人教新课标版数学高二-人教数学必修五示范教案1.1.3解三角形的进一步讨论
高中数学新教材解三角形教案

高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。
高中数学人教版必修5全套教案

课题: §1.1.1正弦定理授课类型:新授课 ●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B,使边A C绕着顶点C转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,A C=b,A B=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形A BC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆A BC是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
高中数学必修5解三角形教案(2021年整理)

高中数学必修5解三角形教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修5解三角形教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修5解三角形教案(word版可编辑修改)的全部内容。
第2章 解三角形2。
1.1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程: 一、复习准备:1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?2。
由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课:1. 教学正弦定理的推导:①特殊情况:直角三角形中的正弦定理: sin A =ca sin B =cb sin C =1 即c =sin sin sin a b cA B C==. ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A==,则sin sin a b A B =。
同理,sin sin a cA C=(思考如何作高?),从而sin sin sin a b cA B C==。
高二数学必修五解三角形教案

高二数学必修五第一章解三角形教案)(一)教学目标 1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2 . 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
(三)学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
教学用具:直尺、投影仪、计算器(四)教学设想 [创设情景] 如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。
A 思考: C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角 C的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B[探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,,又 , A 则 b c 从而在直角三角形ABC中, C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则, C 同理可得, b a 从而 A c B (图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(新课标)高中数学 第一章 解三角形教学设计 新人教A版必修5

(新课标)2015-2016学年高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形2.三角形各种类型的判定方法;三角形面积定理的应用3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师 本章我们共学习了哪些内容? 生本章我们学习了正弦定理与余弦定理师你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A,b 2=a 2+c 2-2acco s B, c 2=b 2+a 2-2baco s Cabc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=师很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解师 very good!除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习推进新课 多媒体投影生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为生 这个题目以前做过的,A 与B的大小关系不定. 师 对吗?生我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2s i n s i n s i n ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧生 不对,应该先化简等式右边,得A +B 2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan2C=2. 从而有344142tan 12tan2tan 2-=-=-=C CC. 师 思路非常清晰,请同学们思考本题共涉及到了哪些知识点? 生 正弦定理、余弦定理与三角形面积公式. 生还有余切的二倍角公式. 师 你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口. 师 对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】 将一块圆心角为120°,半径为20 c m 的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA 上,或让矩形一边与弦AB 平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论解:按图(1)的裁法:矩形的一边O P 在OA 上,顶点M 在圆弧上,设∠M OA =θ,则|MP|=20sin θ,|OP |=20co s θ, 从而S=400sin θco s θ=200sin2θ, 即当4πθ=时,S m a x按图(2)的裁法:矩形的一边PQ 与弦AB 平行,设∠M O Q=θ,在△M O Q 中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin 2340120sin sin 20=︒又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以S=|MQ |·|MN |=331600sin θsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]所以当θ=30°时,S m a x =33400由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到0.1°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ师 接下来怎么做呢?生 因为co s θ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值.师cos θ的最小值怎么求呢? 生 因为cos θ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >又因为n 为自然数,所以当n=3时,(cos θ)=-41,所以θ的最大值为104.5°.(教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ因为cos θ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cos θ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2.因此,当n=3时,(cos θ)min =-41,所以θ的最大值为104.5°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( )A.26-B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .B .C .10.3D .3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) A.d 1>d 2B.d 1=d 2C.d 1<d 2D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是(1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________. 2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,132.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=∙-+=-+=+BA BA B A .因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ), AC =)13(3513515sin 53sin sin +=︒︒=∠∙∠=ABC BCA AB AC所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 例例3备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角;(3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B ca(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.A >B sin A A =B sin A A <B sin A两解 一解 无解。
高中数学人教版必修5教案

教师课时教案, = 2教师课时教案学过程及方法到0.1m)启发提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。
解:根据正弦定理,得ACBAB∠sin=ABCAC∠sinAB =ABCACBAC∠∠sinsin=ABCACB∠∠sinsin55=)7551180sin(75sin55︒-︒-︒︒=︒︒54sin75sin55≈ 65.7(m)答:A、B两点间的距离为65.7米变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30︒,灯塔B在观察站C南偏东60︒,则A、B之间的距离为多少?老师指导学生画图,建立数学模型。
解略:2a km例2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B 两点间距离的方法。
分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。
首先需要构造三角形,所以需要确定C、D两点。
根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出学过程及方法AC和BC,再利用余弦定理可以计算出AB的距离。
解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得∠BCA=α,∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC和∆BDC中,应用正弦定理得AC =)](180sin[)sin(δγβδγ++-︒+a=)sin()sin(δγβδγ+++aBC =)](180sin[sinγβαγ++-︒a=)sin(sinγβαγ++a计算出AC和BC后,再在∆ABC中,应用余弦定理计算出AB两点间的距离AB = αcos222BCACBCAC⨯-+分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。
人教版高中必修5探究与发现解三角形的进一步讨论课程设计

