高一必修一物理经典力学典型例题(有答案,含解析)

合集下载

高一物理力学典型例题

高一物理力学典型例题

以下是一些高一物理力学的典型例题:1. 一个物体在水平地面上做匀速直线运动,受到的摩擦力是20N,那么物体受到的拉力是()A. 大于20NB. 等于20NC. 小于20ND. 无法判断答案:B解析:物体做匀速直线运动时,处于平衡状态,受到的摩擦力和拉力是一对平衡力,所以拉力等于摩擦力等于20N。

2. 一辆汽车在平直的公路上行驶,从甲地经过乙地到达丙地,若汽车在甲、乙两地间的平均速度为v1,在乙、丙两地间的平均速度为v2,则汽车从甲地到丙地的平均速度为()A. (v1+v2)/2B. v1+v2C. v1v2/(v1+v2)D. v1v2/v1+v2答案:C解析:设甲、乙两地间的距离为s1,乙、丙两地间的距离为s2,则汽车从甲地到乙地的时间t1=s1/v1,从乙地到丙地的时间t2=s2/v2,则汽车从甲地到丙地的平均速度v=s1+s2/t1+t2=s1+s2/s1/v1+s2/v2=v1v2/v1+v2。

3. 一个物体在竖直方向上做自由落体运动,其在t时间内位移为x,在紧接着的t时间内位移为x\prime,则物体刚下落时离地面的高度为()A. x+x\prime/t\textsuperscript{2}B. x-x\prime/t\textsuperscript{2}C.x+x\prime/t\textsuperscript{2}-gt\textsuperscript{2}/4D.x+x\prime/t\textsuperscript{2}+gt\textsuperscript{2}/4 答案:C解析:根据自由落体运动的位移时间关系公式,有x=gt\textsuperscript{2}/2;x′=g(t+t\textsubscript{0})\textsuperscript{2}/2,其中t\textsubscript{0}=t,解得物体刚下落时离地面的高度h=x+x′/t\textsuperscript{2}-gt\textsuperscript{2}/4。

高一物理力学典型试题及答案

高一物理力学典型试题及答案

高一物理力学典型试题及答案一、单选题(本大题共10小题,共40.0分)1.下列说法中正确的是( )A. 物体所受合外力越大,则速度一定越大B. 物体在某时刻的速度方向与该时刻的加速度方向可能相反C. 只要物体所受合外力不为零,则物体的速率一定在改变D. 恒定的合外力作用在物体上,物体可能会作匀速运动2.已知甲物体受到2N的合力作用时,产生的加速度为4m/s2,乙物体受到3N的合力作用时,产生的加速度为6m/s2,则甲、乙物体的质量之比m甲,m乙等于( )A. 1:3B. 2:3C. 1:1D. 3:23.如图所示,位于水平地面上的质量为M的小木块,在大小为F、方向与水平方向成α角的拉力作用下沿地面作加速运动。

若木块与地面之间的动摩擦因数为μ,则木块的加速度为( )A. FM B. FcosαMC. (Fcosα−μMg)M D. [Fcosα−μ(Mg−Fsinα)]M4.某同学在粗糙水平地面上用水平力F向右推一木箱沿直线前进.已知推力大小是80N,物体的质量是20kg,物体与地面间的动摩擦因数μ=0.2,取g=10m/s2,下列说法正确的是( )A. 物体受到地面的支持力是40NB. 物体受到地面的摩擦力大小是40NC. 物体沿地面将做匀速直线运D. 物体将做加速度为a=4m/s2的匀加速直线运动5.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示.已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=10m/s2.当人以440N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为( )A. a=1.0m/s2,F=260NB. a=1.0m/s2,F=330NC. a=3.0m/s2,F=110ND. a=3.0m/s2,F=50N6.质量m=2kg的滑块,以4m/s的初速度在光滑水平面上向左滑行,从某一时刻起受一向右、大小为4N的水平恒力作用,此后滑块前进距离s时速度变为零,则s为( )A. 2mB. 4mC. 6mD. 8m7.如图所示,物体P置于光滑的水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G=10N的重物,物体P向右运动的加速度为a1;若细线下端不挂重物,而用F=10N的力竖直向下拉细线下端,这时物体P的加速度为a2,则( )A. a1<a2B. a1=a2C. a1>a2D. 条件不足,无法判断8.如图,顶端固定着小球的直杆固定在小车上,当小车向右做匀加速运动时,球所受合外力的方向沿图中的( )A. OA方向B. OB方向C. OC方向D. OD方向9.如图示水平地面上有一个圆柱体,现在A与竖直墙之间放一完全相同的圆柱体B,不计一切摩擦,将A缓慢向左移动(B未与地面接触),则在此过程中A对B的弹力F1、墙对B的弹力F2( )A. F1变小、F2变小B. F1变小、F2变大C. F1变大、F2变大D. F1变大、F2变小10.一条轻绳跨过光滑的轻质定滑轮,绳的一端系一质量m=15kg的重物,重物静置于地面上,有一质量m′﹦l0kg的猴子,从绳子的另一端沿绳向上爬,如图所示,在重物不离开地面的条件下,猴子向上爬的最大加速度为(g=10m/s2)( )A. 5m/s2B. l0m/s2C. 15m/s2D. 25m/s2二、多选题(本大题共4小题,共16.0分)11.如图所示,小车向右运动的过程中,某段时间内车中悬挂的小球A和车水平底板上的物块B都相对车厢静止,悬挂小球A的悬线与竖直线有一定夹角,下述判断中正确的是( )A. 小车向右加速运动B. 小车向右减速运动C. 物体B受到2个力的作用D. 物体B受到3个力的作用12.一个质量为2kg的物体在五个共点力作用下保持.平衡.现在撤掉其中两个力,这两个力的大小分别为25N和20N,其余三个力保持不变,则物体此时的加速度大小可能是( )A. 1m/s2B. 10m/s2C. 20m/s2D. 30m/s213.如图所示,A和B的质量分别是1kg和2kg,弹簧和悬线的质量不计,在A上面的悬线烧断的瞬间,则A. A的加速度等于3gB. A的加速度等于gC. B的加速度为零D. B的加速度为g14.如下图所示,光滑大球固定不动,它的正上方有一个定滑轮,放在大球上的光滑小球(可视为质点)用细绳连接,并绕过定滑轮,当人用力F缓慢拉动细绳时,小球所受支持力为N,则N,F的变化情况是:( )A. N不变B. N变小C. F变小D. F不变三、实验题(本大题共1小题,共15.0分)15.在“探究加速度与力、质量的关系”实验中,采用如图甲所示的装置.(1)本实验应用的实验方法是______A.控制变量法B.假设法C.理想实验法(2)下列说法中正确的是______A.在探究加速度与质量的关系时,应改变小车所受拉力的大小B.在探究加速度与外力的关系时,应改变小车的质量C.在探究加速度a与质量m的关系时,作出a—1图象容易更直观判断出二者间的关系mD.无论在什么条件下,细线对小车的拉力大小总等于砝码盘和砝码的总重力大小(3)在探究加速度与力的关系时,若取车的质量M=0.5kg,改变砝码质量m的值,进行多次实验,以下m的取值最不合适的一个是______A.m1=4gB.m2=10gC.m3=40gD.m4=500g(4)在平衡小车与长木板之间摩擦力的过程中,打出了一条纸带如图乙所示.计时器打点的时间间隔为0.02s.从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离,根据图中给出的数据求出该小车的加速度a=__________m/s2(结果保留两位有效数字).(5)如图丙所示为甲同学在探究加速度a与力F的关系时,根据测量数据作出的a--F图象,说明实验存在的问题是______.四、计算题(本大题共3小题,共30.0分)16.如图所示,质量m=1.0kg的物体静止在水平地面上,物体与地面间的动摩擦因数μ=0.4.在水平拉力F的作用下,物体由静止开始做匀加速直线运动,加速度的大小a=2.0m/s2,经过10s后撤去拉力F,取重力加速度g=10m/s2.求:(1)撤去拉力时物体速度的大小;(2)物体所受拉力F的大小;(3)撤去外力F后物体运动的距离.17.如图所示,传送带与水平成α=37°,传送带A、B间距L=5.8m,传送带始终以4m/s速度顺时针转动,将一小物体轻轻释放在A处,小物体与传送带间动摩擦因数为μ=0.5.(sin37°=0.6,cos37°=0.8)(取g=10m/s2)试求:(1)刚释放时,小物体加速度的大小?(2)小物体从A运动到B所需时间?18.如图所示,可看成质点的物体A放在长L=1m的木板B的右端,木板B静止于水平面上,已知A的质量m A和B的质量m B均为2.0kg,A、B之间的动摩擦因数μ1=0.2,B与水平面之间的动摩擦因数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度取g=10m/s2.若从t=0开始,木板B受F=16N的水平恒力作用,求:(1)木板B受F=16N的水平恒力作用时,A、B的加速度a A、a B;(2)物体A经多长时间从木板B上滑下;(3)当t=2s时,木板B的速度v.答案和解析1.【答案】B【解析】【分析】物体的速度大小与受力无关;物体的速度与加速度无关;力是改变物体运动状态的原因,有力就会产生加速度,而加速度是描述速度变化快慢的物理量。

