全距离;等。
武汉大学高电压与绝缘实验报告

武汉大学高电压与绝缘实验报告高电压与绝缘实验一、实验目的1、参观高电压与绝缘实验室,认识各种高压设备。
2、观察液体击穿实验,更深入的理解小桥理论。
3、通过棒-板间隙放电和球间隙放电实验,全面深刻的理解气体介质的击穿特性。
二、实验原理工程用变压器油属于不纯净的液体介质,油中常含有气体、水分以及各种聚合物。
这些杂质的介电常数和电导与油本身的相应参数不相同,这就必然会在这些杂质附近造成局部强电场。
在电场力的作用下,这些杂质很容易沿电场方向极化定向,并排列成杂质“小桥”,如果杂质“小桥”贯穿于两电极之间,由于组成“小桥”的纤维和水分的电导大,发热增加,促使水分汽化,形成气泡小桥连通两级,导致油的击穿。
由于这种击穿依赖于“小桥”的形成,所以也称此为解释变压器油热击穿的所谓“小桥”理论。
球间隙电场是典型的稍不均匀电场实例。
球隙的工频击穿电压通常是指工频电压的峰值电压。
棒-板间隙电场是典型的极不均匀电场。
由于极性效应,在工频交流电压下,棒-板间隙的击穿电压总是发生在棒极为正极性的半周期的峰值电压附近。
三、实验内容1、参观高电压与绝缘实验室。
进入实验大厅,第一个感觉就是高压实验室跟别的实验室不同。
实验大厅十分高大空旷,设备很大,数量却不多。
这是因为试验时电压高,对周围的绝缘距离要求就大,如果距离太小,那么仪器在升压的过程中可能会向周围放电。
高电压与绝缘实验大厅有四个主要的设备,工频高压发生器(工频高压试验变压器)、直流高压发生器、冲击电压发生器和冲击电流发生器。
(1)工频高压发生器(工频高压试验变压器)试验大厅中的工频高压发生器是两级串联,每一级为500kV/1000kVA的变压器,两级串联后构成了一个1000kV/2000kVA的变压器。
但是实际发电容量为额定值的80%~85%。
电力变压器一般是持续工作,因此需要充分考虑散热、绝缘和保护;然而实验变压器工作时间短,不需要过多的散热,因此没有散热片,体积较小。
可以看到,两级电压器的外壳上均匀缠绕着一种金属环,这就是均压环,它的作用是使绝缘子两端的电压均匀。
高电压技术论文模板(2)

高电压技术论文模板(2)高电压技术论文篇二电力系统高电压试验探究【摘要】随着电网容量的增加,人们对电力供应提出了更高的要求,高压输电在电网系统当中具有重要的作用,要保证电力系统的安全正常运行,就必须进行高压试验,本文阐述了高电压试验的过程,并对实验中需要注意的问题作了研究。
【关键词】电力系统;高电压试验;问题现今电网系统中应用的新型输变电装备越来越多,推进了高电压试验的实践方式向前发展,并得到了很好的创新和突破,这就给高电压试验的操作人员带来了新的挑战,不但需要了解新型设备的实验方式及选择技巧,还要熟练操作设备的技能,发挥其综合优质的功能。
高压试验的作用是监督一次输变电装备的绝缘功能,试验的水平、质量、能力关系着电网能否稳定安全的运行。
1.高电压试验的过程电力系统设备的试验应该根据设备的具体要求规定,进行间断或连续的设备试验,然后由所得的监测数据进行技术参数的科学评估,展开设备状况的诊断。
实施电力设备的高电压试验目的是在制造期间,对制造过程展开中间试验及原材料性能的检测等,能够及时的检验出新型的电气高压设备能否达到有关标准技术的规定,在检测中不合格的产品必须禁止出厂。
高压试验能够保障电力系统设备的安全正常运行,试验的过程是与设备的使用服务寿命、事故率、电力系统的效益、利用率、人力、物力、财力的消耗直接挂钩的。
对正在运行的电力设备进行的试验又称预防性试验,这种按照周期规定实行的试验可以发现电气设备内部隐含的缺陷,经过抢修消除故障隐患,可以防止由于过电压的影响或是工作电压的作用,造成击穿进而引发更为严重的事故;对已经经过大修的电力设备实行高电压试验,主要是为了检验设备在维修与运输的过程中有没有发生性能变化,造成绝缘损伤。
