幅度调制与解调实验报告
信号的调制与解调实验报告-数字信号处理

信号的调制解调实验报告一、实验目的:1、了解几种基本的信号调制解调原理;2、掌握用数字信号处理的方法实现模拟电路中信号的调制与解调的方法;3、通过理论推导得出相应结论,利用Matlab作为编程工具进行计算机验证实现,加深理解,建立概念。
二、实验原理:1.幅度调制用一个信号(称为调制信号)去控制另一个信号(称为载波信号),让后者的某一特征参数如幅值、频率、相位,按前者变化的过程,就叫调制。
图3-1 低频信号经高频载波信号调制波形图式中m是调幅波的调制系数(调幅度)。
同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。
利用三角公式将调制波表达式展开,可得上式表明,载波信号经单一信号调制后将出现三个频率分量,即载波频率分量fc,上边频分量fc+F,下边频分量fc-F。
其频谱图如图所示:图3-2 载波信号经单一信号调制后的频谱图由频谱图可见,幅度调制在频域上是将调制信号F搬移到了载频的两边,其实质是一种频率变换。
其带宽为:2()。
BW F Hz2.解调(检波)调幅波的解调过程(不失真地还原信息)通常称为检波,实现该功能的电路也称振幅检波器(简称检波器),它仍然是一种频谱搬移过程。
振幅检波器的组成框图如图所示:图3-4 振幅检波器的组成框图2.1 包络检波图3-5 二极管包络检波电路Vct1t2t3图3-6 包络检波的过程图3-7 检波隔直后的输出波形2.2 同步检波同步检波器用于对载波被抑止的双边带或单边带信号进行解调。
它的特点是必须外加一个频率和相位都与被抑止的载波相同的电压,同步检波器的名称由此而来。
相乘器低通滤波器本地载波1v 0v 2v v图3-8 同步检波原理框图三、实验仪器及材料:微型计算机、Matlab 四、实验步骤及结果讨论:1. m 取不同值时信号的调制,过调制,欠调制状态:实验结果图:2、抑制载波的幅值调制讨论:⑴调制后信号的波形及频谱图:方波信号正弦波信号三角波信号⑵调制后频率成分推导:即经过调制后,信号频谱包括三部分:原调制波频率500Hz、高频载波与原信号频率之差9500Hz 、高频载波与原信号频率之和10500Hz 。
幅度调制与解调

幅度调制与解调实验一、实现目的1、通过本次实验,起到理论联系实际的作用,将理论课中学到的调幅、检波电路的分析方法用到实验电路的分析和实验结果的分析中,使理论真正地用在实际电路中,落到实处。
要求学生必须从时域、频域对调制和解调过程中信号的变换分析清楚。
2、本次采用的实验电路既能实现普通调幅,又能实现双边带调幅,通过实验更进一步理解普通调幅(AM)和双边常调幅(DSB)在理论上、电路中的联系和区别。
3、实验中所测量的各种数据、曲线、波形是代表电路性能的主要参数,要求理解参数的意义和测量方法,能从一组数据中得出不同的参数并衡量电路的性能。
二、实验仪器1、数字示波器 TDS210 0~60MHz 1台2、频谱分析仪 GSP-827 0~2.7GHz 1台3、直流稳压电源 SS3323 0~30V 1台4、实验电路板自制 1块三、实验电路及原理1、实验电路介绍实验所采用的电路为开关调幅电路,如图所示。
既能实现AM调制,又能实现DSB调制,是一种稳定可靠,性能优良的实验电路,其基本工作原理是:调制信号经耦合电容C1输入与电位器输出的直流电压叠加,分别送到同相跟随器U1A 和反相跟随器U1B,这样在两个跟随器的输出端就得到两个幅度相等,但相位相反的调制信号(U+和U-)。
再分别送到高速模拟开关的两个输入端S1和S2,由开关在两个信号之间高频交替切换输出(由载波控制),在输出端就得到调幅波,通过调整电位器可以改变直流电压达到改变调制度m,当电位器调到中心位置时就得到了双边带的调幅信号。
放大器为高精度运放AD8552,开关为二选一高速CMOS模拟开关ADG779。