高中物理 必修一【力的合成与分解】典型题(带解析)

高中物理 必修一【力的合成与分解】典型题(带解析)

高中物理必修一【力的合成与分解】典型题1.物体受共点力F1、F2、F3作用而做匀速直线运动,若F1、F2、F3三个力不共线,则这三个力可能选取的数值为()A.15 N、5 N、6 N B.3 N、6 N、4 NC.1 N、2 N、10 N D.1 N、6 N、7 N解析:选B.物体在F1、F2、F3作用下而做匀速直线运动,则三个力的合力必定为零,只有B选项中的三个力的合力可以为零且三个力不共线,B正确.2. (多选)一个大人拉着载有两个小孩的小车(其拉杆可自由转动)沿水平地面匀速前进,则对小孩和车下列说法正确的是()A.拉力的水平分力等于小孩和车所受的合力B.拉力与摩擦力的合力大小等于车和小孩重力大小C.拉力与摩擦力的合力方向竖直向上D.小孩和车所受的合力为零解析:选CD.小孩和车整体受重力、支持力、拉力和摩擦力,根据共点力平衡条件,拉力的水平分力等于小孩和车所受的摩擦力,故选项A错误;拉力、摩擦力的合力与重力、支持力的合力平衡,重力、支持力的合力竖直向下,故拉力与摩擦力的合力方向竖直向上,故选项B错误,C正确;小孩和车做匀速直线运动,故所受的合力为零,故选项D正确.3.如图所示是轿车常用的千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时,汽车对千斤顶的压力为1.0×105 N,此时千斤顶两臂间的夹角为120°.下列判断正确的是()A.此时千斤顶每臂受到的压力大小均为5.0×104 NB.此时千斤顶对汽车的支持力为1.0×104 NC.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将增大D.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将减小解析:选D.汽车对千斤顶的压力大小为1.0×105 N,根据牛顿第三定律,千斤顶对汽车的支持力也为1.0×105 N,B项错误;两臂夹角为120°,由力的合成可知千斤顶每臂受到的压力为1.0×105 N,A项错误;继续摇动把手,将汽车顶起,千斤顶两臂夹角减小,每臂受到的压力减小,C项错误,D项正确.4.(多选)如图所示是某同学为颈椎病人设计的一个牵引装置的示意图.一根绳绕过两个定滑轮后两端各挂着一个相同质量的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手指代替颈椎做实验),整个装置在同一竖直平面内.如果要增大颈椎所受的拉力,可采取的办法是()A.只增加绳的长度B.只增加重物的重量C.只将手指向下移动D.只将手指向上移动解析:选BC.对力进行合成,可知颈椎所受的拉力F=2mg cos θ,增加mg或减小θ,都可以增大F,选项B、C正确.5.如图所示,一个“U”形弹弓顶部跨度为L,在左、右顶部分别连接两根相同的橡皮条,橡皮条均匀且弹性良好,其自由长度均为L,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片可将弹丸发射出去.若橡皮条伸长时的弹力满足胡克定律,且劲度系数为k,发射弹丸时每根橡皮条的最大长度为2L(弹性限度内),则弹丸被发射过程中所受的最大合力为()A.152kL B.32kLC.2kL D.kL解析:选A.当橡皮条伸长L时,弹力最大,为kL,弹丸受合力最大,由几何关系可得4L 2-14L 22L =12FkL ,得F =152kL ,故A 正确. 6.(多选)已知力F 的一个分力F 1跟F 成30°角,大小未知,另一个分力F 2的大小为33F ,方向未知,则F 1的大小可能是( )A .3F3B .3F2C .23F 3D .3F解析:选AC .如图所示,因F 2=33F >F sin 30°,故F 1的大小有两种可能情况,由ΔF =F 22-(F sin 30°)2=36F ,即F 1的大小分别为F cos 30°-ΔF 和F cos 30°+ΔF ,即F 1的大小分别为33F 和233F ,A 、C 正确.7.(多选)如图所示是李强同学设计的一个小实验,他将细绳的一端系在手指上,细绳的另一端系在直杆的A 端,杆的左端顶在掌心上,组成一个“三角支架”.在杆的A 端悬挂不同的重物,并保持静止.通过实验会感受到( )A .细绳是被拉伸的,杆是被压缩的B .杆对手掌施加的作用力的方向沿杆由C 指向A C .细绳对手指施加的作用力的方向沿细绳由B 指向AD .所挂重物质量越大,细绳和杆对手的作用力也越大解析:选ACD .重物所受重力的作用效果有两个,一是拉紧细绳,二是使杆压紧手掌,所以重力可分解为沿细绳方向的力F 1和垂直于掌心方向的力F 2,如图所示,由三角函数得F 1=Gcos θ,F 2=G tan θ,故选项A 、C 、D 正确.8.蹦床可简化为如图所示的完全相同的网绳构成的正方形,点O 、a 、b 、c 等为网绳的结点.当网水平张紧时,若质量为m 的运动员从高处竖直落下,并恰好落在O 点,当该处下凹至最低点时,网绳aOe 、cOg 均成120°向上的张角,此时O 点受到的向下的冲击力为F ,则这时O 点周围每根网绳的拉力的大小为( )A .F4B .F 2C .F +mg 4D .F +mg2解析:选B .设每根网绳的拉力大小为F ′,对结点O 有: 4F ′cos 60°-F =0,解得F ′=F2,选项B 正确.9.如图所示,小球A 、B 通过一条细绳跨过定滑轮连接,它们都套在一根竖直杆上.当两球平衡时,连接A 、B 两球的细绳与水平方向的夹角分别为θ 和2θ.假设装置中的各处摩擦均不计,则A 、B 球的质量之比为( )A .2cos θ∶1B .1∶2cos θC .tan θ∶1D .1∶2sin θ解析:选B .对A 、B 两球受力分析如图所示,由力的平衡条件可知,T ′sin θ=m A g ,T sin 2θ=m B g ,T ′=T ,解得m A ∶m B =sin θ∶sin 2θ=1∶2cos θ,B 正确.10.(多选)如图所示,重物A 被绕过小滑轮P 的细线所悬挂,重物B 放在粗糙的水平桌面上;小滑轮P 被一根斜拉短线系于天花板上的O 点;O ′是三根线的结点,bO ′水平拉着B 物体,cO ′沿竖直方向拉着弹簧;弹簧、细线、小滑轮的重力和细线与滑轮间的摩擦力均可忽略,整个装置处于静止状态,g =10 m/s 2.若悬挂小滑轮的斜线OP 的张力是20 3 N ,则下列说法中正确的是()A.弹簧的弹力为10 NB.重物A的质量为2 kgC.桌面对B物体的摩擦力为10 3 ND.OP与竖直方向的夹角为60°解析:选ABC.O′点是三根线的结点,属于“死结”,而小滑轮重力不计且与细线间的摩擦力可忽略,故P处为“活结”.由m A g=F O′a,F OP=2F O′a cos 30°可解得:F O′a=20 N,m A=2 kg,选项B正确;OP的方向沿绳子张角的角平分线方向,故OP与竖直方向间的夹角为30°,选项D错误;对O′受力分析,由平衡条件可得:F弹=F O′a sin 30°,F O′b=F O′a cos 30°,对物体B有:f B=F O′b,联立解得:F弹=10 N,f B=103N,选项A、C均正确.11.如图所示,一固定的细直杆与水平面的夹角为α=15°,一个质量忽略不计的小轻环C套在直杆上,一根轻质细线的两端分别固定于直杆上的A、B两点,细线依次穿过小环甲、小轻环C和小环乙,且小环甲和小环乙分居在小轻环C的两侧.调节A、B间细线的长度,当系统处于静止状态时β=45°.不计一切摩擦.设小环甲的质量为m1,小环乙的质量为m2,则m1∶m2等于()A.tan 15°B.tan 30°C.tan 60°D.tan 75°解析:选C.小环C为轻环,重力不计,受两边细线的拉力的合力与杆垂直,C环与乙环的连线与竖直方向的夹角为60°,C环与甲环的连线与竖直方向的夹角为30°,A点与甲环的连线与竖直方向的夹角为30°,乙环与B点的连线与竖直方向的夹角为60°,设细线拉力为T,根据平衡条件,对甲环有2T cos 30°=m1g,对乙环有2T cos 60°=m2g,得m1∶m2=tan 60°,故选C.12.(2019·全国卷Ⅲ)用卡车运输质量为m的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示.两斜面Ⅰ、Ⅱ固定在车上,倾角分别为30°和60°.重力加速度为g .当卡车沿平直公路匀速行驶时,圆筒对斜面Ⅰ、Ⅱ压力的大小分别为F 1、F 2,则( )A .F 1=33mg ,F 2=32mg B .F 1=32mg ,F 2=33mg C .F 1=12mg ,F 2=32mgD .F 1=32mg ,F 2=12mg 解析:选D .如图所示,卡车匀速行驶,圆筒受力平衡,由题意知,力F 1′与F 2′相互垂直.由牛顿第三定律知F 1=F 1′,F 2=F 2′,则F 1=mg sin 60°=32mg ,F 2=mg sin 30°=12mg ,选项D 正确.13.如图所示,由两种材料做成的半球面固定在水平地面上,半球右侧面是光滑的,左侧面粗糙,O 点为球心,A 、B 是两个相同的小物块(可视为质点),物块A 静止在左侧面上,物块B 在图示水平力F 作用下静止在右侧面上,A 、B 处在同一高度,AO 、BO 与竖直方向的夹角均为θ,则A 、B 分别对半球面的压力大小之比为( )A .sin θ∶1B .sin 2θ∶1C .cos θ∶1D .cos 2θ∶1解析:选D .分别对A 、B 进行受力分析,如图所示,由物体的平衡条件知N A =mg cos θ,同理可知N B cos θ=mg ,则N AN B =cos 2θ,再根据牛顿第三定律知A 、B 分别对半球面的压力大小之比为cos 2θ∶1,故D 选项正确.14.(多选)如图所示,叠放在一起的A 、B 两物体放置在光滑水平地面上,A 、B 之间的水平接触面是粗糙的,细线一端固定在A 物体上,另一端固定于N 点,水平恒力F 始终不变,A、B两物体均处于静止状态,若将细线的固定点由N点缓慢下移至M点(线长可变),A、B两物体仍处于静止状态,则()A.细线的拉力将减小B.A物体所受的支持力将增大C.A物体所受摩擦力将增大D.水平地面所受压力将减小解析:选A B.以A、B两物体组成的系统作为研究对象,受力分析如图甲所示.水平方向:F T cos α=F,竖直方向:F N+F T sin α=(m A+m B)g,因为细线与水平地面的夹角α减小,cos α增大,sin α减小,F T将减小,F N将增大,所以细线所受拉力减小,地面受到的压力增大,A正确,D错误;以物体A为研究对象,受力分析如图乙所示,竖直方向:F N A +F T sin α=m A g,F T减小,sin α减小,所以F N A增大,B正确;以B为研究对象,在水平方向上由力的平衡可得F f=F,B物体所受摩擦力不变,故A物体所受摩擦力不变,C错误.。

