第七章 图像识别分析

合集下载

图像识别ppt

图像识别ppt

输入 数据获取
预处理
特征提取
决策分类 输出
数据获取:通过图像输入设备实现。
预处理:提高图像质量,包括滤波、平滑、增强、 复原、提取边缘、图像分割等方法
特征提取和选择:将预处理后的图像转化为若干特 征。常见特征有:幅度特征,统计特征,几何特征, 变换系数特征等
决策分类是模式识别要解决的关键问题
2、集群准则函数:集群准则函数反映了类别间的
相似性或分离性。
C
误差平方和准则: Je X mi 2 i1 Xi
离散度准则:
c
Sw
(ui xk )(ui xk )T (类内散度)
1 n 2 i1
n
i j yi y j xiT x j
j1
n
s.b i 0
i yi 0
i1
将求解后得到的 ai 带回可得决策函数参数的取值
由于处于非边界位置的ai 都为零。处于边界的ai 不为零。 W 只是处于边界处数据的线性组合,可 将处于边界处的原始数据当做支持向量。
检测新数据z时: 如果 W T z b 小于0,则认为是第一类;否则
图像识别的基本概念
统计模式识别
➢ 线性决策函数 ➢ 距离函数模式分类 ➢ 似然函数模式分类
模式是对客观事物的描述,是指建立一个可用于仿 效的完善的标本。
模式识别本质上是经过分析、判断、归类、识别出 事物与哪个供仿效的标本相同或相似。有时可将模 式识别理解为模式分类。
图像识别就是图像分类,属于模式识别的范畴
dij ( X ) 0, j i
3、存在M 个决策函数 dK (X ) WKT X , K 1, 2,..., M
如 X 属于 i 类,则 di ( X ) d j ( X ), j i

《图像识别》PPT课件

《图像识别》PPT课件

(2)模式(pattern) A、事物所具有的时间或空间分布信息。(狭义) B、描绘子的组合。(更狭义)
精选ppt
5
一维信息:例如声音信号,腾格尔的歌声。 二维信息:例如图像信号,数字照相机拍摄的照片。 三维信息:CT重建图像。 多维信息:
精选ppt
6
(3)模式类(pattern class) 一个拥有某些共同特性的模式族。
j0 k0
j0 k0
精选ppt
19
3 基于误差平方和的模板匹配
J 1K 1
D (x,y) [f(xj,yk)t(j,k)2]
j 0k 0
4、特征模板匹配 5、 特征匹配
1
mj N xj xj
j 1,2,,W
Dj(x) xmj
j 1,2,,W
精选ppt
20
精选ppt
21
7.3 基于最小错误率贝叶斯决策理论
-------分类器设计 (4)分类器设计后,如何评价分类器?分类错误
率是多少? -------分类器评价
精选ppt
14
模式
传感器 特征产生 特征选择
设计流程
分类器设计
分类器评价
精选ppt
15
4 模式识别方法的分类
(1)监督与非监督模式识别 A、监督模式识别
利用先验知识和训练样本来设计分类器。
B、非监督模式识别
第7章 图像识别
精选ppt
1
利用神经网络识别 实现图像分割
精选ppt
2
第7章 图像识别
7.1 概论 7.2 图像匹配 7.3 基于最小错误率贝叶斯决策理论 7.4 线性判别函数 7.5 人工神经网络
精选ppt
3

第七章遥感数字图像计算机解译ppt课件

第七章遥感数字图像计算机解译ppt课件
➢采用距离衡量相似度 时,距离越小相似度 越大。 ➢采用相关系数衡量相 似度时,相关程度越 大,相似度越大。
2
二、分类方法
非监督分类( Unsupervised classification ): 是在没有先验类别(训练场地)作为样本的条件 下,即事先不知道类别特征,主要根据像元间相 似度的大小进行归类合并(即相似度的像元归为 一类85%,模板需要要重建。
35
三、图像分类中的有关问题
1、未充分利用遥感图像提供的多种信息 只考虑多光谱特征,没有利用到地物空间关系、
图像中提供的形状和空间位置特征等方面的信 息。 统计模式识别以像素为识别的基本单元,未能利 用图像中提供的形状和空间位置特征,其本质是 地物光谱特征分类
(3)多级切割分类法 (4)特征曲线窗口分类法
监督分类的一般步骤
采集训练样本 建立模板 评价模板 初步分类 检验分类
分类后处理 分类特征统计
训练样本选择:
取决于用户对研究区及类别的了解程度。
1)矢量多边形:使用矢量图层;自定义AOI多边形; 2)标志种子象素:利用AOI工具,用十字光标标出 一个象元作为种子象素(seed pixel)代表训练样本, 其相邻象素根据用户指定参数进行比较,直到没有 相邻象元满足要求,这些相似元素通过栅矢转换成 为感兴趣区域。
46
小波分析
小波理论起源于信号处理。由于探测精度的限
制.一般的信号都是离散的,通过分析认为信号是由多
个小波组成的,这些小波代表着不同的频率持征。小波
函数平移、组合形成了小波函数库,通过小波函数库中
区间的变化可以对某些感兴趣的频率特征局部放大,因
此.小波函数被称为数学显微镜。
47
小波分析
小波分析方法的基本思想就是将图像进行多分辨率 分解.分解成不同空间、不同频率的子图像、然后再对子 图像进行系数编码。基于小波分析的图像压缩实质上是对 分解系数进行量化的压缩。