另外,为防止实验过程中由于调制信号幅度过大而损坏电路,特加了保护二极管D1、D2;由于运算放大器和模拟开关是单电源轨至轨型,只能单5V供电,在使用时所有信号是叠加在2.5V直流电平上的,电路中R7、R8就是提供该直流偏置电平的,R12、R13、T1是用来抵销直流电平的,以免对检波电路产生影响;R8、C5、C7、L1和R9、C6、C8、L2起到导通直流和低频信号、阻止高频信号的作用,防止开关泄露的高频载波信号对运算放大器产生影响;高频载波信号(1MHz,方波)由有源晶体振荡器X1产生。
幅度调制及解调实验心得

幅度调制及解调实验心得一、实验目的幅度调制及解调实验是电子学中的基础实验之一,旨在通过实践操作与理论结合的方式,加深对幅度调制及解调原理的理解,掌握幅度调制与解调电路的设计和调试方法。
二、实验原理1. 幅度调制原理幅度调制是指用模拟信号(也称为基带信号)去控制高频信号(也称为载波信号)的振幅变化,从而将模拟信号转化为高频信号。
具体而言,假设模拟信号为m(t),高频载波信号为c(t),则幅度调制后得到的带载波信号s(t)可表示为:$$s(t)=(A_c+m(t))\cos(2\pi f_c t)$$其中,$A_c$为载波振幅,$f_c$为载波频率。
可以看出,当模拟信号m(t)变化时,带载波信号s(t)的振幅也会随之变化。
2. 幅度解调原理幅度解调是指将已经被幅度调制过的带载波信号还原成原始模拟信号。
常见的幅度解调电路有包络检测器和同步检测器两种。
包络检测器的原理是利用二极管的非线性特性,将带载波信号的正半周期和负半周期分别整流,然后通过一个低通滤波器得到原始模拟信号的包络。
具体而言,假设带载波信号为s(t),则包络检测器输出的电压e(t)可表示为:$$e(t)=R_c\cdot C\cdot \frac{d}{dt}|s(t)|$$其中,$R_c$为电路中的电阻,$C$为电容。
同步检测器的原理是利用一个参考信号(也称为本振信号)与已经被幅度调制过的带载波信号相乘得到一个混频信号,然后通过低通滤波器得到原始模拟信号。
具体而言,假设参考信号为$f_r(t)$,带载波信号为$s(t)$,则同步检测器输出的电压e(t)可表示为:$$e(t)=K_d\cdot m(t)$$其中,$K_d$为检波灵敏度。
三、实验步骤1. 实验材料准备:示波器、函数发生器、二极管、电容、变阻器等。
2. 搭建幅度调制电路:将函数发生器输出接入变阻器中,并将变阻器输出接入二极管的正极,将二极管的负极接地。
将载波信号从函数发生器输出,并通过一个电容与变阻器输出相乘,得到幅度调制后的带载波信号。
幅度调制与解调电路实验报告

一、实验标题:幅度调制与解调电路实验二、实验目的1、加深理解调幅调制与检波的原理2、掌握用集成模拟乘法器构成调幅与检波电路的方法3、掌握集成模拟乘法器的使用方法4、了解二极管包络检波的主要指标、检波效率及波形失真三、实验仪器与设备5、高频电子线路试验箱(TKGP);6、双踪示波器;7、频率计;8、交流毫伏表。
四、实验原理实验原理图图一:电路原理图MC1496 是双平衡四象限模拟乘法器。
引脚8 与10 接输入电压UX,1 与4 接另一输入电压Uy,输出电压U0 从引脚6 与12 输出。
引脚2 与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。
引脚14 为负电源端(双电源供电时)或接地端(单电源供电使),引脚5 外接电阻R5。
用来调节偏置电流I5 及镜像电流I0 的值。
五、 实验内容及步骤1、 乘法器失调调零2、 观察调幅波形调幅波形一-60-40-20020406001234567tU /m v图二:K502 1-2短接波形图调幅波形二-40-30-20-1001020304001234567tU /m v图三:K502 2-3短接波形图3、 观测解调输出解调波形-500-400-300-200-100010020030040050000.511.522.533.544.55tU /m v图四:解调输出波形图六、实验分析用低频调制电压去控制高频载波信号的幅度的过程称为幅度调制(或调幅)。
既然高频载波的幅度随低频调制波而变,所以已调波同样随时间而变。
即有式中m是调幅波的调制系数(调幅度)。