高中物理人教版必修一力学例题及解析

高中物理人教版必修一力学例题及解析

力学一、选择题:1.关于重力的说法,正确的是()A.重力就是地球对物体的吸引力B.只有静止的物体才受到重力C.同一物体在地球上无论怎样运动都受到重力D.重力是由于物体受到地球的吸引而产生的思路解析:重力是由于物体受到地球的吸引而产生的,地球对物体的吸引力产生两个效果:一个效果是吸引力的一部分使物体绕地球转动;另一个效果即另一部分力才是重力,也就是说重力通常只是吸引力的一部分.重力只确定于地球对物体的作用,而与物体的运动状态无关,也与物体是否受到其他的力的作用无关.2.下列说法正确的是()A.马拉车前进,马先对车施力,车后对马施力,否则车就不能前进B.因为力是物体对物体的作用,所以相互作用的物体肯定接触C.作用在物体上的力,不论作用点在什么位置,产生的效果均相同D.某施力物体同时也肯定是受力物体思路解析:对于A选项,马与车之间的作用无先后关系.对于B选项,力的作用可以接触,如弹力、拉力等,也可以不接触,如重力、磁力等;对于C选项,力的作用效果,确定于大小、方向和作用点.对于D选项,施力的同时,必需受力,这是由力的相互性确定的.3.下列说法中正确的是()A.射出枪口的子弹,能打到很远的距离,是因为子弹离开枪口后受到一个推力作用B.甲用力把乙推倒说明甲对乙有力的作用,乙对甲没有力的作用C.只有有生命或有动力的物体才会施力,无生命或无动力的物体只会受到力,不会施力D.任何一个物体,肯定既是受力物体,也是施力物体思路解析:子弹在枪管内受到火药爆炸产生的强大推力,使子弹离开枪口时有很大的速度,但子弹离开枪口后,只受重力和空气阻力作用,并没有一个所谓的推力,因为不行能找到这个所谓的推力的施力物体,故不存在,A错.物体间的作用力总是相互的,甲推乙的同时,乙也推甲,故B错.不论物体是否有生命或是否有动力,它们受到别的物体的作用时,都会施力,马拉车时,车也拉马,故C错.自然界中的物体都是相互联系的,每一个物体既受到力的作用,也对四周的物体施以力的作用,所以每一个物体既是受力物体又是施力物体,故D 正确.4.下列说法正确的是()A.力是由施力物体产生,被受力物体所接受的B.由磁铁间有相互作用力可知,力可以离开物体而独立存在C.一个力必定联系着两个物体,其中随意一个物体既是受力物体又是施力物体D.一个受力物体可以对应着一个以上的施力物体思路解析:力是物体与物体之间的相互作用,不是由哪个物体产生的;磁铁间的相互作用亦即磁场间的相互作用,磁场离不开磁铁,即磁力离不开磁铁,也就是离不开物体;力既有施力物体又有受力物体,这是由力的相互性确定的;一个物体可受多个力,因此有多个施力物体,因此,AB错,CD正确.5.铅球放在水平地面上处于静止状态,下列关于铅球和地面受力的叙述正确的是()A.地面受到向下的弹力是因为地面发生了弹性形变;铅球坚硬没发生形变B.地面受到向下的弹力是因为地面发生了弹性形变;铅球受到向上的弹力,是因为铅球也发生了形变C.地面受到向下的弹力是因为铅球发生了弹性形变;铅球受到向上的弹力,是因为地面发生了形变D.铅球对地面的压力即为铅球的重力思路解析:两个物体之间有弹力,它们必定相互接触且发生了形变,地面受到向下的弹力是因为铅球发生了形变,故A、B错.铅球对地面的压力的受力物体是地面而不是铅球,D错.只有C项正确.6.有关矢量和标量的说法中正确的是()A.凡是既有大小又有方向的物理量都叫矢量B.矢量的大小可干脆相加,矢量的方向应遵守平行四边形定则C.速度是矢量,但速度不能按平行四边形定则求合速度,因为物体不能同时向两个方向运动D.只用大小就可以完整描述的物理量是标量思路解析:矢量的合成符合平行四边形定则,包括矢量的大小和方向.答案:AD7.关于弹力的下列说法中,正确的是()①相互接触的物体间必有弹力的作用②通常所说的压力、拉力、支持力等都是接触力,它们在本质上都是由电磁力引起的③弹力的方向总是与接触面垂直④全部物体弹力的大小都与物体的弹性形变的大小成正比A.①② B.①③ C.②③ D.②④思路解析:本题考查弹力的产生条件、弹力的方向与大小的确定因素,相互接触的物体间不肯定有弹性形变,故①错.弹力的大小一般随形变的增大而增大,但不肯定成正比,故④错.本题正确的选项是C.8.关于滑动摩擦力,下列说法正确的是()A.物体与支持面之间的动摩擦因数越大,滑动摩擦力也越大B.物体对支持面的压力越大,滑动摩擦力也越大C.滑动摩擦力的方向肯定与物体相对滑动的方向相反D.滑动摩擦力的方向肯定与物体运动的方向相反思路解析:滑动摩擦力的大小取决于接触面间的动摩擦因数和垂直于接触面的压力,故AB选项错误.滑动摩擦力的方向与物体相对运动方向相反,故D错.C项正确.9.如图4-1所示,木块A放在水平的长木板上,长木板放在光滑的水平桌面上.木块与水平的弹簧秤相连,弹簧秤的右端固定.若用水平向左的恒力拉动长木板以速度v匀速运动,弹簧秤的示数为F T.则()图4-1A.木块A受到的静摩擦力等于F TB.木块A受到的滑动摩擦力等于F TC.若用恒力以2v的速度匀速向左拉动长木板,弹簧秤的示数为F TD.若用恒力以2v的速度匀速向左拉动长木板,弹簧秤的示数为2F T思路解析:A受到的滑动摩擦力取决于A对木板的压力与A与木板间的动摩擦因数,与木板运动的速度无关,选项BC正确.10.关于弹簧的劲度系数k,下列说法正确的是()A.与弹簧所受的拉力大小有关,拉力越大,k值越大B.由弹簧本身确定,与弹簧所受的拉力大小与形变无关C.与弹簧发生的形变大小有关,形变越大,k值越大D.与弹簧本身的特性、所受拉力的大小、形变大小都无关思路解析:劲度系数由弹簧本身的属性确定,故D错.弹簧的形变量越大,受作用力越大,但k不变,故AC错,选11.如图4-2所示,有黑白两条毛巾交替折叠地放在地面上,在白毛巾的中部用线与墙壁连接着,黑毛巾的中部用线拉住,设线均水平,欲将黑白毛巾分别开来,若每条毛巾的质量均为m,毛巾之间与其跟地面间的动摩擦因数均为μ,则将黑毛巾匀速拉出需加的水平拉力为()图4-2A.2μmgB.4μmgC.6μmgD.5μmg答案:设白毛巾上半部和下半部分别为1和3,黑毛巾的上下半部分别为2和4,则两毛巾叠折时必有四个接触面,存在四个滑动摩擦力.1和2接触面间的滑动摩擦力 F 1=μF N12=21μmg2和3接触面间的滑动摩擦力 F 2=μF N23=μ(21mg+21mg)=μmg 3和4接触面的滑动摩擦力F 3=μF N34=μ(21mg+21mg+21mg)=23μmg 4和地面的滑动摩擦力F 4=μF N =μ(21mg+21mg+21mg+21mg)=2μmg 则F=F 1+F 2+F 3+F 4=5μmg.12.在图5-1中,要将力F 沿两条虚线分解成两个力,则A 、B 、C 、D 四个图中,可以分解的是( )图5-1思路解析:我们在分解力的时候两个分力应作为平行四边形的两个邻边,合力应作为平行四边形的对角线,13.水平横梁的一端A 插在墙壁内,另一端装有一小滑轮B 。

