2020鄂州市梁子湖区2020年九年级数学12月月考试卷及答案2016
2020-2021九年级上月考数学试卷含答案解析

2020-2021九年级(上)月考数学试卷(12月份)一、选择题(每题3分计36分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C. D.2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠03.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3 B.y=﹣x2﹣2x+3 C.y=﹣x2+2x+3 D.y=﹣x2+2x﹣34.已知⊙O过正方形ABCD顶点A,B,且与CD相切,若正方形边长为2,则圆的半径为()A.B.C.D.15.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A.B.C.D.6.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)7.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.8.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.9.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A.m B.C.D.10.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y111.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A. B. C. D.12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.二、填空题(每题4分计24分)13.反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),那么该图象一定经过第象限.14.一个反比例函数y=(k≠0)的图象经过点P(﹣2,﹣1),则该反比例函数的解析式是.15.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为米.16.如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为8,则反比例函数的表达式是.17.如图,D,E分别是△ABC的边AB,AC上的点,请你添加一个条件,使△ABC与△AED相似,你添加的条件是.18.如图,已知△ABC∽△DBE,AB=6,DB=8,则= .三、解答题:19.先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.21.已知如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=,DB=1,求CD,AD的长.22.某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?23.已知:,试判断直线y=kx+k一定经过哪些象限,并说明理由.24.已知:CP为圆O切线,AB为圆的割线,CP、AB交于P,求证:AP•BP=CP2.25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.参考答案与试题解析一、选择题(每题3分计36分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:(A)、是轴对称图形,不是中心对称图形,故本选项错误;(B)、是轴对称图形,也是中心对称图形,故本选项正确;(C)、不是轴对称图形,是中心对称图形,故本选项错误;(D)、不是轴对称图形,是中心对称图形,故本选项错误.故选B.【点评】此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念,属于基础题.2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.3.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3 B.y=﹣x2﹣2x+3 C.y=﹣x2+2x+3 D.y=﹣x2+2x﹣3 【考点】二次函数的图象.【专题】压轴题.【分析】抛物线开口向下,a<0,与y轴的正半轴相交c>0,对称轴在原点的右侧a、b异号,则b>0,再选答案.【解答】解:由图象得:a<0,b>0,c>0.故选C.【点评】此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.4.已知⊙O过正方形ABCD顶点A,B,且与CD相切,若正方形边长为2,则圆的半径为()A.B.C.D.1【考点】切线的性质;正方形的性质.【分析】作OM⊥AB于点M,连接OB,在直角△OBM中根据勾股定理即可得到一个关于半径的方程,即可求得.【解答】解:作OM⊥AB于点M,连接OB,设圆的半径是x,则在直角△OBM中,OM=2﹣x,BM=1,∵OB2=OM2+BM2,∴x2=(2﹣x)2+1,解得x=.故选:B.【点评】本题主要考查了切线的性质、垂径定理以及勾股定理,在圆的有关半径、弦长、弦心距之间的计算一般要转化为直角三角形的计算.5.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A.B.C.D.【考点】几何概率.【分析】确定黑色方格的面积在整个方格中占的比例,根据这个比例即可求出小鸟停在黑色方格中的概率.【解答】解:图上共有15个方格,黑色方格为5个,小鸟最终停在黑色方格上的概率是,即.故选B.【点评】用到的知识点为:概率=相应的面积与总面积之比.6.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)【考点】反比例函数图象上点的坐标特征.