同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。
七、实验体会通过本次实验,我了解了集成模拟乘法器的基本工作原理、分类、特性等,在了解信号的调制和解调知识的。
温故而知新,本次试验使我熟悉了对实验仪器是使用,并且初步学会了集成模拟乘法器设计幅度调制的方法。
调幅与解调实验报告

调幅与解调实验报告一、引言调幅(Amplitude Modulation,简称AM)是一种将信息信号调制到载波信号上的调制方式,而解调则是将调制信号中的信息信号分离出来的过程。
调幅与解调是通信领域中基础而重要的技术,本实验旨在通过搭建调幅与解调电路,实现调幅与解调的过程,并验证调幅电路和解调电路的正常工作。
二、实验设备与原理2.1 实验设备本实验所用设备如下:- 信号发生器- 三角波生成器- 振荡器- 信号变换电路- 甄别电路- 示波器- 电阻、电容等元件2.2 实验原理2.2.1 调幅原理调幅原理是将一个较低频率的信息信号通过乘法运算调制到一个高频的载波信号上。
设载波信号为c(t) = A_c\cdot \cos(2\pi f_c t),调制信号为m(t) =A_m\cdot \cos(2\pi f_m t),调幅信号为s(t) = (A_c + A_m\cdot m(t))\cdot \cos(2\pi f_c t)。
2.2.2 解调原理解调过程即提取调制信号中携带的信息信号,常用的解调方法是相干解调。
相干解调的基本原理是将收到的调幅信号再与一个同频率同相位的载波进行乘法运算,然后通过低通滤波器滤除高频成分,得到信息信号。
三、实验步骤3.1 调幅实验1. 搭建调幅电路,将信号发生器输出的正弦波作为调制信号,通过信号变换电路将其调制到振荡器产生的载波信号上。
2. 将调幅信号连接至示波器,调整信号发生器的频率和振荡器的幅度,观察调幅信号的波形特点。
3.2 解调实验1. 将调幅信号连接至甄别电路,通过相干解调原理进行解调。
2. 将甄别电路的输出信号通过低通滤波器滤除高频成分,并连接至示波器。
3. 调整振荡器的幅度和频率,观察解调后波形的恢复情况。
四、实验结果与分析4.1 调幅实验结果通过调幅电路实验,观察示波器上的调幅信号波形特点。
可以发现调幅信号的幅度在载波频率下发生变化,且幅度变化的幅度与调制信号的幅度成正比关系。
通信原理实验报告--脉冲幅度调制与解调实验

本科实验报告课程名称:通信原理实验项目:脉冲幅度调制与解调实验实验地点:通信原理实验室专业班级:学号:学生姓名:指导教师:2012 年 6 月 16 日一、实验目的和要求:1.理解脉冲幅度调制的原理和特点。
2.了解脉冲幅度调制波形的频谱特性。
二、实验内容:1.观察基带信号、脉冲幅度调制信号、抽样时钟的波形,并注意观察它们之间的相互关系及特点。
2.改变基带信号或抽样时钟的频率,重复观察波形。
3.观察脉冲幅度调制波形的频谱。
三、主要仪器设备:信号源模块、PAM、AM模块、终端模块、频谱分析模块四、实验原理:抽样定理表明:一个频带限制在内的时间联系信号,如果以秒的时间对它进行等间隔抽样,则将被所得到的抽样值完全确定。
假设将信号和周期为T的冲激函数相乘,如图7-1所示。
乘积便是均匀间隔为T秒的的冲激序列,这些冲激序列的强度等于相应瞬时上的值,他表示对函数的抽样。
若用表示此抽样函数,则用:假设、、和的频谱分别为、和。
按照频率卷积定理,的傅里叶变换是和的卷积:因为,所以则该式表明,已抽样信号的频谱是无穷多个间隔为的相迭加而成。
这就意味着中包含的全部信息。
需要注意,若抽样间隔T变得大于,则和的卷积在相邻的周期内存在重叠,因此不能由恢复。
可见,是抽样的最大间隔,它被称为奈奎斯特间隔。
所谓脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的调制方式。
如果脉冲载波是由脉冲组成的,则上述所介绍的抽样定理,就是脉冲幅度调制原理。
但是,实际上理想的冲激串物理实现困难,通常采用窄脉冲串来代替。
本实验模板采用32K或64K或1MHz的窄矩形脉冲来代替理想的窄脉冲串,当然,也可以采用外接抽样脉冲对输入信号进行脉冲幅度调制,本实验采用图7-3所示的原理方框图。