精选高一物理必修一力学测试题。带答案

精选高一物理必修一力学测试题。带答案

力学测试题一、选择题:1.关于重力的说法,正确的是()A.重力就是地球对物体的吸引力B.只有静止的物体才受到重力C.同一物体在地球上无论怎样运动都受到重力D.重力是由于物体受到地球的吸引而产生的2.下列说法正确的是()A.马拉车前进,马先对车施力,车后对马施力,否则车就不能前进B.因为力是物体对物体的作用,所以相互作用的物体一定接触C.作用在物体上的力,不论作用点在什么位置,产生的效果均相同D.某施力物体同时也一定是受力物体3.下列说法中正确的是()A.射出枪口的子弹,能打到很远的距离,是因为子弹离开枪口后受到一个推力作用B.甲用力把乙推倒说明甲对乙有力的作用,乙对甲没有力的作用C.只有有生命或有动力的物体才会施力,无生命或无动力的物体只会受到力,不会施力D.任何一个物体,一定既是受力物体,也是施力物体4.下列说法正确的是()A.力是由施力物体产生,被受力物体所接受的B.由磁铁间有相互作用力可知,力可以离开物体而独立存在C.一个力必定联系着两个物体,其中任意一个物体既是受力物体又是施力物体D.一个受力物体可以对应着一个以上的施力物体5.铅球放在水平地面上处于静止状态,下列关于铅球和地面受力的叙述正确的是()A.地面受到向下的弹力是因为地面发生了弹性形变;铅球坚硬没发生形变B.地面受到向下的弹力是因为地面发生了弹性形变;铅球受到向上的弹力,是因为铅球也发生了形变C.地面受到向下的弹力是因为铅球发生了弹性形变;铅球受到向上的弹力,是因为地面发生了形变D.铅球对地面的压力即为铅球的重力6.有关矢量和标量的说法中正确的是()A.凡是既有大小又有方向的物理量都叫矢量B.矢量的大小可直接相加,矢量的方向应遵守平行四边形定则C.速度是矢量,但速度不能按平行四边形定则求合速度,因为物体不能同时向两个方向运动D.只用大小就可以完整描述的物理量是标量7.关于弹力的下列说法中,正确的是()①相互接触的物体间必有弹力的作用②通常所说的压力、拉力、支持力等都是接触力,它们在本质上都是由电磁力引起的③弹力的方向总是与接触面垂直④所有物体弹力的大小都与物体的弹性形变的大小成正比A.①②B.①③C.②③D.②④8.关于滑动摩擦力,下列说法正确的是()A.物体与支持面之间的动摩擦因数越大,滑动摩擦力也越大B.物体对支持面的压力越大,滑动摩擦力也越大C.滑动摩擦力的方向一定与物体相对滑动的方向相反D.滑动摩擦力的方向一定与物体运动的方向相反9.如图4-1所示,木块A放在水平的长木板上,长木板放在光滑的水平桌面上.木块与水平的弹簧秤相连,弹簧秤的右端固定.若用水平向左的恒力拉动长木板以速度v匀速运动,弹簧秤的示数为F T.则()A.木块A受到的静摩擦力等于F TB.木块A受到的滑动摩擦力等于F TC.若用恒力以2v的速度匀速向左拉动长木板,弹簧秤的示数为F TD.若用恒力以2v的速度匀速向左拉动长木板,弹簧秤的示数为2F T10.关于弹簧的劲度系数k,下列说法正确的是()A.与弹簧所受的拉力大小有关,拉力越大,k值越大B.由弹簧本身决定,与弹簧所受的拉力大小及形变无关C.与弹簧发生的形变大小有关,形变越大,k值越大D.与弹簧本身的特性、所受拉力的大小、形变大小都无关11.如图4-2所示,有黑白两条毛巾交替折叠地放在地面上,在白毛巾的中部用线与墙壁连接着,黑毛巾的中部用线拉住,设线均水平,欲将黑白毛巾分离开来,若每条毛巾的质量均为m,毛巾之间及其跟地面间的动摩擦因数均为μ,则将黑毛巾匀速拉出需加的水平拉力为()A.2μmgB.4μmgC.6μmgD.5μmg12.在图5-1中,要将力F沿两条虚线分解成两个力,则A、B、C、D四个图中,可以分解的是()13.水平横梁的一端A插在墙壁内,另一端装有一小滑轮B。

高一力学经典试题带详解答案

高一力学经典试题带详解答案

2021学年度高中物理力学试题一、选择题1.如图,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜面以速度v0匀速下滑,斜劈维持静止,则地面对斜劈的摩擦力()A.等于零B.不为零,方向向右C.不为零,方向向左D.不为零,v0较大时方向向左,v0较小时方向向右【答案】A【解析】试题分析:以物块和斜劈整体为对象,整体处于平衡状态,因此整体水平方向上不受力,即地面没有给斜劈摩擦力,故A项正确,其它项错。

考点:本题考查了处于平衡状态下的物体的受力分析能力。

2.如图所示,竖直放置的弹簧,小球从弹簧正上方某一高处落下,从球接触弹簧到弹簧被紧缩到最大的进程中,关于小球运动情况,下列说法正确的是()A.加速度的大小先减小后增大B.加速度的大小先增大后减小C.速度大小不断增大D.速度大小不断减小【答案】A【解析】试题分析:随着弹簧被紧缩,弹簧的弹力愈来愈大,初始阶段弹力小于重力,小球加速向下运动,但合力是减小的,按照牛顿第二定律加速度也减小,当弹力恰等于重力时,合力为零,加速度也为零,速度达到最大,小球继续向下紧缩弹簧,弹力大于重力,小球向下做减速度运动,合力向上逐渐增大,按照牛顿第二定律加速度也增大,直到速度减为零,加速度达最大,所以这个紧缩弹簧的进程,加速度先减小后增大,速度先增大后减小,故只有A项正确,其它项错。

考点:本题考查了弹簧的弹力大小与形变量的关系、加速度与合力的关系、速度与合力的关系。

3.如图所示,三根横截面完全相同的圆木材A、B、C按图示方式放在水平面上,它们均处于静止状态,则下列说法正确的是A.B、C所受的合力大于A受的合力B.B、C对A的作使劲的合力方向竖直向上C.B与C之间必然存在弹力D.若是水平面滑腻,则它们仍有可能维持图示的平衡【答案】B【解析】试题分析:因三个物体都处于静止状态,所受的合力均为零,故B、C所受的合力等于A受的合力,选项A错误;因为A受合力为零,故B、C对A的作使劲的合力方向与重力等大反向,即沿竖直向上的方向,选项B正确;B与C 之间虽然接触,可是不存在弹力作用,选项C错误;若是水平面滑腻,则对B来讲,由于受到A斜向下的压力作用,故不可能维持图示的平衡,选项D错误;故选B.考点:物体的平衡.4.如图所示,一物块静止在粗糙的斜面上。