电力设备高压试验的具体过程:首先应选择合适的电源,要根据实验设备的不同,进行科学合理的选择,然后对软件系统实施科学配置,将有关策竣参数进行初始化,综合分析在线监测记录的数据、维修记录、工况记录、缺陷记录、出厂数据以及定期设备预试的数据,对可能存在的潜在故障做出准确、科学的诊断,进行充分的研究考虑后,客观的评估电力设备的健康状态,做出趋势预报,根据综合的分析拟定出初步的测试结果,找出影响高压电力系统设备的目标及指标属性,最后决定选择哪种方法解除故障。
高电压技术试验报告书供电专业

高电压技术实验报告班级:姓名:学号:成绩:实验一绝缘电阻、吸收比的测量一、实验目的1.了解兆欧表的原理,掌握兆欧表的使用方法;2.学习绝缘电阻、吸收比的测量方法,掌握分析绝缘状态、判断故障位置的方法。
3.分析设备绝缘状况。
二、实验内容1.用兆欧表(摇表)测量试品(三相电缆)的绝缘电阻和吸收比;2.测量高压直流下的试品泄漏电流。
三、实验原理测量绝缘电阻及吸收比就是利用吸收现象来检查绝缘是否整体受潮,有无贯通性的集中性缺陷,规程上规定加压后60s和15s时测得的绝缘电阻之比为吸收比。
即K=R60///R15//当K≥1.3时,认为绝缘干燥,而以60s时的电阻为该设备的绝缘电阻。
(1)实验原理图及等值电路图(2)绘制直流电压加在介质上,回路中电流随时间的变化曲线图。
四、实验装置及接线图1.用兆欧表测量试品绝缘电阻和吸收比的接线图图1-2 兆欧表测量绝缘电阻图中:R1、R2:串联电阻;E:摇表接地电极;G:摇表屏蔽电极;L:摇表高压电极;A、B、C:三相电缆的三个单相端头。
2.用数字式兆欧表测量电缆护套的绝缘电阻图1-1 兆欧表测量绝缘电阻接线图四、实验内容用兆欧表测量试品绝缘电阻和吸收比的接线图1.断开被试设备的电源及一切外联线.将被试品对地充分放电,容量较大的放电不得少于2min。
2.用清洁干净的软布擦去被试品表面污垢:3.检验摇表,不接试品,摇动手柄指针指向“∞”;短接L,E两端缓缓摇动手柄指针应指零。
4.按图1-3接线,经检查无误之后,以每分钟120转的速度摇动摇表手柄。
5.读取15秒及60秒时的读数,即为R15及R606.对电容较大的试品,在试验快结束时候,应设法在摇表仍处于额定转速时断开L或者E引线,以免摇表停止转动时,试品向摇表放电而冲击指针,造成摇表指针的损坏。
7.表停转后,对试品进行放电,然后分别将B相和C相作为被试对象,重复步骤2和3。
8.测量时应记录当时试品温度.气象情况和日期。
用数字式兆欧表测量电缆护套的绝缘电阻1.机械零位校准:档位开关拨至OFF位,调节机械零位调节钮使仪表指针标准到标度尺的“∞”分度线上。
高电压实验报告

高电压技术
检查接线正确后,接通电源;
合上高压试验开关,匀速升压(≈2kv/s)至U1,记录此时的电导电流,然
后继续匀速升压至U2,并记录此时的电导电流(I2),完毕后将电压降至零,
断开高压试验开关,切断电源;
③放电,对滤波电容。一般先通过电阻放电,然后再直接放电并挂上接地线。
五
1,FS-10型避雷器试验数据及分析如下:
(1),绝缘电阻测量数据:500MΩ
(2),泄漏电流及非线性系数的测试数据:
电压(kV)
泄漏电流(mA)
126第一次0.450.05第二次
0.42
0.05
分析计算:
根据已知的计算公式:电导电流差值按式4-1计算:
非线性系数按式 4-2 计算:
计算结果见下表:
次数
计算结果
第一次
第二次
88.89%
88.10%
(2),工频放电电压测试
测试接线如左图,试验电路中应设保护电阻R,用来限制击穿放电时的放电电流,要求将此电流幅值限制到0.7A以下,以避免放电烧坏火花间隙;控制电路应设电流速断保护,
要求间隙放电后在0.5s内切断电源。电压测量可在低压侧进行,并通过变比折算出高压侧电压,试验步骤如下:
检查接线正确后,接通电源;
(2),泄漏电流及非线性系数的测试