人教版高中必修5探究与发现解三角形的进一步讨论课程设计一、课程目标•理解余弦定理、正弦定理的原理和应用;•掌握利用余弦定理、正弦定理求解三角形的面积和角度的方法;•能够综合运用知识解决实际问题;•培养学生自主思考、团队协作、解决问题的能力。
二、教学内容1.余弦定理和正弦定理的原理和应用;2.利用余弦定理、正弦定理求解三角形的面积和角度的方法;3.实际问题的应用。
三、教学方法1.活动导入:通过探究一道三角形问题的方法引出余弦定理、正弦定理;2.课堂授课:讲解余弦定理、正弦定理的原理和应用,并引导学生掌握求解三角形面积和角度的方法;3.小组讨论:分组讨论三角形实际问题,并给出解决方案;4.展示讨论结果:每个小组选出代表展示讨论结果,其他小组给予点评;5.教师点评:对学生讨论结果进行点评并给予指导;6.作业布置:巩固本课内容,并涉及到课前所学知识。
四、教学重点1.掌握余弦定理、正弦定理的应用;2.利用余弦定理、正弦定理求解三角形的面积和角度。
五、教学难点1.实际问题的应用;2.解决问题的方法。
六、课时安排本课程计划为4学时,具体安排如下:时间教学内容第1学时活动导入、授课第2学时小组讨论、展示第3学时教师点评、作业布置第4学时作业讲解、扩展课程七、教学资源1.电子白板;2.课件PPT;3.教学实例。
八、预期效果1.学生理解余弦定理、正弦定理的原理和应用;2.学生掌握利用余弦定理、正弦定理求解三角形的面积和角度的方法;3.学生能够综合运用知识解决实际问题;4.学生具备自主思考、团队协作、解决问题的能力。
新课标高中数学必修5教案

