生物进化树制作
构建进化树的步骤

构建进化树的步骤通常包括以下几个关键环节:
1. 数据收集:收集相关的生物序列数据,这些数据可以来自于公共数据库,如NCBI的GenBank,也可以通过实验获得。
序列数据包括DNA或蛋白质序列。
2. 序列alignment(序列比对):使用比对软件如Clustal Omega、MAFFT、MUSCLE等,将收集到的序列进行比对,以确保序列的同源性,并消除由于序列变异导致的噪音。
3. 序列拼接和校正:对测序得到的正向和反向序列进行拼接和校正,以获得完整的序列。
常用的拼接软件有Contig Express、Geneious 和Sequencher等。
4. 选择合适的模型:根据序列数据选择合适的进化模型。
可以使用软件如Modeltest来评估不同的进化模型,选择BIC(Bayesian Information Criterion)分数最低的模型。
5. 建树:选择合适的软件和建树方法来构建进化树。
常用的软件有MEGA、PhyML、MrBayes等,建树方法包括NJ(邻接法)、MP (最大简约法)、ML(最大似然法)等。
6. 建树检验:使用如Bootstrap方法等来检验所建树的稳定性和可靠性。
Bootstrap方法通过重复抽样来检验建树的节点支持度。
7. 绘制进化树:使用软件如TreeDraw、FigTree或在线工具来绘制进化树的图像,以便于分析和展示。
3个基因构建进化树的方法

3个基因构建进化树的方法基因是生物体内部的遗传物质,它们携带着生物体的遗传信息,并且决定了生物体的性状和特征。
在生物学研究中,通过研究基因的变化和演化关系,可以揭示生物种群之间的进化历程和亲缘关系。
构建进化树是研究基因演化的重要方法之一,它可以帮助我们了解不同物种之间的演化关系以及共同祖先的存在。
构建进化树的方法有很多种,其中比较常用的方法之一是基于DNA 或RNA序列的系统发育分析。
DNA和RNA是生物体内的核酸分子,它们携带着基因信息,并且在生物进化过程中会发生变异和演化。
通过比较不同物种之间的DNA或RNA序列差异,可以推断它们之间的亲缘关系和进化历程。
在构建进化树的方法中,一种常用的方法是基于单个基因的系统发育分析。
通过选择一个具有高变异性的基因,如线粒体DNA或核基因的特定区域,可以对不同物种之间的进化关系进行推断。
这种方法的优点是操作简单,成本低廉,但由于只考虑了单个基因的信息,可能会导致结果的不准确性。
为了提高进化树的准确性,还可以使用多个基因进行系统发育分析。
多个基因可以提供更多的信息,从而增加了结果的可靠性。
同时,使用多个基因还可以减少单个基因由于突变等原因引起的误差。
然而,选择哪些基因进行分析是一个关键问题,需要考虑基因的稳定性、变异速率以及在不同物种之间的保守性。
另一种构建进化树的方法是基于基因组数据的系统发育分析。
随着基因组测序技术的发展,我们可以获取到更多物种的基因组序列。
通过比较不同物种的基因组序列,可以揭示它们之间的进化关系。
基因组数据具有更高的分辨率和更全面的信息,可以提供更准确的进化树。
除了基于DNA或RNA序列的系统发育分析,还有其他一些方法可以用于构建进化树。
例如,可以利用蛋白质序列的相似性进行系统发育分析。
蛋白质是基因的产物,它们在不同物种之间可能存在相似性。
通过比较不同物种的蛋白质序列,可以推断它们之间的亲缘关系。
还可以利用形态学特征进行系统发育分析。
形态学特征是生物体外部的形状、结构和功能等方面的特征。
微生物进化树构建

微生物进化树构建
1.数据获取:收集目标微生物的遗传序列或其他特征数据。
常见的数据来源包括基因组测序数据、16SrRNA序列、转录组数据等。
这些数据可以通过实验室的测序技术得到,也可以从
公共数据库中获取。
2.数据处理:对获得的原始数据进行预处理,包括序列清洗、去噪声、去冗余等。
同时,还需要对数据进行比对,将不同微
生物的序列进行比对,找出它们的共同特征位置。
3.构建进化树:根据预处理后的数据,使用进化树构建方法
对微生物之间的关系进行推断。
常用的构建方法包括最大相似
性法、最大似然法和贝叶斯推断法等。
这些方法根据不同的假
设和模型,利用统计学原理和计算模型来推断微生物间的进化
关系。
4.进化树评估:对构建的进化树进行评估,检查其准确性和
可靠性。
常用的评估方法包括Bootstrap法和相似性法等。
Bootstrap法通过随机重抽样数据来评估进化树的稳定性,相
似性法通过计算进化树与实际观察数据之间的相似性来评估其
拟合情况。
5.结果解释:根据构建的进化树,可以推断微生物的进化历史、分类关系和系统发育地位。
进化树的分支长度和形态可以
反映不同微生物之间的进化速度和差异程度。
进化树构建方法