关于人工智能的图像识别技术分析

关于人工智能的图像识别技术分析

关于人工智能的图像识别技术分析人工智能的快速发展正在改变我们的生活方式,其中图像识别技术作为人工智能的一个重要应用领域,正在得到越来越广泛的应用。

图像识别技术是利用计算机对图像进行分析和识别的一种技术手段,它可以实现对图像中的各种元素进行识别和分类,从而实现对图像所含信息的理解和分析。

本文将针对图像识别技术进行分析,探讨其发展现状、技术原理以及未来发展方向。

一、图像识别技术的发展现状图像识别技术是人工智能领域的重要分支之一,随着计算机技术和数据处理能力的不断提升,图像识别技术也在不断取得突破性进展。

目前,图像识别技术已经应用到各个领域,例如人脸识别、车牌识别、物体识别等。

随着深度学习技术的不断成熟和发展,图像识别技术的准确性和稳定性不断提升,使其在实际应用中更加可靠和高效。

当前,图像识别技术已经在日常生活中得到了广泛应用,例如手机的人脸识别解锁、自动驾驶汽车的道路识别、工业机器人的零件识别等。

图像识别技术也被应用于医疗诊断、安防监控、智能家居等各个领域,为人们的生活和工作带来了诸多便利。

二、图像识别技术的技术原理图像识别技术的主要技术原理是利用计算机对图像进行特征提取和分类识别。

具体来说,图像识别技术包括以下几个关键步骤:1. 图像采集:首先需要对待识别的图像进行采集和获取,可以通过摄像头、扫描仪等设备获取图像数据。

2. 图像预处理:对采集到的图像数据进行预处理,包括图像去噪、图像增强、图像分割等操作,以提高图像的质量和准确性。

3. 特征提取:利用图像处理和模式识别技术,对图像中的各种特征进行提取和描述,例如颜色、形状、纹理等特征。

4. 特征匹配:将提取到的特征与事先建立的模型进行匹配,以实现对图像中的目标物体进行识别和分类。

5. 输出结果:根据匹配结果输出相应的识别结果和分类信息,实现对图像中的目标物体进行识别和分析。

图像识别技术通过对图像中的特征进行提取和匹配,实现了对图像中的目标物体进行自动识别和分类,从而为后续的决策和应用提供了基础数据。

《图像识别》课件

《图像识别》课件

应用领域
包括人脸识别、车牌识别、 街景识别、医学影像处理、 军与象素处理
通过摄像机等设备采集图像,并 对图像进行预处理,如调整亮度、 对比度等。
空间域滤波与频率域滤波 技术
通过滤波器对图像进行去噪和增 强等处理。
边缘检测与特征提取技术
通过卷积核等手段提取图像特征, 如边缘、纹理、颜色等,作为分 类的依据。
学有所用
将图像识别技术应用到实际生 产和生活中,提高工作效率和 生活品质。
未来充满机遇
图像识别技术将继续发展和突 破,为未来的科技发展带来更 多可能。
图像识别的挑战和未来
1.
多模态数据融合
2.
对抗性攻击与防御
3.
图像识别的发展趋势
如何将图像、文本、语音等多 种数据进行融合,实现更准确 的图像识别。
如何避免恶意攻击对图像识别 造成的影响,提高识别的安全 性。
越来越多的行业开始应用图像 识别技术,未来发展潜力巨大。
结语
实战演练
通过实际项目案例,掌握图像 识别应用的基本方法和技巧。
机器学习与图像识别
1 机器学习算法概述
包括决策树、朴素贝叶斯、支持向量机、神经网络等算法,用于对图像特征进行分类和 识别。
2 监督学习与无监督学习
监督学习利用已标注的数据进行训练,无监督学习则是利用未标注的数据进行训练。
3 特征选择和分类器构建
特征选择需要寻找最具判别性的特征,分类器构建则需要根据具体应用场景选择最优的 算法。
《图像识别》PPT课件
本课程旨在介绍图像识别的概念、原理和应用领域,并探讨机器学习和深度 学习在图像识别中的应用。
概述
定义和意义
图像识别是通过计算机模拟 人类视觉过程,识别图像中 的信息,从而实现自动识别 和分类的技术。