测试接线如左图所示,注意高压硅堆的方向应使试验电压呈负极性,要求试验电压的脉动系数不大于±1.5%,一般是在回路上并接0.01~0.1μf的滤波电容C,保护电阻R应使避雷器放电时的放电电流不大于硅堆最大允许电流,应直接测量加在避雷器上的试验电压(一般用静电电压表测量),测量准确度应在3级或以上,电导电流可在图中A、B、C三处测量,以A处为优选,注意在C处测量时除避雷器外的其它试验设备的接地端应接于试验变压器的X端,并空升一次以检查其它泄露情况。电流测量准确度应在0.5级或以上,实验步骤如下:
高压试验实习报告

实习报告——关于电力设备的高压试验序言随着电力工业的飞速发展,机组参数、系统电压等级逐步提高,电气设备的绝缘强度、系统过电压的限制水平对系统安全经济运行的影响日益突出。
据统计,高压电网的各种故障多是由于高压电气设备绝缘的损坏所致,因此了解设备绝缘特性,掌握绝缘状况,不断提高电气设备绝缘水平是电力系统安全经济运行的根本保证。
绝缘故障在电力设备运行事故中出现得很多,因此,绝缘检测是电力设备检测中最重要的方面。
绝缘检测的方法分为在线监测和现场试验。
在线绝缘监测需要对设备绝缘状况进行数据积累,且需要对系统进行一定程度的变动。
现场试验只要在停电的情况下就能进行,我国目前主要靠现场试验来进行绝缘检测。
因此,为了确保高电压设备能长期、安全、经济运行,必须对设备按设计的规格进行一系列的试验,绝缘试验则是其中必不可少的试验项目,可分为3种情况:1)对于高压电气设备的制造厂,要所有原材料、产品定型以及出厂进行试验。
目的是检验新的高压电气设备是否符合有关的技术标准规定,严禁不合格的高压设备出厂;2)对于大修后的设备进行绝缘试验,其目的是判定设备在维修或运输过程中是否出现绝缘损伤或性能变化,以及大修后修理部位的质量是否符合原标准的要求;3)对于正在运行中的电气设备,则需要定期进行预防性试验,电力设备以及电缆的现场试验最重要的是耐压试验,由于电缆线路等被试品的等效电容很大,常规耐压设备无法满足其试验容量要求,这也是国内外高压试验的一个共同难题,有些传统的解决方法是有效的,但也存在问题,实践证明对油纸绝缘的电缆是合适的,但对高电压等级的橡塑绝缘电缆效果不明显而且有害。
一、实习的基本情况实习时间:0年12月03日——0年03月03日实习地点:城郊新农村电力工程服务有限责任公司实习目的:了解电网的操作流程,了解电网的运行模块,对电的深刻认知,促使自己把实践与理论想结合。
一、高压试验的主要研究方法信息来源:电力电缆、GIS和大型电机等是电力系统的重要设备,由于其具有较大的电容量,如用50 Hz工频电压对它们的主绝缘进行现场试验,则需要很大容量的试验变压器和低压试验电源,这使得现场工频试验非常困难,于是,人们不得不研究用其他的试验方法对其进行试验。
广西大学电气工程学院高电压试验报告

实验一空气间隙放电实验目的高压试验的全过程,体会升压、闪络、跳闸、降压的全过程。
高压试验变压器的接线与操作。
直流高压发生器与试品的接线与操作。
了解交直流在不同间隙与电极结构情况下,均匀电场和极不均匀电场的击穿电压。
实验原理(1)稍不均匀电场的放电均匀电场中,由于各点电场强度都是一样的,当施加稳态电压(直流、工频交流),电场强度达到空气的击穿强度时,间隙就击穿了。
但日常很难见到均匀电场。
对于稍不均匀的电场,日常见得很多。
如球-球间隙,球-板间隙等,以球-球间隙为例,当间隙距离小于1/4D时,其电场基本为均匀电场,当D/4 ≤S≤ D/2 时,其电场为稍不均匀电场。
均匀电场的放电电压也可用公式计算,公式为(单位为kV):—空气相对密度—间隙距离cm(2)不均匀电场的放电不均匀电场的差别就在于空气间隙内,各点的电场强度不均匀,在电力线比较集中的电极附近,电场强度最大,而电力线疏的地方,电场强度很小。
如棒-板间隙,在尖电极附近电场强度最大,加上高压后,电极附近先产生电晕放电,而板上的电力线很疏,不会产生电晕。