高一物理力学例题经典

高一物理力学例题经典

高一物理力学例题经典第一章力例题1 把一个大小为10N的力沿相互垂直的两个方向分解,两个分力的大小可能为(A) 1N,9N (B)6N,8N(C)(99.99)1/2N,0.1N (D)11N,11N解:两个分力的平方和应等于102,等于100.选项(B)(C)正确.例题2 一个大小为1N的力可以分解为多大的两个力?(A) 0.2N,1.2N (B)1N,1N (C)100N,100N (D)1N,1000N解:大小为0.2N和1.2N的两个力方向相反时合力为1N,选项(A)正确;大小均为1N的两个力互成120°角时,合力为1N,选项(B)正确;大小均为100N的两个力互成适当小的角度时,合力可为1N,选项(C)正确;大小为1N和1000N的两个力的合力大小在999N与1001N之间,不可能为1N,选项(D)不对.总之选项(A)(B)(C)正确.例题3 作用于同一质点的三个力大小均为10N.(1)如果每两个力之间的夹角都是120°角,那么合力多大?(2)如果两两垂直,那么合力多大?解:(1)合力为零.(2)根据题意,可以设F1向东,F2向南,F3向上.F1、F2的合力F12,沿东南方向,大小为10N.F3与F12相垂直,所以三个力的合力大小为F=(102+(10)2)1/2=10N例题4 (1)大小为5N、7N、8N的三个共点力,合力最小值为____;(2)大小为5N、7N、12N的三个共点力,合力最小值为____;(3)大小为5N、7N、13N的三个共点力,合力最小值为____;(4)大小为5N、7N、40N的三个共点力,合力最小值为____.答:(1)0;(2)0;(3)1N;(4)28N.例题5 如图1-2所示,六个力在同一平面内,相邻的两个力夹角都等于60°,F1=11N,F2=12N,F3=13N,F4=14N,F5=15N,F6=16N.六个力合力的大小为___N.解:F1与F4的合力F14沿F4方向,大小为3N,F2与F5的合力F25沿F5方向,大小为3N,F3与F6的合力F36沿F6方向,大小为3N.所以六个力的合力等于图1-3中三个力的合力.F14与F36的合力F1436沿F25方向,大小为3N.F1436与F25的合力,沿F25方向,大小为6N.总之六个力的合力大小为6N,沿F5方向.例题6 质点受到五个力:F1、F2、F3、F4、F5,图1-4中作出了五个力的图示,两条实线和四条虚线正好构成一个正六边形.已知F3=10牛,求五个力的合力多大.解:容易看出,F1和F2的合力等于F3(大小和方向等于F3的大小和方向),F2和F5的合力等于F3,所以五个力的合力为F=3F3=30牛.例题7 图1-5(a)中三个力为共点力,平移后构成三角形,图1-5(b)也是这样.图1-5(a)中三个力的合力大小为____N;图1-5(b)中三个力的合力大小为____N.解:根据三角形定则,图(a)中,F2与F3的合力等于F1,所以三个力的合力等于2F1=40N(向左).根据三角形定则,图(b)中,F2与F3的合力向右,大小等于F1,所以三个力的合力等于零.从多边形定则可以直接得出这个结论.例题8 如图1-6所示,十三个力在同一平面内,大小均为1N,相邻的两个力夹角都是15°,求十三个力的合力.解:F1与F13的合力为零;F2与F12互成150°角,合力沿F7方向,利用余弦定理,可算出合力大小为(12+12+2×1×1cos150°)1/2N=(12+12-2×1×1cos30°)1/2N=(2-)1/2N;F3与F11互成120°角,合力沿F7方向,合力大小为1N;F4与F10互成90°角,合力沿F7方向,合力大小为N;F5与F9互成60°角,合力沿F7方向,合力大小为N;F6与F8互成30°角,合力沿F7方向,利用余弦定理,可算出合力大小为(12+12+2×1×1cos30°)1/2N=(2+)1/2N;所以十三个力的合力沿F7方向,大小为F=(2-)1/2N+1N+N+N+(2+)1/2N+1N=(2+(2+)1/2+(2-)1/2++)N.例题9 如图1-7,有同一平面内5个共点力,相邻的两个力之间的夹角都是72度.F1大小为90N,其余各力大小均为100N.求5个力的合力.解:F1可以分解为沿F1方向的大小为100N的分力F1a,和沿F1反方向的大小为10N的分力F1b.这样原题转化为求解F1a、F1b和F2、F3、F4、F5等6个力的合力.易知,其中F1a和F2、F3、F4、F5等5个力的合力为零.所以F1、F2、F3、F4、F5的合力等于F1b:大小为10N,沿F1的反方向.例题10 有n个大小为F的共点力,沿着顶角为120°的圆锥体的母线方向,如图1-8所示.相邻两个力的夹角都是相等的.这n个力的合力大小为_____.解:将每个力沿圆锥体的对称线方向和平行于底面的方向分解,得到n个沿着对称线方向的分力,和n个平行于底面方向的分力.每个沿着对称线方向的分力大小都等于F/2,所以n个沿着对称线方向的分力的合力,大小为nF/2.另一方面,n个平行于底面方向的分力的合力为零.所以本题所求n个力的合力大小等于nF/2.例题11 下面每组共点力,大小是确定的.试分别判断各组力之合力是否可能为零,如不可能为零,最小值多大.(A)1N,2N,3N,4N,15N(B)1N,2N,3N,4N,10N(C)1N,2N,3N,4N,5N(D)1N,2N,10N,100N,100N(E)1N,2N,……98N,99N,100N(F)1N,2N,……98N,99N,10000N解:(A)1+2+3+4=10,而10<15,这五个力不可能组成五边形,谈不上组成如图1-1(c)所示的五边形,因此合力不可能为零,最小值为:F min=15N-10N=5N.(B)1+2+3+4=10,所以五个力的合力可能为零.(C)1+2+3+4>5,这五个力可以组成图8所示的五边形,合力可能为零.(D)1+2+10+100>100,所以五个力的合力可能为零.(E)1+2+3+……+98+99>100,所以一百个力的合力可能为零.(F)1+2+3+……+98+99=(1+99)×99/2=4950<10000所以,一百个力的合力不可能为零,最小值为F min=10000N-4950N=5050N.第二章直线运动例题1 有一小孩掉进河里后抱住了一根圆木随水向下飘流,有三条船A、B、C在正对河岸P点的地方同时与圆木相遇,但三条船上的船员都没有注意到圆木上的小孩.A、B 两船逆水上行,C船顺水下行.相对水的速度,B船是A船的1.2倍,C船是B船的1.2倍. 当三条船离开P点行驶30分钟的时候, 船员们从收音机里听到圆木上有小孩需要救助的消息,三条船都立即调转船头,驶向圆木.在离P点6千米的地方,小孩被船员救起. 试回答三条船到达小孩和圆木的先后次序如何?_____.解:以流水为参照物.小孩和原木是静止的.船A上行时速度和下行时速度大小相等,船B也是这样,船C也是这样.船A、B、C 同时从小孩所处的位置向上游和下游行驶,速度不同,在30 分钟内行驶了不同的路程s1、s2、s3;在接下去的30分钟内, 三条船分别沿反方向行驶路程s1、s2、s3,回到小孩所处的位置.答:三条船同时到达小孩和原木.例题2 一列一字形队伍长120m,匀速前进. 通讯员以恒定的速率由队尾跑到队首,又跑回队尾,在此期间,队伍前进了288m. 求通讯员跑动的速率v是队伍前进的速率u的多少倍.分析:顺利解答本题的关键是, 找出通讯员的运动跟队首或队尾的运动的联系.解:设通讯员从队尾跑到队首所用的时间为t1, 从队首跑到队尾所用的时间为t2,那么u(t1+t2)=288 (1)在t1时间内,通讯员跑动的路程比队首移动的路程多120m:vt1-ut1=120 (2)在t2时间内,通讯员跑动的路程加上队尾移动的路程等于120m:vt2+ut2=120 (3)从(2)式中得出t1的表达式,从(3)式中得出t2的表达式,代入(1)式, 可算出:v=1.5u例题3 一物体作匀变速直线运动,某时刻速度的大小为4m/s, 1s后速度的大小变为10m/s.在这1s内(A)位移的大小可能小于4m(B)位移的大小可能大于10m(C)加速度的大小可能小于4m/s2(D)加速度的大小可能小于10m/s2 (1996年高考全国卷试题)解:取初速度方向为正方向,则v0=4m/s,v t=10m/s或-10m/s.由 s=v t=(v0+v t)t/2,得 s=7m或-3m所以位移的大小为7m或3m.选项(A)正确,(B)错误.由 a=(v t-v0)/t得 a=6m/s2或-14m/s2所以加速度的大小为6m/s2或14m/s2,选项(C)错误,(D)正确.总之,本题选(A)(D).例题4 在三楼的阳台上 ,一人伸出阳台的手上拿着一只小球, 小球下面由细绳挂着另一个小球.放手,让两小球自由下落,两小球相继落地的时间差为t.又站在四层楼的阳台上,同样放手让小球自由下落,两小球相继落地的时间差为t',则(A)t<t' (B)t=t' (C)t>t'解:从三楼阳台外自由下落,下面的小球着地时,两球具有的速度为v,从四楼阳台外自由下落,下面的小球着地时, 两球具有的速度为v',显然v<v'.下面的小球着地后,上面的小球以较小的初速度v和较大的初速度v',继续作加速度为g的匀加速运动, 发生一定的位移(等于绳长),所需的时间显然是不同的:t>t'.选项(C)正确.例题5 一质点由静止从A点出发,先作匀加速直线运动,加速度大小为a,后做匀减速直线运动,加速度大小为3a,速度为零时到达B 点.A、B间距离为s.