P(B)=0.001*0.99+0.999*0.02=0.02097=> 人群中任取一人被检测为阳性的概率
贝叶斯-例子
临床检测: 初检为阳性的结果并不可怕,因此确诊需要复检 假设二次检查,再次检出为阳性 问: 患病的概率有多大 初检为阳性:P(B) 复检为阳性:P(C)
则两次都为阳性的情况下该人患病的概率为
给定核苷酸 i 在时间t之后变成j 的概率。矩阵P(t)= {pijt)} 时间*速率=距离=>概率
距离计算-JC69
横坐标d=3 *t
此公式的推导,考虑了所有的路径,因此可以矫正回复突变或平行突变 进化速率 和进化时间 t 以乘积形式出现 =>
AAAAAAAA => AATTGGCC
距离计算-JC69
贝叶斯定理
贝叶斯-例子
临床检测: 假设一个人被感染HIV,医院检测其为阳性的概率为99%。 真阳性 假设一个人未被感染,医院检测其为阳性的概率为2%。假阳性 假设HIV的人群发病率0.1% 问:若一个人被查出阳性,那么此人患病的概率为多少?
A: 感染, B: 阳性, B|A: 染病情况下查出阳性,A|B, 查出阳性情况下染病
进化树构建方法
邢鹏伟
2018.11
内节点(灭绝物种) 外节点(现存物种)
分子钟置根法:如果在所有时间内进化速率是恒定的,即假定存在分子钟 产生有根树的条件: 外类群置根法:在树重建中引入关系较远的物种,同时在对所有物种重建的无根树中, 将树根置于连接外类群的枝,使得内类群的子树有根
邻接法 Neighbour joining 基于距离 distance-based 最小二乘法 Least squares 非加权算数平均组对(UPGMA )法
进化树制作

二、ITS序列分析,学习进化树的制作
1
3
2
ห้องสมุดไป่ตู้
二、ITS序列分析,学习进化树的制作
二、ITS序列分析,学习进化树的制作
找出所有序列都有的第一列碱基,将第一列碱基 之前的删掉(拉黑序列 +delete),找到所有序列 都有的最后一列碱基,同上操作,保存,关闭窗 口。
二、ITS序列分析,学习进化树的制作
二、ITS序列分析,学习进化树的制作
1、测序完成后,会得到拼接好的序列。 2 、复制拼接的序列,在NCBI BLAST上 搜索,可以找到和自己的序列相似的其 他序列,选择多条序列,下载,利用 MEGA 5.10,制作进化树。
二、ITS序列分析,学习进化树的制作
二、ITS序列分析,学习进化树的制作
选择刚刚保存的文件
二、ITS序列分析,学习进化树的制作
Test of phylogeny: Bootstrap method
No. of Bootstrap Replication:500/10 00(节点处的数字 为 500/1 000次自引 导值中该节点存在 的百分数。 )
二、ITS序列分析,学习进化树的制作
青霉 属
新萨托 菌属
曲霉 属
构建系统进化树的详细步骤-生物信息学交流论坛-生物秀论坛『中国生物科学论坛』-...