课题: §1.1.1正弦定理授课类型:新授课●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA =,sin bB =,又s i n 1cC ==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abc==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形的进一步讨论本节课中,应先通过分析典型例题,帮助学生理解并掌握正弦定理和余弦定理;应指出正弦定理和余弦定理是相通的,凡是能用正弦定理解的三角形,用余弦定理也可以解,反之亦然.但解题的时候,应有最佳选择.教学过程中,我们应指导学生对利用正弦定理和余弦定理解斜三角形的问题进行归类,列表如下:解斜三角形时可用的定理和公式适用类型 备注 余弦定理a 2=b 2+c 2-2bcco s Ab 2=a 2+c 2-2acco s Bc 2=b 2+a 2-2baco s C(1)已知三边 (2)已知两边及其夹角 类型(1)(2)有解时只有一解 正弦定理 R C c B b A a 2sin sin sin === (3)已知两角和一边 (4)已知两边及其中一边的对角 类型(3)在有解时只有一解,类型(4)可有两解、一解或无解三角形面积公式 ==A bc S sin 21 =B ac sin 21 C ab sin 21 (5)已知两边及其夹角同时应指出,在解斜三角形问题时,经常要利用正弦、余弦定理实施边角转换,转化的主要途径有两条:(1)化边为角,然后通过三角变换找出角与角之间的关系,进而解决问题;(2)化角为边,将三角问题转化为代数问题加以解决.一般地,当已知三角形三边或三边数量关系时,常用余弦定理;若既有角的条件,又有边的条件,通常利用正弦定理或余弦定理,将边化为角的关系,利用三角函数公式求解较为简便.总之,关键在于灵活运用定理及公式.教学重点 1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;2.三角形各种形状的判定方法;3.三角形面积定理的应用.教学难点1.利用正、余弦定理进行边角互换时的转化方向;2.三角恒等式证明中结论与条件之间的内在联系的寻求;3.正、余弦定理与三角形的有关性质的综合运用.教具准备 投影仪、幻灯片 第一张:课题引入图片(记作1.1.3A)正弦定理:R Cc B b A a 2sin sin sin ===; 余弦定理:a 2=b 2+c 2-2bcco s A ,b 2=c 2+a 2-2caco s B ,c 2=a 2+b 2-2abco s C ,bc a c b A 2cos 222-+=,ca b a c B 2cos 222-+= ,ab c b a C 2cos 222-+=.第二张:例3、例4(记作1.1.3B )[例3]已知△ABC , BD 为角B 的平分线,求证: AB ∶BC =AD ∶DC .[例4]在△ABC 中,求证:a 2sin2B +b 2sin2A =2ab sin C .第三张:例5(记作1.1.3C)[例5]在△ABC 中,bco s A =aco s B ,试判断三角形的形状.三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;2.三角形各种形状的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师 前面两节课,我们一起学习了正弦定理、余弦定理的内容,并且接触了利用正、余弦定理解三角形的有关题型.下面,我们先来回顾一下正、余弦定理的内容 (给出幻灯片1.1.3A ).从幻灯片大体可以看出,正弦定理、余弦定理实质上反映了三角形内的边角关系,运用定理可以进行边与角之间的转换,这一节,我们将通过例题分析来学习正、余弦定理的边角转换功能在判断三角形形状和证明三角恒等式时的应用.推进新课思考:在△ABC 中,已知A =22c m ,B =25c m,A =133°,解三角形.(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.下面进一步来研究这种情形下解三角形的问题.【例1】在△ABC 中,已知A ,B ,A ,讨论三角形解的情况.师 分析:先由aA bB sin sin =可进一步求出B ;则C =180°-(A +B ),从而A C a c sin sin =. 一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况.1.当A 为钝角或直角时,必须a >b 才能有且只有一解;否则无解.2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a <b ,那么可以分下面三种情况来讨论:(1)若a >b sin A ,则有两解;(2)若a =b sin A ,则只有一解;(3)若a <b sin A ,则无解.(以上解答过程详见课本第9到第10页)师 注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且b sin A <a <b 时,有两解;其他情况时则只有一解或无解.(1)A 为直角或钝角(2)A为锐角【例2】在△ABC中,已知a =7,b=5,c =3,判断△ABC的类型.分析:由余弦定理可知a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
(注意:A是锐角/ △ABC是锐角三角形)解:∵72>52+32,即a2>b2+c2,∴△ABC是钝角三角形.[教师精讲]1.利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题.①已知两角和任一边,求其他两边和一角.②已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).2.正弦定理,可以用来判断三角形的形状,其主要功能是实现三角形中边角关系转化.例如:在判断三角形形状时,经常把a、b、c分别用2Rsin A、2Rsin B、2Rsin C来代替.3.余弦定理的主要作用一是解三角形,二是判断三角形的形状,它的主要功能是实现边角之间的转化.(1)已知三边,求三个角.(2)已知两边和夹角,求第三边和其他两角.4.用方程的思想理解和运用余弦定理,当等式a2=b2+c2-2bcco s A中含有未知数时,这便成为方程,式中有四个量,知道三个,便可以解出另一个,运用此式可以求A或B或C 或co s A.