求质点运动过程中的最大速度.解:设质点第一阶段做匀加速运动的的时间为t1,末速度为 v, 这就是运动过程中的最大速度;设第二阶段做匀减速运动的时间为t2.那么第一阶段的位移为vt1/2,第二阶段的位移为vt2/2, 两者之和应为全程位移: vt1/2+vt2=s (1)又根据加速度的定义式,有t1=v/a (2)t2=v/(3a) (3)将(2)(3)两式代入(1)式:v2/(2a)+v2/(6a)=s所以 v=(3as/2)1/2例题6 两辆完全相同的汽车 ,沿水平直路一前一后匀速行驶, 速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行驶的路程为s,若要保证两车在上述情况下不相撞,则两车在匀速行驶时保持的距离至少应为(A)s (B)2s (C)3s (D)4s(1992年高考全国卷试题)解:汽车从开始刹车到停下这个期间,平均速度为v0/2.在前车开始刹车到停下这段时间内,后车以速度v0匀速行驶, 行驶的距离应为s的两倍,即为2s.从前车开始刹车到两车都停下,前车的位移为s;后车的位移为 (2s+s)=3s.设前车刹车前(匀速行驶期间)两车的距离为l,为使两车不相撞,应满足:l+s≥3s所以l≥2s本题选(B)例题7 某人离公共汽车尾部20m,以速度v向汽车匀速跑过去, 与此同时汽车以1m/s2的加速度启动,作匀加速直线运动.试问, 此人的速度v分别为下列数值时,能否追上汽车?如果能, 要用多长时间?如果不能,则他与汽车之间的最小距离是多少?(1)v=4m/s; (2)v=6m/s; (3)v=7m/s.思路:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑,得出汽车跟人的距离y随时间t变化的函数式. 然后考察对于正值t,y是否可能取零,如果是的,那么能追上,如果不能,那么不能追上.解:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑.在时间t内,人的位移等于vt;汽车的位移等于(1/2)at2=0.5t2.经过时间t时,汽车尾部跟人之间,距离为y=20+0.5t2-vt即 y=20+0.5(t2-2vt+v2)-0.5v2即 y=0.5(t-v)2+20-0.5v2 (*)上式中,y取正值时,表示汽车尾部在人前方y米,y取负值时,表示汽车的尾部在人后面│y│米(前面已假设人即使追上了汽车,也一直朝前跑).(甲)把v=4代入(*)式得y=0.5( t-4)2+12 (1)y恒大于零,y最小值为12.(乙)把v=6代入(*)式得y=0.5( t-6)2+2 (2)y恒大于零,y最小值为2.(丙)把v=7代入(*)式得y=0.5( t-7)2-4.5 (3)容易得出,当t=4,10时,y=0,这表示,如果人一直朝前跑, 那么经过4s时,人与汽车尾部平齐,经过10s时, 人又一次与汽车的尾部平齐.结论:(1)如v=4m/s,则人追不上汽车, 人跟汽车之间的最小距离为 12m.(2)如v=6m/s,则人追不上汽车, 人跟汽车之间的最小距离为 2m.(3)如v=7m/s,则人经过4s追上汽车.例题8 杂技演员表演一手抛接三球的游戏时, 三个球都抛过一次后,每一时刻手中最多只有一个球. 如果每只球上升的最大高度都为1.25m,那么每隔多长时间抛出一个球?g取10m/s2.(A)0.33s (B)0.33s到0.50s(C)0.50s (D)1.0s解:每个球做一次竖直上抛运动的时间是t=2(2h/g)1/2=2(2×1.25/10) 1/2=1.0s球从这一次被抛出到下一次被抛出,完成一个周期性运动, 设周期为T.如果每个球在手中停留的时间趋于零,那么T=t=1.0s;如果手中总停留着一个球,一个球停留的时间是t',那么T=t+t' ,且 t'=(1/3)T那么 T=(3/2)t=1.5s.以上考虑的是两个极端情况.实际上1.0s<T<1.5s在T时间内抛出三个球,每隔T/3的时间抛出一个球:0.33s<T/3<0.5s ,选项(B)正确.请读者考虑:如果每秒钟抛出三个球,那么应使每个球上升多高?(答案:0.56m到1.25m)例题9 小球A从地面上方H高处自由下落,同时在A的正下方,小球B从地面以初速度v竖直上抛.不计空气阻力.要使A、B 发生下述碰撞,v、H应满足什么条件?(甲)在B上升到最高点时相碰;(乙)在B上升的过程中相碰;(丙)在时间T内在空中相碰;(丁)经过时间T时在空中相碰.解:设经过时间t在地面上方h高处相碰.则从开始运动到相碰, 小球A发生的位移大小为(H-h),小球B发生的位移大小为h,则:( H-h)=(1/2)gt2h=vt-(1/2)gt2由以上两式得 t=H/v (1)时间t应小于B球在空中运动的时间:t<2v/g (2)由(1)(2)得 2v2>gH (3)(甲)在最高点相碰:t=v/g (4)由(1)(4)得 v2=gH (5)所以v、H应满足(5)式.(乙)时间t应小于B球上升时间:t<v/g (6)由(1)(6)得 v2>gH (7)所以v、H应满足(7)式.(丙) t≤T (8)由(1)(8)得H≤vT (9)所以v、H应满足(3)(9)两式.(丁) t=T (10)由(1)(10)得 H=vT (11)所以v、H应同时满足(3)(11)两式.讨论: (11)代入(3):v>gT/2 (12)问题(丁)又可这样回答:v、H应满足(11)(12)两式.从(11)得出v=H/T,代入(3)或(12)可得H>gT2/2 (13)问题(丁)还可这样回答:v、H应满足(11)(13)两式.第三章牛顿运动定律例题1 某人在地面上最多能举起32Kg的重物,那么在以2m/s匀加速下降的电梯中,他最多能举起多少Kg的重物?g取10m/s2.解:此人能施加的向上的举力大小为F=m1g=32×10N=320N在匀加速下降的电梯中,设某人用举力F举起了质量为m2的物体.物体的加速度向下,所以合外力也向下. 对这个物体应用牛顿第二定律:m2g-F=m2a即 m2=F/(g-a)把举力大小F=320N,重力加速度大小g=10m/s2,物体加速度大小a=2m/s2代入上式,得m2=40Kg他最多能举起40Kg的物体.例题2 一个质量为200g的物体,以初速度v0=20m/s竖直上抛, 上升的最大高度为16m.没有风,且假设物体所受空气阻力的大小始终不变,求物体落回抛出点时的速度大小.g取10m/s2.解:物体受到的空气阻力跟物体相对空气的运动方向相反. 因此,在没有风的情况下, 物体受到的空气阻力跟物体相对地面的运动方向相反.物体上升时,受到的空气阻力向下;下降时, 受到的空气阻力向上.设空气阻力的大小始终为f.物体减速上升时,加速度向下,合外力也向下;加速下降时, 加速度向下,合外力也向下.由牛顿第二定律,物体减速上升时,加速度的大小为a1=(mg+f)/m即 a1=g+f/m (1)加速下降时,加速度的大小为a2=(mg-f)/m即 a2=g-f/m (2)由匀变速直线运动公式,上升阶段满足v02=2a1h (3)其中h=16m.下降阶段满足v2=2a2h (4)(1)+(2): a1+a2=2g (5)(3)+(4): v02+v2=2(a1+a2)h (6)(5)代入(6)得v02+v2=4gh (7)代入数据得 v=(240)1/2m/s=15.5m/s例题3 木块静止在光滑水平面上,子弹以较大的水平速度 v从木块左面射入,从右面射出,木块获得速度u. 设子弹对木块的作用力与速度无关.如v增大 ,则u(A)增大 (B)减小 (C)不变.思路:首先通过考察子弹相对木块的运动, 判断子弹穿行于木块的时间,与子弹的入射速度v有怎样的关系.解:子弹对木块的作用力向前,木块对子弹的作用力向后,这一对作用力是恒定的,在它们的作用下,子弹向前作匀减速直线运动, 木块向前作初速度为零的匀加速直线运动.子弹相对木块作匀加速运动.在子弹对木块的作用力与速度无关这个前提下,增大v以后,子弹匀减速运动的加速度仍为原来的值,木块作匀加速运动的加速度也仍为原来的值,从而子弹相对木块的加速度仍为原来的值.增大v以后,子弹穿行于木块期间,子弹相对木块运动的位移仍等于木块的长度.子弹相对木块运动的初速度等于v,增大v, 意味着增大子弹相对木块运动的初速度.所以增大v以后,子弹穿行于木块的时间减少.在较少的时间内,木块作初速度为零的匀加速运动, 获得的末速度u就较小.选项(B)正确.例题4 如图3-2所示,斜面的倾角为α.质量分别为m1、m2的两木块A、B,用细绳连接.它们与斜面之间的动摩擦因数μ相同 .现在A上施加一个沿斜面向上的拉力F,使A、B一起向上作匀加速运动.求证细绳上的拉力与μ和α无关.解:设A、B一起运动的加速度为a,对A、B组成的整体应用牛顿第二定律可得:F-(m1+m2)gsinα-μ(m1+m2)gcosα=(m1+m2)a即 F=(m1+m2)gsinα+μ(m1+m2)gcosα+(m1+m2)a (1)设细绳上的拉力大小为T,对B应用牛顿第二定律可得:T-m2gsinα-μm2gcosα=m2a即 T=m2gsinα+μm2gcosα+m2a (2)(1)式除以(2)式得F/T=(m1+m2)/m2 (3)由(3)式可见,细绳上的拉力决定于拉力F以及两个木块的质量, 与动摩擦因数μ以及斜面的倾角α无关.