当电压足够高时,棒极也将产生刷状、火花放电,最后导致电弧放电(击穿)。
(3)极性效应在直流电压作用下,极性对放电电压有很大影响。
这是因为正流注发展所需的平均电场与负流注发展所需的平均电场不同,因此在正负直流电压作用下有明显的极性效应。
实验设备:调压器、试验变压器、放电球隙电路图直流放电试验实验步骤1.修改接线,接上直流倍压装置---旋出试验变压器导杆;2.数字高压表置DC、High;3.其余步骤与交流电压下的相同。
4.特别注意放电杆对试验变压器均压球放电数据表格(1)直流放电电压实验数据(2)数据处理(3)实验结论(1)放电电压U)3(>U)1(>U)2(,且随着间距的增大,击穿电压大小差距越明显;(2)U)1(>U)2(,因此高电压直流输电在选择单条线路输电时,应优先选择负电压输电,可提高输电容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高电压技术实验实验报告(二)---高电压技术实验报告高电压技术实验报告学院电气信息学院专业电气工程及其自动化实验一.介质损耗角正切值得测量一.实验目得学习使用QS1型西林电桥测量介质损耗正切值得方法.二.实验项目1.正接线测试2.反接线测试三.实验说明绝缘介质中得介质损耗(P=Cu2tg)以介质损耗角得正切值(tg)来表征,介质损耗角正切值等于介质有功电流与电容电流之比。
用测量tg值来评价绝缘得好坏得方法就是很有效得,因而被广泛采用,它能发现下述得一些绝缘缺陷:绝缘介质得整体受潮;绝缘介质中含有气体等杂质;浸渍物及油等得不均匀或脏污。
测量介质损耗正切值得方法较多,主要有平衡电桥法(QS1),不平衡电桥法及瓦特表法。
目前,我国多采用平衡电桥法,特别就是工业现场广泛采用QS1型西林电桥。
这种电桥工作电压为10Kv,电桥面板如图21所示,其工作原理及操作方法简介如下:⑴.检流计调谐钮⑵。
检流计调零钮⑶。
C4电容箱(tg)⑷。
R3电阻箱⑸。
微调电阻(R3桥臂)⑹.灵敏度调节钮⑺.检流计电源开关⑻。
检流计标尺框⑼。
+tg/-tg及接通Ⅰ/断开/接通Ⅱ切换钮1QS1西林电桥面板图⑽.检流计电源插座⑾.接地⑿.低压电容测量⒀.分流器选择钮⒁。
桥体引出线11)工作原理:原理接线图如图2-2所示,桥臂BC接入标准电容CN(一般CN=50pf),桥臂BD由固定得无感电阻R4与可调电容C4并联组成,桥臂AD接入可调电阻R3,对角线AB上接入检流计G,剩下一个桥臂AC就接被试品CX.高压试验电压加在CD之间,测量时只要调节R3与C4就可使G中得电流为零,此时电桥达到平衡。
由电桥平衡原理有:即:(式2-1)各桥臂阻抗分别为:将各桥臂阻抗代入式2-1,并使等式两边得实部与虚部分别相等,可得:(式22)在电桥中,R4得数值取为=10000/=3184(),电源频率=100,因此:tg=C4(f)(式23)即在C4电容箱得刻度盘上完全可以将C4得电容值直接刻度成tg值(实际上就是刻度成tg(%)值),便于直读。
22)接线方式::QS1电桥在使用中有多种接线方式,如下图所示得正接线、反接线、对角接线,低压测量接线等。
正接线适用于所测设备两端都对地绝缘得情况,此时电桥得D点接地,试验高电压在被试品及标准电容上形成压降后,作用于电桥本体得电压很低,测试操1QS1西林电桥面板图作很安全也很方便,而且电桥得三根引出线(CX、CN、E)也都就是低压,不需要与地绝缘。
反接线适用于所测设备有一端接地得情况,这时就是C点接地,试验高电压通过电桥加在被试品及标准电容上,电桥本体处于高电位,在测试操作时应注意安全,电桥调节手柄应保证具有15kv以上得交流耐压能力,电桥外壳应保证可靠接地。
电桥得三根引出线为高压线,应对地绝缘。
对角接线使用于所测设备有一端接地而电桥耐压又不够,不能使用反接线得情况,但这种接线得测量误差较大,测量结果需进行校正。