师 下面,我们来看幻灯片上的例题.(给出幻灯片1.1.3B)[例题剖析]【例3】分析:前面接触的解三角形问题是在一个三角形内研究问题,而角B 的平分线BD 将△ABC 分成了两个三角形:△ABD 与△CBD ,故要证结论成立,可证明它的等价形式: AB ∶BC =AD ∶DC ,从而把问题转化到两个三角形内,而在三角形内边的比等于所对角的正弦值的比,故可利用正弦定理将所证继续转化为DBCDC BDC BC ∠=∠sin sin ,再根据相等角正弦值相等,互补角正弦值也相等即可证明结论. 证明:在△ABD 内,利用正弦定理得ABD AD ADB AB ∠=∠sin sin ,即ABDADB AD AB ∠∠=sin sin , 在△BCD 内,利用正弦定理得DBC DC BDC BC ∠=∠sin sin ,即DBC BDC DC BC ∠∠=sin sin , ∵BD 是角B 的平分线,∴∠ABD =∠DBC∴sin ∠ABD =sin ∠DBC .∵∠ADB +∠BDC =180°,∴sin ∠ADB =sin(180°-∠BDC )=sin ∠BDC .∴DCBC DBC BDC ABD ADB AD AB =∠∠=∠∠=sin sin sin sin . ∴DC AD BC AB =. 评述:此题可以启发学生利用正弦定理将边的关系转化为角的关系,并且注意互补角的正弦值相等这一特殊关系式的应用.[例题剖析]【例4】分析:此题所证结论包含关于△ABC 的边角关系,证明时可以考虑两种途径:一是把角的关系通过正弦定理转化为边的关系,若是余弦形式则通过余弦定理;二是把边的关系转化为角的关系,一般是通过正弦定理.另外,此题要求学生熟悉相关的三角函数的有关公式,如sin2B =2sin bco s B等,以便在化为角的关系时进行三角函数式的恒等变形.证明一: (化为三角函数)a 2sin2B +b 2sin2A =(2Rsin A )2·2sin B ·CO s B +(2Rsin B )2·2sin A ·co s A =8R 2sin A ·sin B (sin A co s B +co s Asin B )=8R 2sin a sin b sin C =2·2Rsin A ·2Rsin B ·sin C =2ab sin C .所以原式得证.证明二: (化为边的等式)左边=A 2·2sin Bco s B +B 2·2sin Aco s A =bc a c b R a b ac b c a R b a 22222222222222-+••+-+•• = C ab Rc ab c Rc ab a c b b c a Rc ab sin 22222)(22222222=•=•-++-+= [教师精讲]由边向角转化,通常利用正弦定理的变形式:A =2Rsin A ,B =2Rsin B ,C =2Rsin C ,在转化为角的关系式后,要注意三角函数公式的运用,在此题用到了正弦二倍角公式sin2A =2sin A ·co s A ,正弦两角和公式sin(A +B )=sin A ·co s B +co s A ·sin B ;由角向边转化,要结合正弦定理变形式以及余弦定理形式二.三角形的有关证明问题,主要围绕三角形的边和角的三角函数展开,从某种意义上来看,这类问题就是有了目标的含边和角的式子的化简问题.【例5】分析:三角形形状的判断,可以根据角的关系,也可根据边的关系,所以在已知条件的运用上,可以考虑两种途径,将边转化为角,将角转化为边,下面,我们从这两个角度进行分析. 解法一:利用余弦定理将角化为边.∵bco s A =aco s B ,∴acb c a a bc a c b b 22222222-+•=-+•.∴b 2+c 2-a 2=a 2+c 2-b 2.∴a 2=b 2. ∴a =b .故此三角形是等腰三角形.解法二:利用正弦定理将边转化为角.∵bco s A =aco s B ,又B =2Rsin B ,A =2Rsin A ,∴2Rsin bco s A =2Rsin Aco s B .∴sin Aco s B -co s A sin B =0.∴sin(A -B )=0.∵0<A ,B <π,∴-π<A -B <π.∴A -B =0,即A =B .故此三角形是等腰三角形.评述: (1)在判定三角形形状时,一般考虑两个方向进行变形,一个方向是边,走代数变形之路,通常是正、余弦定理结合使用;另一方向是角,走三角变形之路,通常是运用正弦定理.要求学生要注重边角转化的桥梁——正、余弦定理.(2)解法二中用到了三角函数中两角差的正弦公式,但应注意在根据三角函数值求角时,一定要先确定角的范围.另外,也可运用同角三角函数的商数关系,在等式sin Bco s A =sin Aco s B 两端同除以sin A sin B ,得co t A =co t B ,再由0<A ,B <π,而得A =B .课堂小结通过本节学习,我们熟悉了正、余弦定理在进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断,其中,要求大家重点体会正、余弦定理的边角转换功能.(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形形状的判定方法.布置作业1.在△ABC 中,已知)sin()sin(sin sin C B B A C A --=,求证: a 2、b 2、c 2成等差数列. 证明: 由已知得sin(B +C )sin(B -C )=sin(A +B )sin(A -B ),co s2B -co s2C =co s2A -co s2B ,2cos2B =co O s2A +co s2C ,2·2cos 12cos 12cos 1222B A B -+-=-= ∴2sin 2B =sin 2A +sin 2C .由正弦定理,可得2b 2=a 2+c 2,即a 2、b 2、c 2成等差数列.2.在△ABC 中,A =30°,co s B =2sin B -3sin C .(1)求证:△ABC 为等腰三角形;(提示B =C =75°)(2)设D 为△ABC 外接圆的直径B E 与边AC 的交点,且AB =2,求AD ∶CD 的值.答案: (1)略;(2)1∶3.板书设计解三角形的进一步讨论一、三角形形状判定 二、三角形问题证明思路 三、学生练习1.等腰三角形:a =b 或 1.向边转化利用正、余弦定理 四、布置作业 A =B2.向角转化利用正弦定理2.直角三角形:a 2+b 2=c 2或C =90°3.钝角三角形:C>90°。