例题5 如图3-3所示,自由下落的小球,从它接触到竖直放置的轻弹簧开始,到弹簧被压缩到最短的过程中,(A)合力逐渐变小(B)合力先变小后变大(C)速度逐渐变小(D)速度先变小后变大解:小球刚接触到弹簧时,弹簧处于自然状态,弹簧对小球的作用力为零,小球受到的合力等于它受到的重力.在最初一段时间内,小球以自由落体运动的末速度为初速度,继续向下做加速运动. 小球向下运动一段适当的位移时(弹簧被压缩适当的长度时),小球弹簧对小球的向上的支持力大小正好等于重力,这时小球的合外力为零.由于小球已经具有了一定的速度,所以还要向下运动.弹簧被压缩的长度增加时,支持力也增大,支持力超过重力,合力向上, 所以从合外力为零的时刻以后向下的运动是减速运动.向下的减速运动进行到速度减为零为止.速度减为零时,弹簧被压缩到最短.再以后,小球向上运动,弹簧的长度增加.综上所述,小球从接触到弹簧开始, 到弹簧被压缩到最短的过程中,小球的合外力先是向下,逐渐减小,然后向上,逐渐增大;小球先作加速运动,然后作减速运动.选项(B)正确.例题6 如图3-4所示,在水平拉力F的作用下,物体A向右运动, 同时物体B匀速上升.可以判断(A)物体A的运动是匀速运动(B)绳子对物体A的拉力逐渐减小(C)水平地面对物体A的支持力逐渐增大(D)水平地面对物体A的摩擦力逐渐减小解:物体A的速度u跟物体B的速度v满足:v=ucosθ在v保持不变的情况下,u随着θ的变化而变化:物体A的运动不是匀速运动.由物体B匀速运动,可知绳子对物体B的拉力保持不变. 绳子对物体A的拉力T的大小总等于绳子对B的拉力,也是不变的.物体A的受力情况如图3-5所示,将 T沿水平方向和竖直方向分解为T x、T y,随着θ的减小,T x逐渐增大,T y逐渐减小.作用于物体A的T y、支持力N、重力G,三者满足:T y+N=GN随着Ty的减小而增大.根据f=μN水平地面对物体A的滑动摩擦力f随着N的增大而增大综上所述,选项(C)正确.例题7 一质点自倾角为α的斜面上方P点沿光滑的斜槽PB从静止开始下滑,如图3-6所示,为使质点在最短的时间内从P点到达斜面, 则斜槽与竖直方向的夹角β应等于______.解:如图3-6作PC垂直于斜面,垂足为C.则∠CPA=α,∠CPB=α- β.应用牛顿第二定律可得,质点从斜面上下滑时,加速度为a=gcosβ应用匀变速直线运动公式可得PB=(1/2)at2即 t2=2PB/a=2[PC/cos(α-β)]/(gcosβ)即 t2=2PC/[gcos(α-β)cosβ]当α-β=β ,即β=α/2 时 ,t2取最小值,t取最小值,质点在最短的时间内从P点到达斜面.例题8 图3-7中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点. 当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为( ).(A)F=Mg (B)Mg<F<(M+m)g(C)F=(M+m)g (D)F>(M+m)g (1992年高考上海卷试题)解:铁片离开秤盘时, 电磁铁对它的向上的拉力一定大于地球对它的重力mg.铁片在上升中,逐渐靠近电磁铁,电磁铁对它向上的吸引力逐渐增加,仍大于mg.根据牛顿牛顿第三定律,铁片对电磁铁向下的吸引力, 电磁铁对铁片的吸引力大小相等,大于mg.A和C组成的系统,受力平衡:绳子施加的拉力,等于系统的重力,与铁片对电磁铁向下的吸引力之和,大于(Mg+mg).选项(D)正确.例题9 把一个质量m=4Kg的长方体木块,分割成两个三棱柱形木块A和B,角α=30°,然后再对到一起,放在光滑的水平面上, 如图3-8所示.用大小为8N的水平力F沿图示方向推A, A、B 组成的长方体保持原来的形状,沿力的作用方向平动.(1)求A对B的作用力.(2)求A对B的静摩擦力.解:(1)A和B的加速度a,都是沿F方向.B的加速度是A对B的作用力Q产生的.所以,Q的方向跟F的方向相同,如图3-9所示.对A、B组成的系统应用牛顿第二定律:a=F/m=(8/4)m/s2=2m/s2对B应用牛顿第二定律:Q=(m/2)a=2×2N=4N(2)A对B的作用力Q是A对B的压力N和静摩擦力f的合力( 也可以说,Q可以分解为N和f),如图3-10(俯视图)所示.静摩擦力的大小为f=Q/2=2N例题10 如图3-11所示,A和B质量相等均为m,A与B之间的动摩擦因数为μ1,静摩擦因数为μ2,B与地面之间的动摩擦因数为μ3.原来在水平拉力F的作用下,A和B彼此相对静止 ,相对地面匀速运动(图3-11(a).撤消F后,A和B彼此保持相对静止,相对地面匀减速运动(图3-11(b).则A、B相对地面匀减速运动的过程中,A、B 之间的摩擦力的大小为(A)μ1mg (B)μ2mg (C)μ3mg (D)F/2解:B与地面之间的压力支持力大小始终等于A、B两个物体的总重力,因此地面对B的滑动摩擦力的大小始终为f=μ3(2mg)A、B匀速运动时,受力平衡:F=fA、B一起以加速度a做减速运动时,对于A、B组成的系统来说,地面对B的滑动摩擦力f就是合外力,等于(2ma);对于A来说,B对A的静摩擦力f1就是合力,等于(ma).于是f1=f/2综合以上三式得:f1=μ3mg和 f1=F/2本题选(C)(D).说明:因为A、B没有相对运动,所以A、B之间的动摩擦因数μ1用不到;因为B对A的静摩擦力不一定是最大静摩擦力,所以A、B 之间的静摩擦因数μ2用不到.例题11 如图3-12所示,质量为mA、mB的两个物体A和B 用跨过光滑滑轮的细绳相连.A沿倾角为θ的斜面向下加速下滑.A、B两物体加速度的大小相同,等于a.楔形物体C的下表面是光滑的.求台阶对C水平方向的作用力的大小.解:如图3-13,将物体A的加速度 a沿水平方向和竖直方向分解, 水平分加速度为ax=acosθ;物体B的加速度是向上的,没有水平分量;滑轮质心的加速度为零.在水平方向上,对由A、B、C以及滑轮,组成的系统,应用质点组牛顿第二定律,有F=m A a x.由以上两式得F=m A acosθ .例题12 如图3-14所示,三个质量相同,形状相同的楔形物体, 放在水平地面上.另有三个质量相同的小物体, 分别从斜面顶端沿斜面下滑.由于小物体跟斜面间的动摩擦因数不同, 第一个小物体匀加速下滑;第二个物体匀速下滑; 第三个小物体以一定的初速度匀减速下滑. 三个楔形物体都保持静止,水平面对它们的支持力分别为N1、N2、N3,则(A)N1=N2=N3 (B)N1<N2<N3 (C)N1>N2>N3解:楔形物体和小物体组成的系统受到的外力是: 水面地面对楔形物体的支持力,地球对楔形物体和小物体的重力, 以及水平地面施加于楔形物体的沿着接触面的静摩擦力.小物体匀加速下滑时,加速度沿斜面向下, 将加速度向水平方向和竖直方向分解时,竖直方向的分加速度是向下的. 根据质点组牛顿第二定律,竖直方向的作用力的合力向下,所以支持力N 1小于两者的重力之和.小物体匀速下滑时,加速度为零.支持力N 2等于两者的重力之和.小物体减速下滑时,加速度沿斜面向上, 将加速度沿水平方向和竖直方向分解时,竖直方向的分加速度向上. 根据质点组牛顿第二定律,竖直方向作用力的合力向上,支持力N 3大于两者的重力之和.本题选(B).例题13 如图3-15,光滑水平面上有一块木板,质量为M=4Kg, 长为L=1.4m.木板右端放着一个小滑块,小滑块质量为m=1Kg, 尺寸远小于L,与木板之间的动摩擦因数为μ=0.4.原来它们都静止,现在大小为F=28N的水平力向右拉木板,使滑块从木板左端掉下, 此力作用时间至少为多长?解:根据题意,水平力作用一段时间后,滑块会从左端掉下. 这暗示我们,水平力开始作用期间,木板向右的加速度较大,速度较大, 滑块向右的加速度较小,速度较小.在滑块尚未滑到木板左端时,如水平力停止作用,那么在一段时间内,木板向右的速度仍大于滑块,那么此后经一段时间滑块有可能从左端掉下,那时, 木板向右的速度应大于等于木板向右的速度.由此可知,水平力作用适当的一段时间t1后, 木板向右的速度比滑块向右的速度大,大适当的数值,然后撤去水平力,当两者的速度正好相等时,滑块从木板左端掉下.t 1就是水平力作用的最短时间.向右的水平力F开始作用后,木板除受到这个力外,还受到向左的滑块施加的滑动摩擦力f=μmg=4N木板的加速度向右,大小为(F-f)/M=6m/s2滑块受到向右的滑动摩擦力,加速度向右,大小为f/m=4m/s2经时间t1时,撤去水平力F.此后滑块的加速度仍向右,大小仍为f/m=4m/s2.木板在向左的滑动摩擦力作用下,加速度向左,大小为f/M=1m/s2木板相对于滑块始终向右运动,滑块相对于木板始终向左运动.下面以木板为参照物,考察滑块在木板上的运动(图3-16). 滑块第一阶段作初速度为零的匀加速运动,末速度的大小记为v,第二阶段作匀减速运动,末速度为零.第一阶段,加速度的大小为a1=6-4=2m/s第二阶段,加速度的大小为a2=4+1=5m/s2根据匀变速直线运动公式,有v=a1t1即 v=2t1 (1)v=a2t2=5t2即 v=5t2 (2)L=(v/2)(t1+t2) 即 2.8=v(t1+t2) (3)由(1)(2(3)得 t1=1s使滑块从木板左端掉下,水平力F作用时间至少为1s.例题14 如图3-17所示,A、B两个光滑的梯形木块质量均为m, 紧挨着并排放在光滑水平面上.倾角θ=60°.欲使A、B在水平推力F 作用下,一起加速运动(两者无相对滑动),F不能超过多少?。