图像识别与模式识别算法比较分析

图像识别与模式识别算法比较分析

图像识别与模式识别算法比较分析图像识别和模式识别是计算机视觉领域中重要的研究方向,主要目标是自动化识别和理解图像中的信息。

虽然两种算法在目标上有所相似,但它们在方法和应用方面存在一些差异。

本文将对图像识别和模式识别算法进行比较分析,探讨它们的特点、应用领域以及优缺点。

一、图像识别算法图像识别算法旨在通过计算机对输入的图像数据进行处理和分析,以自动识别图像中的对象或特征。

以下是一些常见的图像识别算法:1.1 特征提取算法特征提取算法是图像识别的基础,其目标是从图像中提取出与所需识别对象相关的特征。

常见的特征包括颜色、纹理、形状等。

特征提取算法有边缘检测、尺度不变特征变换(SIFT)、方向梯度直方图(HOG)等。

1.2 分类算法分类算法是图像识别的核心部分,其目的是将提取的特征与预定义的类别进行匹配,判断图像属于哪个类别。

常见的分类算法有支持向量机(SVM)、卷积神经网络(CNN)等。

二、模式识别算法模式识别算法是对复杂数据模式进行分类与分析的一种方法。

下面是一些常见的模式识别算法:2.1 统计模式识别算法统计模式识别算法主要基于统计分析方法,通过对已知类别的样本进行建模,并对新样本进行概率估计以实现分类。

常见的统计模式识别算法有贝叶斯决策理论、最大似然估计等。

2.2 人工神经网络算法人工神经网络算法模拟人脑神经元网络的工作原理,通过构建多层神经网络,并利用反向传播算法进行训练和学习,实现对复杂模式的识别。

常见的人工神经网络算法有多层感知器(MLP)、自组织映射(SOM)等。

三、比较分析图像识别算法和模式识别算法在方法和应用方面存在一些差异。

3.1 方法上的差异图像识别算法主要关注图像的低层次特征提取和高层次特征分类,通过提取图像的外观和结构特征来识别图像中的对象或场景。

而模式识别算法更加注重数据的高层次特征表示和模式之间的关联分析,通过对数据的统计特性进行建模和分类来识别模式。

3.2 应用领域上的差异图像识别算法主要应用于计算机视觉、人机交互、智能监控等领域。

图像识别方法及图像识别模型的训练方法

图像识别方法及图像识别模型的训练方法

图像识别方法及图像识别模型的训练方法在当今数字化的时代,图像识别技术已经成为了一项至关重要的技术。

它在众多领域都有着广泛的应用,如安防监控、自动驾驶、医疗诊断、工业检测等等。

那么,图像识别到底是如何实现的呢?这就涉及到图像识别方法以及图像识别模型的训练方法。

首先,我们来了解一下图像识别的基本方法。

图像识别的核心思想是从图像中提取出有价值的特征,并利用这些特征来对图像进行分类或识别。

一种常见的方法是基于传统的图像处理技术。

这包括对图像进行灰度化、二值化、滤波、边缘检测等操作,以提取图像的基本形状、纹理等特征。

例如,通过边缘检测算法,可以找出图像中物体的轮廓;通过纹理分析,可以判断图像中的材质。

另一种重要的方法是基于深度学习的技术。

深度学习中的卷积神经网络(CNN)在图像识别中取得了巨大的成功。

CNN 能够自动从大量的图像数据中学习到有效的特征表示。

它通过一系列的卷积层、池化层和全连接层来对图像进行处理。

卷积层用于提取局部特征,池化层用于降低特征维度,全连接层则用于最终的分类或识别。

在实际应用中,还会结合多种方法来提高图像识别的效果。

比如,先使用传统的图像处理方法对图像进行预处理,去除噪声、增强对比度等,然后再将处理后的图像输入到深度学习模型中进行识别。

接下来,我们探讨一下图像识别模型的训练方法。

数据准备是训练图像识别模型的第一步。

需要收集大量的图像数据,并对这些数据进行标注,即标记出图像中的目标类别。

数据的质量和数量对模型的训练效果有着至关重要的影响。

为了增加数据的多样性,可以对原始数据进行数据增强操作,如翻转、旋转、缩放、裁剪等。

选择合适的模型架构是关键的一步。

对于图像识别任务,常见的模型架构如 VGG、ResNet、Inception 等都表现出色。

这些架构在不同的应用场景中可能会有不同的效果,需要根据具体问题进行选择和调整。

在训练过程中,需要设置合适的超参数,如学习率、迭代次数、正则化参数等。