构建系统进化树的详细步骤-生物信息学交流论坛-生物秀论坛『中国生物科学论坛』-...1. 建树前的准备工作1.1 相似序列的获得——BLASTBLAST是目前常用的数据库搜索程序,它是Basic Local Alignment Search Tool的缩写,意为“基本局部相似性比对搜索工具”(Altschul et al.,1990[62];1997[63])。
国际著名生物信息中心都提供基于Web的BLAST服务器。
BLAST算法的基本思路是首先找出检测序列和目标序列之间相似性程度最高的片段,并作为内核向两端延伸,以找出尽可能长的相似序列片段。
首先登录到提供BLAST服务的常用网站,比如国内的CBI、美国的NCBI、欧洲的EBI和日本的DDBJ。
这些网站提供的BLAST服务在界面上差不多,但所用的程序有所差异。
它们都有一个大的文本框,用于粘贴需要搜索的序列。
把序列以FASTA格式(即第一行为说明行,以“>”符号开始,后面是序列的名称、说明等,其中“>”是必需的,名称及说明等可以是任意形式,换行之后是序列)粘贴到那个大的文本框,选择合适的BLAST程序和数据库,就可以开始搜索了。
如果是DNA序列,一般选择BLASTN搜索DNA数据库。
这里以NCBI为例。
登录NCBI主页-点击BLAST-点击Nucleotide-nucleotide BLAST (blastn)-在Search文本框中粘贴检测序列-点击BLAST!-点击Format-得到result of BLAST。
BLASTN结果如何分析(参数意义):>gi|28171832|gb|AY155203.1| Nocardia sp. ATCC 49872 16S ribosomal RNA gene, complete sequenceScore = 2020 bits (1019), Expect = 0.0Identities = 1382/1497 (92%), Gaps = 8/1497 (0%)Strand = Plus / PlusQuery: 1 gacgaacgctggcggcgtgcttaacacatgcaagtcgagcggaaaggccctttcgggggt 60|||||||||||||||||||||||||||||||||||||||||| ||||||||| |||||Sbjct: 1 gacgaacgctggcggcgtgcttaacacatgcaagtcgagcggtaaggcccttc--ggggt 58Query: 61 actcgagcggcgaacgggtgagtaacacgtgggtaacctgccttcagctctgggataagc 120|| ||||||||||||||||||||||||||||||| | |||||| |||||||||||||Sbjct: 59 acacgagcggcgaacgggtgagtaacacgtgggtgatctgcctcgtactctgggataagc 118Score :指的是提交的序列和搜索出的序列之间的分值,越高说明越相似;Expect:比对的期望值。
系统进化树的构建

系统进化树的构建一、什么是系统进化树系统进化树,又称为生命进化树或物种树,是描述生物进化关系的一种图形表达方式。
它通过比较不同物种之间的形态、生理特征以及遗传信息等多方面的数据,将它们按照演化顺序排列在一个分枝结构图中,以展示各个物种之间的亲缘关系和演化历程。
二、系统进化树的构建方法1. 形态学比较法形态学比较法是最早被使用的构建系统进化树的方法。
该方法主要通过对不同物种之间形态特征的比较,确定它们之间的亲缘关系。
例如,通过对鸟类翅膀长度和颜色等特征进行比较,可以确定它们之间的亲缘关系,并将它们排列在一个分枝结构图中。
2. 分子生物学方法随着分子生物学技术的发展,越来越多的研究者开始使用DNA序列等遗传信息来构建系统进化树。
这种方法主要是通过比较不同物种DNA 序列或蛋白质序列之间的差异性,来推断它们之间的亲缘关系。
例如,通过对人类、猩猩和大猩猩的DNA序列进行比较,可以确定它们在进化过程中的亲缘关系。
3. 综合方法综合方法是将形态学比较法和分子生物学方法结合起来,以获得更准确的系统进化树。
该方法主要是通过对不同物种之间形态特征和遗传信息等多方面的数据进行综合分析,来推断它们之间的亲缘关系。
例如,通过对恐龙化石的形态特征和DNA序列进行比较,可以确定它们在进化过程中的亲缘关系。
三、系统进化树的构建步骤1. 收集数据构建系统进化树需要收集大量的数据,包括形态特征、遗传信息等多方面的数据。
这些数据可以通过实验、文献调查等方式获取。
2. 数据处理收集到的数据需要进行处理和分析,以便于构建系统进化树。
这些处理包括序列比对、计算差异性等操作。
3. 构建树型结构在经过数据处理后,就可以开始构建系统进化树了。
该步骤主要是将不同物种之间的亲缘关系按照演化顺序排列在一个分枝结构图中。
4. 树型验证构建完系统进化树后,需要对其进行验证。
这可以通过计算分支长度、计算拓扑稳定性等方式来实现。
四、系统进化树的应用1. 生物分类学研究系统进化树可以帮助生物学家更准确地确定不同物种之间的亲缘关系,从而更好地进行生物分类学研究。
构建生物进化树的方法比较