【分析】将(a,b)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:因为反比例函数的图象经过点(a,b),故k=a×b=ab,只有A案中(﹣a)×(﹣b)=ab=k.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.7.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【考点】锐角三角函数的定义;互余两角三角函数的关系.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.8.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二、四象限,没有符合条件的选项.故选:B.【点评】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.9.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A.m B.C.D.【考点】相似三角形的应用.【分析】判断出△PAB与△PCD相似,再根据相似三角形对应高的比等于相似比列式计算即可得解.【解答】解:设点P到AB的距离为xm,∵AB∥CD,∴△PAB∽△PCD,∴==,解得x=m.故选C.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应高的比等于相似比,熟记性质是解题的关键.10.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【考点】反比例函数图象上点的坐标特征.【专题】函数思想.【分析】将M(,y1)、N(,y2)、P(,y3)三点分别代入函数(k>0),求得y1、y2、y3的值,然后再来比较它们的大小.【解答】解:∵M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,∴M(,y1)、N(,y2)、P(,y3)三点都满足函数关系式(k>0),∴y1=﹣2k,y2=﹣4k,y3=2k;∵k>0,∴﹣4k<﹣2k<2k,即y3>y1>y2.故选C.【点评】本题考查了反比例函数图象上点的坐标特征.所有反比例函数图象上的点都满足该反比例函数的解析式.11.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A. B. C. D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】压轴题.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.【点评】此题主要考查了平行四边形、相似三角形的性质.12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.【考点】锐角三角函数的定义;圆周角定理;三角形的外接圆与外心.【分析】求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.【解答】解:连接DC.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sinB=sinD==.故选A.【点评】综合运用了圆周角定理及其推论.注意求一个角的锐角三角函数时,能够根据条件把角转化到一个直角三角形中.二、填空题(每题4分计24分)13.反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),那么该图象一定经过第二,四象限.【考点】反比例函数图象上点的坐标特征.【分析】先根据k=xy,求出k的取值范围,再根据k的取值范围即可得出图象经过的象限.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),∴k=a•(﹣a)=﹣a2,为负数.则经过该图象一定二,四象限.故答案为:二,四.【点评】考查了反比例函数图象上点的坐标特征,本题需求得函数k的值的符号,进而判断它所在的象限.14.一个反比例函数y=(k≠0)的图象经过点P(﹣2,﹣1),则该反比例函数的解析式是y=.【考点】待定系数法求反比例函数解析式.【专题】待定系数法.【分析】先把(﹣2,﹣1)代入函数y=中,即可求出k,那么就可求出函数解析式.【解答】解:由题意知,﹣1=,∴k=2,∴该反比例函数的解析式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.15.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 4.8 米.【考点】相似三角形的应用.【专题】转化思想.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设高度为h,因为太阳光可以看作是互相平行的,由相似三角形:,h=4.8m.【点评】本题考查相似形的知识,解题的关键在于将题目中的文字转化为数学语言再进行解答.16.如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为8,则反比例函数的表达式是y=﹣.【考点】反比例函数系数k的几何意义.【专题】常规题型.【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S是个定值,即S=|k|,再结合反比例函数所在的象限即可得到k的值,则反比例函数的解析式即可求出.【解答】解:设反比例函数的表达式是(k≠0),由题意知,S矩形PEOF=|k|=8,所以k=±8,又反比例函数图象在第二象限上,k<0,所以k=﹣8,即反比例函数的表达式是y=﹣.故答案为:y=﹣.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.17.