如下图所示,被抽样的信号从S201输入,若此信号为音频信号,则它经过TL084构成的电压跟随器隔离之后,被送到模拟开关4066的第一脚。
此时,将抽样脉冲由S202输入,其频率大于或等于输入音频信号频率的2倍即可,但至少应高于3400Hz。
北京理工大学信号与系统实验报告8 调制与解调

实验8 调制与解调(设计型实验)一、实验目的1) 加深理解信号调制和解调的基本原理2) 从时域和频域分析信号幅度调制和解调的过程 3) 掌握幅度调制和解调的实现方法 二、实验原理与方法 1. 调制与解调在通信系统中,信号传输之前通常需要在发送端将信号进行调制,转换成为适合传输的信号,在接收端则需要进行解调,将信号还原成原来的信息。
在实际应用中,有多种调制方法,最常用的模拟调制方式是用正弦波作为载波的幅度调制、频率调制和相位调制3种方式,其中幅度调制(AM )属于线性调制,这里重点介绍AM 调制的基本原理。
正弦幅度调制和解调的原理框图如下:x(t)为调制信号,cos(w 0t)为载波,g(t)为已调信号。
调制信号与载波信号相乘可以得到已调信号,即g(t)=x(t)* cos(w 0t) 载波频谱为00()()()P ωπδωωπδωω=-++ 有频域卷积定理g(t)=x(t)* cos(w 0t)的频谱为0011G()[X()P()][X()()]22X ωωωωωωωπ=*=-++ 在调制过程中信号的所有信息X(w)均被保留了下来,,只是被移到了较高的频率上。
为使G()ω中两个非零部分不重叠,应满足0m ωω>。
解调过程中,将g(t)乘以本振信号cos(w 0t)得r(t),本振信号的频率与调制过程中载波信号频率相同,这种方法称为同步解调。
200011(t)g(t)cos(t)(t)cos (t)(t)(t)cos(2t)22r x x x ωωω=*==+ 从频域上看,根据频域卷积定理可以求出(t)g(t)p(t)r =的频谱为00()[X(2)]/4X()/2[X(2)]/4R ωωωωωω=-+++将r(t)通过一定的低通滤波器滤除频率为02ω的分量,则可恢复出原始信号。
已调信号g(t)=x(t)* cos(w 0t)的频谱只含上下边带成分,抑制了载波分量,称为抑制载波双边带(DSB-SC )调幅;而具有s(t)=[A+x(t)]cos(w 0t)形式的已调信号频谱中包含载波和上下边带,称为双边带(DSB )调幅2. 低通滤波器的MATLAB 实现解调过程中需要使用低通滤波器恢复原始信号,MATLAB 和Simulink 都提供了强大功能用于滤波器的设计。
实验七 幅度调制及解调实验

实验五幅度调制及解调实验一、实验目的1.理解幅度调制与检波的原理。
2.掌握用集成乘法器构成调幅与检波电路的方法。
二、实验原理实验电路图如图6-2所示。
调幅就是用低频调制信号去控制高频载波信号的幅度,使高频载波信号的振幅按调制信号变化。
而检波则是从调幅波中取出低频信号。
振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带调制(DSB)信号,单边带调制(SSB)信号。
此实验主要涉及普通调幅(AM)及检波原理。
三、实验设备1、THZK-1型测控电路综合实验平台2.测控电路(一)挂箱(ZK-7)说明:本实验中实验平台上所用到的资源:真有效值交流毫伏表、低频函数信号发生器或TH-SG01P;挂箱上所用到的资源:U1、U2四、实验内容及步骤1、接通ZK-7挂箱上的电源,即把挂箱上的七芯航空插头插在平台上的七芯航空插座上,并用智能直流电压表观测平台上的直流电压输出是否正常,挂箱的指示灯是否正常,如果不正常,则需要检测,一般是航空插头没有插好。
只有电压正常以后,方可进行下一步实验。
2.调幅波的观察(1)调节实验屏上低频函数信号发生器,使之输出频率为1.3KHz、幅值为1Vp-p的正弦波信号,接入“U1调幅单元”的调制波输入端。
(2)调节实验屏上TH—SG01P函数信号发生器,使之输出频率为100KHz、幅值为4.0Vp-p的正弦波信号,接入“U1调幅单元”的载波输入端。