极为详细的建树方法,新手入门推荐生物进化树的构建目录前言 (2)一、 NCBI (6)二、 Mega (9)三、 DNAMAN (15)四、DNAStar (18)五、 Bio edit (21)前言1.背景资料进化树(evolutionary tree)又名系统树(phylogenetie tree)进化树,用来表示物种间亲缘关系远近的树状结构图。
在进化树中,各个分类单元(物种)依据进化关系的远近,被安放在树状图表上的不同位置。
所以,进化树简单地表示生物的进化历程和亲缘关系。
已发展成为多学科(包括生命科学中的进化论、遗传学、分类学、分子生物学、生物化学、生物物理学和生态学,又包括数学中的概率统计、图论、计算机科学和群论)交叉形成的一个边缘领域。
归纳总结生物进化的总趋势有以下几类:①结构上:由简单到复杂②生活环境上:由水生到陆生③进化水平上:由低等到高等一般来说,进化树是一个二叉树。
它由很多的分支和节点构成。
根据位置的不同,进化树的节点分为外部节点和内部节点,外部节点就是我们要进行分类的分类单元(物种)。
而物种之间的进化关系则用节点之间的连线表示。
内部节点表示进化事件发生的地方,或表示分类单元进化的祖先。
在同一个进化树中,分类单元的选择应当标准一致。
进化树上不同节点之间的连线称为分支,其中有一端与叶子节点相连的分支称为外枝,不与叶子节点相连的分支称为内枝。
进化树一般有两种:有根树和无根树。
有根树有一个鲜明的特征,那就是它有一个唯一的根节点。
这个根节点可以理解为所有其他节点的共同祖先。
所以,有根树能可以准确地反映各个物种的进化顺序,从根节点进化到任何其他节点只有能有一条惟一的路径。
无根树则不能直接给出根节点,无根树只反映各个不同节点之间的进化关系的远近,没有物种如何进化的过程。
但是,我们可以在无根树种指派根节点,从而找出各个物种的进化路径。
无根树有根树放射树分子进化树(以分子数据为依据构建的进化树)不仅精确地反映物种间或群体间在进化过程中发生的极微细的遗传变异(小至一个氨基酸或一个核昔酸差异),而且借助化石提供的大分子类群的分化年代能定量地估计出物种间或群体间的分化年代,这对进化论的研究而言无疑是一场革命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物进化树制作
进化树也称种系树,英文名叫“Phyligenetic tree”。
对于一个完整的进化树分析需要以下几个步骤:
⑴要对所分析的多序列目标进行排列(T o align sequences)。
做ALIGNMENT的软件很多,最经常使用的有CLUSTALX和CLUSTALW,前者是在WINDOW下的而后者是在DOS下的。
⑵要构建一个进化树(To reconstrut phyligenetic tree)。
构建进化树的算法主要分为两类:独立元素法(discrete character methods)和距离依靠法(distance methods)。
所谓独立元素法是指进化树的拓扑形状是由序列上的每个碱基/氨基酸的状态决定的(例如:一个序列上可能包含很多的酶切位点,而每个酶切位点的存在与否是由几个碱基的状态决定的,也就是说一个序列碱基的状态决定着它的酶切位点状态,当多个序列进行进化树分析时,进化树的拓扑形状也就由这些碱基的状态决定了)。
而距离依靠法是指进化树的拓扑形状由两两序列的进化距离决定的。
进化树枝条的长度代表着进化距离。
独立元素法包括最大简约性法(Maximum Parsimony methods)和最大可能性法(Maximum Likelihood methods);距离依靠法包括除权配对法(UPGMAM)和邻位相连法(Neighbor-joining)。
⑶对进化树进行评估。
主要采用Bootstraping法。
进化树的构建是一个统计学问题。
我们所构建出来的进化树只是对真实的进化关系的评估或者模拟。
如果我们采用了一个适当的方法,那么所构建的进化树就会接近真实的“进化树”。
模拟的进化树需要一种数学方法来对其
进行评估。
不同的算法有不同的适用目标。
一般来说,最大简约性法适用于符合以下条件的多序列:i 所要比较的序列的碱基差别小,ii 对于序列上的每一个碱基有近似相等的变异率,iii 没有过多的颠换/转换的倾向,iv 所检验的序列的碱基数目较多(大于几千个碱基);用最大可能性法分析序列则不需以上的诸多条件,但是此种方法计算极其耗时。
如果分析的序列较多,有可能要花上几天的时间才能计算完毕。
UPGMAM(Unweighted pair group method with arithmetic mean)假设在进化过程中所有核苷酸/氨基酸都有相同的变异率,也就是存在着一个分子钟。
这种算法得到的进化树相对来说不是很准确,现在已经很少使用。
邻位相连法是一个经常被使用的算法,它构建的进化树相对准确,而且计算快捷。
其缺点是序列上的所有位点都被同等对待,而且,所分析的序列的进化距离不能太大。
另外,需要特别指出的是对于一些特定多序列对象来说可能没有任何一个现存算法非常适合它。
最好是我们来发展一个更好的算法来解决它。
但无疑这是非常难的对园子里的进行了总结,希望对大家有用
分析一个新基因的系统进化树。