如图,D,E分别是△ABC的边AB,AC上的点,请你添加一个条件,使△ABC与△AED相似,你添加的条件是∠AED=∠B.【考点】相似三角形的判定.【专题】开放型.【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等来判定其相似.【解答】解:∠AED=∠B.【点评】这是一道开放性的题,答案不唯一.18.如图,已知△ABC∽△DBE,AB=6,DB=8,则= .【考点】相似三角形的性质.【专题】压轴题.【分析】先求出△ABC与△DBE的相似比,再根据相似三角形面积的比等于相似比的平方的性质解答.【解答】解:∵AB=6,DB=8,∴△ABC与△DBE的相似比=6:8=3:4,∴=.【点评】本题主要考查的是相似三角形面积的比等于相似比的平方.三、解答题:19.先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】分别化简分式和a的值,再代入计算求值.【解答】解:原式=.(2分)当a=tan60°﹣2sin30°=﹣2×=时,(2分)原式=.(1分)【点评】本题考查了分式的化简求值,关键是化简.同时也考查了特殊角的三角函数值;注意分子、分母能因式分解的先因式分解,除法要统一为乘法运算.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.【考点】反比例函数与一次函数的交点问题.【专题】压轴题;数形结合;待定系数法.【分析】(1)直接由图象就可得到A(﹣6,﹣2)、B(4,3);(2)把点A、B的坐标代入两函数的解析式,利用方程组求出k、b、m的值,即可得到两函数解析式;(3)结合图象,分别在第一、二象限求出一次函数的函数值>反比例函数的函数值的x的取值范围.【解答】解:(1)由图象得A(﹣6,﹣2),B(4,3).(2)设一次函数的解析式为y=kx+b,(k≠0);把A、B点的坐标代入得解得,∴一次函数的解析式为y=x+1,设反比例函数的解析式为y=,把A点坐标代入得,解得a=12,∴反比例函数的解析式为.(3)当﹣6<x<0或x>4时一次函数的值>反比例函数的值.【点评】本类题目主要考查一次函数、反比例函数的图象和性质,考查待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,考查数形结合的数学思想,另外,还需灵活运用方程组解决相关问题.21.已知如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=,DB=1,求CD,AD的长.【考点】勾股定理;相似三角形的判定与性质.【分析】先根据勾股定理求得CD的长,再根据相似三角形的判定方法求得△BCD∽△CAD,从而得到CD2=BD•AD,其它三边的长都已知,则可以求得AD的长.【解答】解:∵BC=,DB=1∴CD=∵∠B+∠BCD=90°,∠BCD+∠DCA=90°∴∠BCD=∠DCA∴△BCD∽△CAD∵CD2=BD•AD∴AD=5.【点评】此题主要考查学生对相似三角形的性质及勾股定理的理解及运用.22.某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?【考点】条形统计图;分式方程的应用;概率公式.【专题】压轴题.【分析】(1)设去天津的车票数为x张,根据条形统计图所给的数据和前往天津的车票占全部车票的30%,列出方程,求出x 的值,从而补全统计图;(2)先算出总车票数和去上海的车票数,再根据概率公式即可得出答案.【解答】解:(1)设去天津的车票数为x张,根据题意得:=30%,解得:x=30,补全统计图如右图所示:(2)∵车票的总数为20+40+30+10=100张,去上海的车票为40张,∴前往上海的车票的概率==,答:张明抽到去上海的车票的概率是.【点评】此题考查了条形统计图和概率公式,从条形统计图中获得必要的信息是本题的关键,条形统计图能清楚地表示出每个项目的数据.23.已知:,试判断直线y=kx+k一定经过哪些象限,并说明理由.【考点】一次函数的性质;比例的性质.【专题】探究型.【分析】由于a+b+c的符号不能确定,故进行分类讨论,当a+b+c≠0时,可利用等比性质求出k的值,当a+b+c=0时,可将a+b转化为﹣c,然后求出k,得到其解析式,进而判断出直线y=kx+k一定经过哪些象限.【解答】解:直线y=kx+k一定经过第二、三象限,理由如下:当a+b+c≠0时,∵,∴k===2,此时,y=kx+k=2x+2,经过第一、二、三象限;当a+b+c=0时,b+c=﹣a,此时,k===﹣1,此时,y=kx+x=﹣x﹣1经过第二、三、四象限.综上所述,y=kx+k一定经过第二、三象限.【点评】本题考查了一次函数的性质,根据已知条件求出k的值是解题的关键,要熟悉等比性质,并能进行分类讨论.24.已知:CP为圆O切线,AB为圆的割线,CP、AB交于P,求证:AP•BP=CP2.【考点】切割线定理.【专题】证明题.【分析】连接AC、BC、CO并延长交圆O于点M,连结AM.先由切线的性质得出OC⊥PC,那么∠ACP+∠ACM=90°,由圆周角定理及直角三角形两锐角互余得出∠M+∠ACM=90°,根据同角的余角相等得出∠ACP=∠M,由圆周角定理得出∠M=∠CBP,那么∠ACP=∠CBP,又∠APC=∠CPB,得出△ACP∽△CBP,根据相似三角形对应边成比例得到AP:CP=CP:BP,即AP•BP=CP2.【解答】证明:连接AC、BC、CO并延长交圆O于点M,连结AM.∵PC是圆O的切线,∴OC⊥PC,∴∠ACP+∠ACM=90°,又∵CM是直径,∴∠M+∠ACM=90°,∴∠ACP=∠M,∵∠M=∠CBP,∴∠ACP=∠CBP,又∵∠APC=∠CPB(公共角),∴△ACP∽△CBP,∴AP:CP=CP:BP,∴AP•BP=CP2.【点评】本题实际上证明了切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.涉及到的知识点有:切线的性质,圆周角定理,直角三角形的性质,余角的性质,相似三角形的判定与性质.