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。

一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。

物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。

(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。

2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。

那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。

观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。

取g=10 m/s2。

试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。

一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。

物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。

(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。

2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。

那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。

观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。

取g=10 m/s2。

试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。

现将该物块轻轻地放在传送带上的A点后,经过多长时间到达B点?(g取10m/s2)5.(2018·北京四中)如图所示,绷紧的传送带在电动机的带动下始终以v0=2 m/s的速度顺时针运动,传送带与水平面的夹角θ=30°。

现把一质量m=10 kg的工件轻放在皮带的底端B,经过一段时间后,工件被运送到传送带的顶端A。

已知A、B之间高度差h=2 m,工件与传送带间的动摩擦因数,忽略空气阻力及其他摩擦损耗,取g=10 m/s2。

求:(1)工件从传送带底端B到顶端A的时间;(2)运送工件过程中,工件与传送带之间由于摩擦而产生的热量Q;(3)电动机由于传送工件多消耗的电能。

6.小明家住10层。

他放学后,乘坐电梯从1层直达10层。

假设电梯刚起动时做匀加速直线运动,中间一段时间内做匀速直线运动,最后一段时间内做匀减速直线运动。

在电梯从1层直达10层的过程中,下列说法正确的是A.电梯刚起动时,小明处于失重状态B.电梯刚起动时,小明处于超重状态C.在超重或失重过程中,小明的体重发生了变化D.电梯运动的加速度方向发生了变化7.小玲同学在乘坐电梯时感觉到电梯在加速上升过程中超重,在减速上升过程中失重,则她对她在这两个过程中受力情况的判断,以下说法中正确的是A.在超重状态下她受到的重力大于电梯地板的支持力B.在超重状态下她受到的各个力的合力方向向下C.在失重状态下她受到的重力大于电梯地板的支持力D.在失重状态下她受到的各个力的合力为零8.关于超重和失重,下列说法中正确的是A.超重就是物体受的重力增加了B.完全失重就是物体一点重力都不受了C.失重就是物体受的重力减少了D.不论超重或失重甚至完全失重,物体所受重力都不变9.长为1.5 m的长木板B静止放在水平冰面上,小物块A以某一初速度从木板B的左端冲上长木板B,直到A、B的速度达到相同,此时A、B的速度为0.4 m/s,然后A、B又一起在水平冰面上滑行了8.0 cm。

若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25。

求:(取g=10 m/s2)(1)木板与冰面的动摩擦因数。

(2)小物块相对长木板滑行的距离。

(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板时的初速度应满足什么条件。

10.如图,小球A的质量为2m,小球B和C的质量均为m,B、C两球到结点P的轻绳长度相等,滑轮摩擦不计。

开始系统处于静止状状,现让B、C两球以某角速度ω在水平面内做圆锥摆运动时,A球将A.向上做加速运动B.向下做加速运动C.保持平衡状态D.做匀速圆周运动11.如图质量分别为m1、m2的两个物体互相紧靠着,它们之间的接触面是光滑的斜面,倾角为α,它们与水平地面之间的动摩擦因数均为μ,现用水平恒力F向右推m1,使它们一起向右加速运动,求m1对m2的压力N。

12.如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上。

A、B间的动摩擦因数为μ,B与地面间的动摩擦因数为12μ。

最大静摩擦力等于滑动摩擦力,重力加速度为g。

现对A施加一水平拉力F,则下列说法中正确的是A.当F<2μmg时,A、B都相对地面静止B.当F=52μmg时,A的加速度为13μgC.当F>3μmg时,A相对B滑动D.无论F为何值,B的加速度不会超过12μg参考答案与解析:1.(1)A 到B ,由动能定理得:21111cos sin 2B h mgh mg mv μθθ-⋅= 得6m /s B v =由牛顿第二定律得:11sin cos mg mg ma θμθ-= 得212m /s a =根据运动学公式得:113s Bv t a == B 到C ,由题可知,物块做匀速直线运动,则有21s BLt v == A 到C 总时间:124s t t t =+=(2)要使物块落在地面上同一点,物块在C 点速度06m /s C v v == ①当距传送带底端高度为2h 时,物块滑上传送带后一直做匀加速运动 A 到C ,由动能定理得:2221201cos sin 2h mgh mg mgL mv μθμθ-⋅+= 得2 1.8m h =②当距传送带底端高度为3h 时,物块滑上传送带后一直做匀减速运动 学科,网 A 到C ,由动能定理得:2221201cos sin 2h mgh mg mgL mv μθμθ-⋅-= 得39m h = 故1.8m 9m h ≤≤ 23.运动3l 距离所用时间相等设为t ,则t =03l lv v=解得他送带速度v =3v 0=1.8 m/s ,t =0.6 s(2)解法一:产品滑上传送带后做初速度为v 0的匀加速运动,设加速时间为t ′,依题意, 前一个产品加速结束时下一个产品刚好开始加速,因此t ′=t =0.6 s 由速度公式得v =v 0+a t ′ 由牛顿第二定律F f =ma 联立代入F f =μmg 解得μ=0.2解法二:产品滑上传送带后做初速度为v 0的匀加速运动,设加速时间为t',则从前一个产品加速开始,到下一个产品达到传送带速皮所用时间为2t'。

对前一个产品21012x v t at vt ''=+'+对下一个产品22012x v t at =+''且x 1–x 2=3l 解得t '=0.6 s由速度公式得v =v 0+at '时间足够长,两个产品加速和一个产品加速的时间近似相等,等效的∆P =(24+12)/2=18 W 4. t 总=11 s物块放到A 点后先在摩擦力作用下做匀加速直线运动,速度达到2 m/s 后,与传送带一起以2 m/s 的速度直至运动到B 点。

学科¥网 a =μg =1 m/s 2则达到共同速度的时间为t =2 s运动的位移为s =212m 2at =则以共同速度运动的时间为012029s 2s s t v --=== 所以总时间为t 总=11 s5.(1)工件轻轻地放在传送带底端后,受到重力、支持力和沿斜面向上的摩擦力作用,由牛顿第二定律得知,上滑过程中加速度为:μmg cos θ–mg sin θ=ma 得:a =g (μcos θ–sin θ)=2.5 m/s 2产生的热量Q =F f ·x 相对=μmg cos θ•(x′–x )=60 J (3)多消耗的能量转化为工件的动能和重力势能以及摩擦产生的内能 则△E =12mv 02+mgh +Q =280 J 6.答案;BD 电梯刚起动时,小明有向上的加速度,则小明处于超重状态,故A 错误,B 正确;电梯启动和向上加速时,加速度向上,而减速运动时,加速度向下,故加速度方向发生了变化,故C 错误,D 正确。

7.8.D 物体处于超重或者失重是指视重与重力的关系,并不是重力发生变化,A 选项错误;当物体处于完全失重状态是指物体对支持面的压力或者对悬线的拉力为零,重力大小不变,B 选项错误;物体对支持物的压力或者对悬挂物的拉力小于重力叫失重,但重力并不改变,C 选项错误;不论超重或失重甚至完全失重,物体所受重力是不变的,D 选项正确。

【名师点睛】物体对支持物的压力或者对悬挂物的拉力大于物体的重力称为超重,小于重力则称为失重,处于超重或失重状态时物体的质量或重力并不变。

9.(1)0.10 (2)0.96m (3)3.0m/s【试题解析】(1)A 、B 一起运动时,受冰面对它的滑动摩擦力,做匀减速运动,加速度2222mga g mμμ⨯==且221m/s 2v a s==;解得木板与冰面的动摩擦因数20.10μ=(2)小物块A 在长木板上受木板对它的滑动摩擦力,做匀减速运动,加速度211 2.5m/s a g μ==小物块A 在木板上滑动时,木板B 受小物块A 的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,有1222)(mg m g ma μμ-= 解得加速为220.50m/s a =设小物块冲上木板时的初速度为10v ,经时间t 后A 、B 的速度相同为v 由长木板的运动得2v a t = 解得滑行时间20.8s vt a == 小物块冲上木板的初速度101 2.4m/s v v a t =+=小物块A 在长木板B 上滑动的距离为2212101211Δ0.96m 22s s s v t a t a t =-=--=(3)小物块A 的初速度越大,它在长木板B 上滑动的距离越大,当滑动距离达到木板B 的最右端时,两者的速度相等(设为v '),这种情况下A 的初速度为保证不从木板上滑落的最大初速度,设为v 0有220121122v t a t a t L --=01v v a t '-= 2v a t '=由上三式解得,为了保证小物块不从木板的右端滑落,小物块冲上长木板的初速度不大于最大初速度()0122 3.0m/s v a a L =+= xk ……w10.答案:C 【解析】B 球、C 球和两根细线整体受重力和细线向上的拉力,设整体下降的加速度为a ,根据牛顿第二定律,有:2mg –T =2m ·a ;对A 球受力分析,受重力和拉力,根据牛顿第二定律,有:T –2mg =2ma ;联立解得:a =0,即A 球将保持静止,处于平衡状态;故选C 。

相关文档
最新文档