关于人工智能的图像识别技术分析

关于人工智能的图像识别技术分析

关于人工智能的图像识别技术分析1. 引言1.1 人工智能的发展背景人工智能是指机器或计算机系统具有类似人类智能的能力,能够执行智能任务。

人工智能的概念最早可以追溯到上个世纪50年代,随着计算机技术的发展,人工智能领域也逐渐壮大。

人工智能的发展背景包括以下几个方面:计算机硬件的不断进步为人工智能的发展提供了强大的支持。

随着计算机处理能力的不断提升,人工智能系统可以更快更准确地处理海量数据,实现复杂的任务。

数据的大规模产生和积累为人工智能的发展提供了充足的资源。

随着互联网的普及和各种传感器技术的发展,人工智能系统可以获取更多更全面的数据,从而提高学习和预测的准确性。

机器学习和深度学习等先进技术的应用也推动了人工智能的快速发展。

通过各种算法和模型的不断优化和改进,人工智能系统在图像识别、语音识别、自然语言处理等领域取得了显著的进展。

人工智能的发展背景是多方面因素共同作用的结果,技术、数据和算法的不断演进为人工智能的发展奠定了坚实基础。

随着人工智能技术的不断革新和应用,必将为人类社会带来更多的便利和进步。

1.2 图像识别技术的重要性图像识别技术在人工智能领域扮演着至关重要的角色,其重要性体现在以下几个方面:1. 促进智能化应用:图像识别技术可以让计算机识别、理解和处理图像信息,从而实现智能化应用。

比如人脸识别技术可以应用于安防监控、金融支付等领域;图像搜索技术可以帮助用户精准查找图片内容;医学影像识别可以辅助医生快速诊断疾病等。

2. 提高生产效率:图像识别技术可以自动化处理大量图像数据,提高生产效率和工作效率。

比如在工业生产线上,利用图像识别技术可以自动检测产品质量,提高生产效率和产品品质。

3. 丰富用户体验:图像识别技术可以为用户提供更加便捷、智能的体验。

比如智能相机可以自动识别场景,调整拍摄参数;智能家居系统可以通过识别用户的表情和动作来实现智能互动等。

图像识别技术的重要性不仅在于可以推动人工智能技术的发展,还可以带来更好的生活体验和工作效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 模式识别的基本问题
(1)特征如何提取?-------特征产生
(2)最有效的特征是哪些特征?-------特征选择
(3)对特定任务,如何设计分类器? -------分类器设计 (4)分类器设计后,如何评价分类器?分类错误率是多少? -------分类器评价
模式
传感器 特征产生 特征选择
设计流程
分类器设计 分类器评价
4 模式识别方法的分类
(1)监督与非监督模式识别
A、监督模式识别
利用先验知识和训练样本来设计分类器。
B、非监督模式识别
利用特征向量的相似性来自动进行分类。
(2)其他分类方法
A、统计模式识别
依据决策理论而进行模式识别的方法。
包括贝叶斯决策理论、判别函数、近邻法等。 B、聚类模式识别 C、神经网络模式识别 D、结构模式识别(句法模式识别)
多维信息:
(3)模式类(pattern class)
一个拥有某些共同特性的模式族。
2 模式识别系统
(1)信息的获取 通过传感器,将光或声等信息转化为电信息。 (2)预处理:
A、信号增强:去除噪声,加强有用信息。
信号恢复:对退化现象进行复原。
B、归一化处理
(例如图像大小的归一化; 神经网络输入数据的归一化)
5 预备知识 (1)特征
用于分类的测度。
(2)特征向量
由多个特征组成的向量。 Ⅹ= (X1,X2,…,Xn)T
(3)分类器
把特征空间划分为不同类别区域的“机器”。
7.2 图像匹配
1 定义 根据已知模式到另一幅图中寻找相应的模式。
2 基于相关的模板匹配
J 1 j 0 K 1 k 0
R ( x, y )
C、贝叶斯公式
P(i x) P( x i ) P(i ) P( x) P( x) P( x j ) P( j )
j 1 2
(后验概率)
(两类时)
贝叶斯公式的物理含义: 通过观察x的值,就可以把先验概率转化为后验概率, 即特征值x已知的情况下类别属于ωj的概率 。
P(i x)
t ( j, k ) f ( x j, y k )
j 0 J 1 2 [ f ( x j , y k )] k 0 K 1