图6-1 普通调幅(AM)波波形(3)“U1调幅单元”的输出端接入示波器CH1,调节“U1调幅单元”的电位器W,在示波器上观测到如图6-1所示的普通调幅(AM)波。
3.解调波的观察(1)在保持调幅波的基础上,将“U1调幅单元”的输出端接入“U2解调单元”的调幅波输入端,把输入“U1调幅单元”的载波信号接入“U2解调单元”载波输入端。
(2)“U2解调单元”的输出端接入虚拟示波器的CH2,调节“U2解调单元”的电位器W1,观测到解调信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号幅度调制与解调实验
一. 实验目的
1. 通过本实验熟悉信号的幅值调制与解调原理。
2. 了解信号调制与解调过程中波形和频谱的变化,加深对调制与解调的理解。
二. 实验原理
在测试技术中,信号调制与解调是工程测试信号在传输过程中常用的一种调理方法,主要是为了解决微弱缓变信号的放大以及信号的传输问题。
设测量信号为)(t x ,高频载波信号为)2cos()(φπ+=ft t z 。
信号调制过程就是将两者相乘,调幅波信号为:
(1)
信号解调就是将调幅波信号再与高频载波信号相乘,有:
)4cos()()(2cos )()(212t f t x t x t f t x t y z z m ππ+
== (2) 信号由x(t)和2倍载波频率的高频信号两部分组成,用低通滤波器滤除信号中的高频部分就可以得到测量信号x(t),这种方法称为同步解调。
图1 信号的幅度调制与同步解调过程
实际中调制与解调在不同的设备上实现,载波频率可以严格一致,但相位很难同步,式(2)变为:
)2cos()2cos()()(φππ+=t f t f t x t y z z m (3) 解调过程与同步解调类似,但必须保证x(t)为正信号;对双极性的测量信号x(t),则用一个偏置电平将信号抬高为单极性的正信号,然后再进行调制与解调处理,故称为偏置调制。
图2 测量信号的偏置处理
三. 实验内容
1.信号的同步调制与解调观察。
2.信号的偏置调制和过调失真现象观察。
3.信号调制中的重迭失真现象观察。
四. 实验仪器和设备
1. 计算机1台
2. DRVI快速可重组虚拟仪器平台1套
3. 打印机1台
五. 实验步骤
1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI
采集仪主卡检测”或“网络在线注册”进行软件注册。
2.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号的同
步调制与解调实验”,建立实验环境,观察信号与调制与解调过程中的信号波形变化。
图3信号同步调制与解调实验
3.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号的偏
置调制与解调实验”,建立实验环境,观察偏置调制与解调过程中的信号过调失真。
图4 信号同步调制与解调实验
4.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号载波
频率对调制解调影响实验”,建立实验环境,观察调制与解调过程中的信号重迭失真。
图5信号载波频率对调制解调结果的影响
5. 在上述实验中添加频谱分析功能,观察信号调制与解调过程中信号频谱的变化。
六. 实验报告要求
1. 简述实验目的和原理,画出实验的装配图。
2. 拷贝实验系统运行界面,插入到Word 格式的实验报告中,用Winzip 压缩后通过Email
上交实验报告。
七. 思考题
1. 信号经过幅度调制以后,解调时在什么情况下会出现波形失真现象?
2. 信号的频率调制和幅度调制有何区别?
3. 信号的频率调制公式为:)*)]([2cos()(0φπ++=t t x f A t y ,利用Signal VBScript 设
计一个频率调制系统:
图6 (a)锯齿波调频 (b)正弦波调频
然后再利用信号周期过零检测算法设计一个调频信号解调系统。