准确作出辅助线是解题的关键.25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B (3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值.(2)根据S△PAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B (3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3.(2)∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P的纵坐标为|y P|,∵S△PAB=8,∴AB•|y P|=8,∵AB=3+1=4,∴|y P|=4,∴y P=±4,把y P=4代入解析式得,4=x2﹣2x﹣3,解得,x=1±2,把y P=﹣4代入解析式得,﹣4=x2﹣2x﹣3,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=8.【点评】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,二次函数的对称轴点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题.。
湖北省鄂州市城区学校九年级下学期第二次月考数学考试卷(解析版)(初三)月考考试卷.doc

湖北省鄂州市城区学校九年级下学期第二次月考数学考试卷(解析版)(初三)月考考试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】的倒数是()A. B. 8 C. ﹣8 D. ﹣1【答案】C【解析】试题解析:根据倒数的定义知:∴的倒数是-8.故选C.【题文】下列运算正确的是( )A. =-1B. (﹣a3b)2=a6b2C. a+a=a2D. a2•4a4=4a8【答案】B【解析】A. =-1,运算不正确,不符合题意;B. ,运算正确,符合题意;C. ,运算不正确,不符合题意;D. ,运算不正确,不符合题意;故选B.【题文】过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A. 312×104B. 0.312×107C. 3.12×106D. 3.12×107【答案】C【解析】试题解析:3120000=3.12×106故选C.【题文】如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3D. 三种视图的面积都是4【答案】B【解析】试题分析:主视图为4个正方形,左视图为3个正方形,俯视图为4个正方形.考点:三视图【题文】对于一组统计数据:2,3,6,9,3,7,下列说法错误的是( )A. 众数是3B. 中位数是4.5C. 方差是7.5D. 极差是7【答案】C【解析】A. ∵3出现了2次,最多,∴众数为3,故此选项正确;B. ∵排序后为:2,3,3,6,7,9,∴中位数为:(3+6)÷2=4.5;故此选项正确;C. ,;故此选项不正确;D. 极差是9−2=7,故此选项正确;故选C.【题文】如图,在△ABC中,∠B=44°,∠C=54°,AD平分∠BAC,l【题文】如图,已知菱形ABCD的边长为2cm,∠A=60°,点M从点A出发,以1cm/s的速度向点B运动,到B点停止,点N从点A同时出发,以2cm/s的速度经过点D向点C运动,到C点停止。
最新初中九级数学鄂题库 州市梁子湖区年九年级数学12月月考试卷及答案

鄂州市梁子湖区2016年秋季九年级月考数学试卷一.选择题(共10小题,每题3分,共30分)1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B. C.D.2.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>53.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y34.已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.5.若关于x的方程4x2﹣(2k2+k﹣6)x+4k﹣1=0的两根互为相反数,则k的值为()A.B.﹣2 C.﹣2或D.2或6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°7.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()A.2 B.3 C.4 D.128.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm9.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.210.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤二.填空题(共7小题,每题3分,共21分)11.如图1,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.图1 图2 图312.如图2,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.13.如图3,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发秒时,四边形DFCE的面积为20cm2.14.如图4,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.15.关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.16.如图5,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q.