j 0
J 1
2 [ t (平方和的模板匹配
D( x, y ) [ f ( x j, y k ) t ( j, k )]2
条件概率密度分布
x
(4)贝叶斯公式 A、P(ωj,x) =P(x|ωj) P(ωj) (总体;类) 举例:P(ω1)=0.4,P(ω2)=0.6, P(x=12|ω1)=0.15,P(x=12|ω2)=0.35
则:P(ω1, x=12)=0.15*0.4
P(ω2, x=12)=0.35*0.6
B、 P(ωj,x) =P(ωj | x) P(x)
2、基于最小错误率的贝叶斯决策
1 .0
P(1 x) P(2 x)
(1)决策规则(两类情况)
A、P (1
0 .8
0 .6 0 .4
1 x) P (2 x ) x 2
0 .2
x
后验概率分布
1 B、P ( x 1 ) P (1 ) P ( x 2 ) P (2 ) x 2
j 0 k 0
J 1 K 1
4、特征模板匹配 5、 特征匹配
1 mj N
x
x
j
j
j 1,2,,W j 1,2,,W
D j ( x) x m j
7.3 基于最小错误率贝叶斯决策理论
1 贝叶斯公式 (1)概率:某事件发生的几率。
(2)先验概率
在实际的事件没有出现之前,我们所拥有的该事件可能
7.4 线性判别函数
1 问题的引入
(1)Bayes决策尽管是最优决策,但实现困难。
A、类条件概率密度的形式常难以确定。 B、非参数方法需要大量样本。 (2)模式识别的任务是分类,可根据样本集直接 设计判别函数。(次优的)
(举例)
2 线性判别函数的基本概念 (1)线性判别函数的一般表达式:
g ( x) wT x w0 x1 x 2 x xd w1 w 2 w wd
P ( x 1 ) C、
1 P (2 ) x P( x 2 ) P (1 ) 2
1 P ( x 1 ) P (2 ) D、g ( x ) ln ln x 2 P( x 2 ) P (1 )
(2)判决的误差概率
二类问题:若P(1 x) P(2 x),则x 1 , 这时错误率 为P(2 x). P(2 x),当x 1 P (e x ) 这时错误率最小。 P(1 x),当x 2
(2)决策规则
则x 1 g ( x) 0, 则x 2 g ( x) 0, g ( x) 0,则拒绝或任意类
出现的概率。
举例:(1)扑克牌:大王,K。 (2)硬币:正面,反面。
问题:是否可以提高押对的概率,减少押错的概率?
除先验概率外,必须利用其他的信息。 P( x i )
P(x 1) P(x 2)
(3)类条件概率密度
细胞识别:正常细胞ω1 异常细胞ω2 光密度特征:x 类条件概率密度p(x|ω): 类别状态为ω时x的概率密度函数。
(1)模式(pattern) A、事物所具有的时间或空间分布信息。(狭义) B、描绘子的组合。(更狭义) (2)模式识别(Pattern Recognition) 进行物体分类的学科。 举例:人日常生活中的模式识别
一维信息:例如声音信号,腾格尔的歌声。 二维信息:例如图像信号,数字照相机拍摄的照片。 三维信息:CT重建图像。
数字图像处理学
王素玉 suyuwang@
7.1 概论 7.2 图像匹配 7.3 基于最小错误率贝叶斯决策理论 7.4 线性判别函数
7.5 人工神经网络
7.6 图像识别示例
图像识别
运用模式识别的原理对图像对象进行分类的学问。
7.1 概论
1. 模式识别的基本定义
相关文档
最新文档