低压接线可用来测量低压电容器得电容量及tg值,标准电容可选配0、001f(可测CX 范围为300pf~10f)或0、01f(可测CX范围为3000pf~100f)3..分流电阻得选择及tg值得修正::QS1电桥可测试品范围很广,试品电容电流变化范围也很广,但电桥中R3得最大允许工作电流为0、01A,如果试品电容电流超过此值,则必须投入分流器,以保证R3得安全工作,分流器挡位得选择可按表21所列数据进行。
在投入分流器后所测tg值很小得情况下,测量值应进行校正,其校正式如下:tg为实测值,tg为校正量,tgX为校正后得值。
四四.仪器设备:50/5试验装置一套水阻一只电压表一只QS1电桥一套220Kv脉冲电容器(被试品)一只五五.实验接线:(a)高压试验源(b)正接线(c)反接线(d)对对角接线QS1西林电桥试验接线图六.实验步骤:⑴。
首先按上图所示得正接线法接好试验线路;⑵.将R3、C4以及灵敏度旋钮旋至零位,极性切换开关放在中间断开位置;⑶.根据被试品电容量确定分流器挡位;⑷。
检查接线无误后,合上光偏式检流计得光照电源,这时刻度板上应出现一条窄光带,调节零位旋钮,使窄光带处在刻度板零位上;⑸.合上试验电源,升至所需试验电压;⑹。
把极性切换开关转至+tg位置得接通Ⅰ上;⑺.把灵敏度旋钮旋至1或2位置,调节检流计得合频旋钮,找到检流计得谐振点,光带达到最宽度,即检流计单挡灵敏度达到最大;⑻。
调节检流计灵敏度旋钮,使光带达到满刻度得1/3~2/3为止;⑼.先调节R3使光带收缩至最窄,然后调节C4使光带再缩至最窄,当观察不便时,应增大灵敏度旋钮挡(注意在整个调节过程中,光带不能超过满刻度),最后,反复调节与C4并在灵敏度旋钮增至10挡(最大挡)时,将光带收缩至最窄(一般不超过4mm),这时电桥达到平衡;⑽.电桥平衡后,记录tg、R3、值,以及分流器挡位与所对应得分流器电阻n,还有所用标准电容得容量CN;⑾。
将检流计灵敏度降至零,把极性旋钮旋至关断,把试验电压降至零并关断试验电源,关断灯光电源开关,最后将试验变压器及被试品高压端接地。
⑿.计算被试品电容量:式中,CN----标准电容得容量(50pf或100pf)n---分流器电阻值(对应于分流器挡位,如表2-1所列)⒀。
按图2-4所示得反接线法接好试验线路(选做);并按⑵~⑿操作步骤调节电桥,测出被试品得tg值与CX值。
注意:反接线法桥体内为高压,电桥箱体必须良好接地,电桥引出线应架空与地绝缘.操作时注意安全。
七.实验结果在实验中我们选择得仪器就是XHJS1000A型变频电源,其主要功能就是将频率为50Hz得工频交流电转化成频率为4045Hz得交流电,以防止工频交流电得干扰1、正接线法11)实验接线图22)实验参数设定3)实验结果试品电容Cx(nF)4、2754、2754、275tan2、727%2、724%2、720%22、反接线法1))实验接线图2))参数设定33)实验结果试品电容Cx(nF)4、2964、2964、296tan2、7842、7802、7803.分析由上表中所示得实验结果可以瞧出,无论就是正接法接线还就是反接法接线,三次实验试品得电容量都为恒定值,而tan却有变化;这就是因为试品电容受正反解法得轻微影响,一般接线方式固定其值就基本固定了,而tan却与空气得湿度,被试品表面得积污程度,温度,外界磁场得干扰等有关系,因此其值有轻微得变化。
八.实验总结介质损耗就是表征介质交流损耗得参数(直流用电导即可表征),包括电导与电偶损耗,测量tan就是判断电气设备绝缘状态得一项灵敏有效得方法。
ta n能反映绝缘得整体缺陷与小电容试品得严重局部缺陷,对于电容量很大得电气设备得局部性缺陷,应该将设备分解为几个部分,分别测量tan得值。
试验吸引人得地方便就是可以让我们对于书本上学习得抽象得概念性得东西具体化,这对于我们得学习就是大有裨益得;通过这个试验,对于课堂上学习得介质损耗角有了一个比较具体得概念,在实验得测试过程中,同学们团结一致,发现了许多得问题并且积极想办法解决,让我瞧到了团结得力量;谢谢学校提供给我们条件。