则AB=.17.如图6,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x1,0)、B(x2,0)两点,其中x1<0<x2,当x=x1+2时,y0(填“>”“=”或“<”号).三.解答题(共7小题,共69分)18.(12分)解方程(1)(x﹣1)(x+3)=12 (2)(x﹣3)2=3﹣23(10分).西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,设每千克降价x元每天销量为y千克.(1)求y与x的函数关系式;(2)如何定价,才能使每天获得的利润为200元,且使每天的销量较大?24.(12分)如图:对称轴x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(﹣3,0),且点(2,5)在抛物线y=ax2+bx+c上.(1)求抛物线的解析式.(2)点C为抛物线与y轴的交点.①点P在抛物线上,且S△POC =4S△BOC,求点P点坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.2016年12月九年级月考数学参考答案与试题解析一.选择题(共10小题)1.B.2.B.3.D.4.C.5.B.6.B.7.B.8.A.9.B.10.D.二.填空题(共7小题)11..12..13.1或5.14. +.15.<a<﹣2.16.6.17.<.三.解答题(共7小题)18.(1)解得:x1=3,x2=﹣5;(2)解得:x1=3,x2=2;(3)∴x==.19.解:(1)∵良有70人,占70%,∴统计图共统计了的空气质量情况的天数为:70÷70%=100(天);(2)如图:条形统计图中,空气质量为“优”的天数为100×20%=20(天),空气质量为“优”所在扇形的圆心角度数是:20%×360°=72°,(3)画树状图得:∵共有12种等可能情况,其中符合一男一女的有8种,∴恰好选到一名男同学和一名女同学的概率是=.故答案为:(1)100,(2)72°,(3).20.解:(1)方程有不相等的实数根,△=b2﹣4ac=4m2﹣4(m﹣3)(m+1)>0,解得∵两个根又不互为相反数,解得m≠0,故m且m≠0且m≠3.(2)当m在取值范围内取最小正偶数时,m=2时,方程是:﹣x2+4x+3=0解得21.解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠D AC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC交OD于H,延长DF交⊙O于G,由垂径定理可得:OH⊥BC,==,∴=,∴DG=BC,∴弦心距OH=OF=4,∵AB是直径,∴BC⊥AC,∴OH∥AC,∴OH是△ABC的中位线,∴AC=2OH=8.22.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.23.解:(1)∵每千克降价x元每天销量为y千克,∴y=200+,即y=200+400x;(2)设应将每千克小型西瓜的售价降低x元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2,x2=0.3.为使每天的销量较大,应降价0.3元,即定价2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.24.解:(1)因为抛物线的对称轴为x=﹣1,A点坐标为(﹣3,0)与(2,5)在抛物线上,则:,解得:.所以抛物线的解析式为:y=x 2+2x ﹣3.(2)二次函数的解析式为y=x 2+2x ﹣3,∴抛物线与y 轴的交点C 的坐标为(0,﹣3),OC=3.设P 点坐标为(x ,x 2+2x ﹣3),∵S △POC =4S △BOC ,∴×3×|x |=4××3×1,∴|x |=4,x=±4.当x=4时,x 2+2x ﹣3=16+8﹣3=21;当x=﹣4时,x 2+2x ﹣3=16﹣8﹣3=5.∴点P 的坐标为(4,21)或(﹣4,5);(3)设直线AC 的解析式为y=kx +t ,将A (﹣3,0),C (0,﹣3)代入, 得,解得:.即直线AC 的解析式为y=﹣x ﹣3.设Q 点坐标为(x ,﹣x ﹣3)(﹣3≤x ≤0),则D 点坐标为(x ,x 2+2x ﹣3), QD=(﹣x ﹣3)﹣(x 2+2x ﹣3)=﹣x 2﹣3x=﹣,∴当x=﹣时,QD 有最大值.不用注册,免费下载!。
鄂州市梁子湖区2016年12月九年级上月考数学试卷含答案解析

试卷( 月份)
一.选择题(共 10 小题,每题 3 分,共 30 分) 1.下列图案中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
2.若关于 x 的一元二次方程(k﹣﹣)x2+4x+1=0 有两个不相等的实数根,则 k 的 取值范围是( )
A.k<5 B.k<5,且 k≠1 C.k≤5,且 k≠1 D.k>5
3.点 P1 (﹣﹣,y1 ),P2 (3,2y ),3P (5,3 y )均在二次函数 y=2﹣+﹣2x+c 的图象 上,则 y1,y2 ,y3 的大小关系是( ) A.y3 >y2 >y1 B.3y >1y =2 y C.y1 >y2 >y3 D.1y =2 y >y
A.15° B.20° C.25° D.30° 7.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球 5
第 1 页(共 30 页)
个,黄球 4 个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为 ,则袋中白球的个数为( )
A.2 B.3 C.4 D.12 8.如图,已知一块圆心角为 270°的扇形铁皮,用它作一个圆锥形的烟囱帽 (接缝忽略不计),圆锥底面圆的直径是 60cm,则这块扇形铁皮的半径是 ()