实验二二.避雷器试验一.实验目得了解阀型避雷器得种类、型号、规格、工作原理及不同种类避雷器得结构与适用范围,掌握阀型避雷器电气预防性试验得项目、具体内容、试验标准及试验方法.二。
实验项目1.FS-10型避雷器试验(1).绝缘电阻检查(2)。
工频放电电压测试2。
FZ-15型避雷器试验(1).绝缘电阻检查(2).泄漏电流及非线性系数得测试三.实验说明阀型避雷器分普通型与磁吹型两类,普通型又分FS型(配电型)与FZ型(站用型)两种.它们得作用过程都就是在雷电波入侵时击穿火花间隙,通过阀片(非线性电阻)泄导雷电流并限制残压值,在雷电过后又通过阀片减小工频续流并通过火花间隙得自然熄弧能力在工频续流第一次过零时切断之,避雷器实际工作时得通流时间≯10ms(半个工频周期).FS型避雷器得结构最简单,如图2-1所示,由火花间隙与非线性电阻(阀片)串联组成。
FZ型避雷器得结构特点就是在火花间隙上并联有均压电阻(也为非线性电阻),如图2-2所示,增设均压电阻就是为了提高避雷器得保护性能,因为多个火花间隙串联后将引起间隙上工频电压分布不均,并随外瓷套电压分布而变化,从而引起避雷器间隙恢复电压得不均匀及不稳定,降低避雷器熄弧能力,同时其工频放电电压也将下降与不稳定。
加上均压电阻后,工频电压将按电阻分布,从而大大改善间隙工频电压得分布均匀度,提高避雷器得保护性能.非线性电阻得伏安特性式为:U=CI,其中C为材料系数,即为非线性系数(普通型阀片得0、2、磁吹型阀片得0、24、FZ型避雷器因均压电阻得影响,其整体0、35~0、45),其伏安特性曲线如图23所示。
可见流过非线性电阻得电流越大,其阻值越小,反之其阻值越大,这种特性对避雷器泄导雷电流并限制残压,减小并切断工频续流都很有利。
另外,FS型避雷器得工作电压较低(10kv),而FZ型避雷器工作电压可做到220kv。
FZ型避雷器中得非线性电阻(均压电阻与阀片)得热容量较FS型为大,因其工作时要长期流过工频漏电流(很小、微安级)。
磁吹型避雷器有FCZ型(电站用)与FCD 型(旋转电机用)两种,其结构与FZ型相似,间隙上都有均压电阻,只就是磁吹型避雷器采用磁吹间隙,并配有磁场线圈与辅助间隙.由于以上结构上得不同,所以对FS型与FZ(FCZ、FCD)型避雷器得预防性试验项目与标准都有很大得不同。
根据《电力设备预防性试验规程》,对FS型避雷器主要应做绝缘电阻检查与工频放电电压试验,对FZ(及FCZ、FCD)型避雷器则应做绝缘电阻检查与直流泄漏电流及非线性系数得测试。
只有在其解体检修后才要求做工频放电电压试验(需要专门设备)。
避雷器其它得预防性试验还包括底座绝缘电阻得检查、放电计数器得检查及瓷套密封性检查等.避雷器试验应在每年雷雨季节前及大修后或必要时进行。
绝缘电阻得检查应采用电压2500v及量程2500M得兆欧表。
要求对于FS型避雷器绝缘电阻应不低于2500M;FZ(FCZ、FCD)型避雷器绝缘电阻与前次或同类型得测试值比较,不应有明显差别.FS型避雷器得工频放电电压试验得合格值如表21所列。
表表21FS型避雷器得工频放电电压值:额定电压(kv)3610工频放电电压(kv)大修后9~1116~1926~31运行中8~1215~2123~33FZ型避雷器得直流泄漏电流及非线性系数得测试得试验电压及电导电流值如表2-2所列,所测泄漏电流值还应与历年数据相比较,不应有显著变化,同相元件电导电流差值不应大于30%。
表表222FZ型避雷器得直流泄漏试验电压及电导电流值:额定电压(kv)361015203040试验电压(kv)U1---8101216U2461016202432U2时电导电流(A)450~650400~600电导电流差值按式2-1计算:(式21)非线性系数按式22计算:(式2-2)同相组合元件得非线性系数差值不应大于0、05。