A.40cm B.50cm C.60cm D.80cm 9.如图,半径为 3 的⊙O 内有一点 A,OA= ,点 P 在⊙O 上,当∠OPA 最大 时,PA 的长等于( )
A. B. C.3 D.2 10.如图,已知二次函数 y=a2x+bx+c(a≠0)的图象与 x 轴交于点 A(﹣﹣, 0),与 y 轴的交点 B 在(0,﹣2)和(0,﹣﹣)之间(不包括这两点),对称轴为 直线 x=1.下列结论: ①abc>0 ②4a+2b+c>0 ③4ac﹣b 2<8a ④ <a< ⑤b>c. 其中含所有正确结论的选项是( )
湖北鄂州一中九年级上期第二次月考(12月考)数学卷(解析版)(初三)月考考试卷.doc

湖北鄂州一中九年级上期第二次月考(12月考)数学卷(解析版)(初三)月考考试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】用配方法解一元二次方程x²﹣6x﹣4=0,下列变形正确的是( )A.(x﹣6)²=﹣4+36 B.(x﹣6)²=4+36C.(x﹣3)²=﹣4+9 D.(x﹣3)²=4+9【答案】D【解析】试题分析:配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方.考点:配方法【题文】若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为( )A.m=-6,n=-4B.m=O,n=-4 C.m=6,n=4 D.m=6,n=-4 【答案】B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4. 考点:原点对称【题文】下列图形中,既是轴对称图形,又是中心对称图形的有( )A、1个B、2个C、3个D、4个【答案】B【解析】试题分析:根据轴对称图形和中心对称图形的定义可得:图1、图5为轴对称图形;图3是中心对称图形;图2和图4既是轴对称图形,也是中心对称图形.考点:(1)、轴对称图形;(2)、中心对称图形【题文】若函数y=mx²+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为( )A.0B.0或2C.2或-2D.0,2或-2评卷人得分【解析】试题分析:当函数为一次函数时,则m=0;当函数为二次函数时,则,解得:m=±2.综上所述,m=0或2或-2.考点:函数的性质【题文】若函数y=mx²+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为( )A.0B.0或2C.2或-2D.0,2或-2【答案】D【解析】试题分析:当函数为一次函数时,则m=0;当函数为二次函数时,则,解得:m=±2.综上所述,m=0或2或-2.考点:函数的性质【题文】如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△ABC′的位置,使得CC ′∥AB,则∠BAB′=( )A.30° B.35° C.40° D.50°【答案】C【解析】试题分析:根据CC′∥AB可得∠ACC′=∠CAB=70°,根据旋转可得:AC=AC′,则∠AC′C=∠ACC′=70°,则∠CAC′=40°,根据旋转图形的性质可得:∠BAB′=∠CAC′=40°.考点:旋转图形【题文】如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为( ) A. B.5 C.4 D.3【解析】试题分析:根据题意可得AB⊥CD,设OD=r,则DE=4,OE=8-r,根据Rt△ODE的勾股定理可得r=5.考点:垂径定理【题文】如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,ΔAPC是等腰三角形B.当ΔAPC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,ΔPBC是直角三角形【答案】C【解析】试题分析:当PB最长时,则BP为直径,根据BP⊥AC,即△APC是等腰三角形;同理可得当△APC是等腰三角形时,PO⊥AC;当PO⊥AC时,∠ACP=30°或60°;当∠ACP=30°时,△PBC是直角三角形.考点:圆的基本性质【题文】关于x的一元二次方程(a-1)x2+x+a2-1=0有一个实数根是x=0,则a的值为________【答案】-1【解析】试题分析:将x=0代入方程可得:-1=0,解得:a=±1;根据一元二次方程的定义可得:a-1≠0,则a ≠1,综上所述,则a=-1.考点:一元二次方程的解.【题文】若m,n是一元二次方程+x-2015=0的两个实数根,则m2+2m+n的值为________【答案】2014【解析】试题分析:根据韦达定理可得:m+n=-1;将x=m代入方程可得:+m=2015,则原式=+m+m+n=2015+(-1)=2014. 考点:(1)、一元二次方程的解;(2)、韦达定理【题文】方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为______.【答案】15【解析】试题分析:解一元二次方程可得:x=3或x=6;当3为腰时,3、3、6无法构成三角形,则三角形的三边长为6、6、3,则三角形的周长为:6+6+3=15.考点:(1)、一元二次方程的解;(2)、等腰三角形的性质【题文】在同一平面直角坐标系内,将函数y=x2-3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是________【答案】(2,-4)【解析】试题分析:根据函数图象的平移法则可得:平移后的函数解析式为:y=,则顶点坐标为(2,-4).考点:函数图象的平移【题文】如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是____【答案】-1<x<5【解析】试题分析:根据图象可得:函数与x轴的另一个交点为(-1,0),根据图象可得:不等式的解为-1<x<5. 考点:二次函数图象的性质【题文】某药品经过连续两次降价后,由每盒200元下调至128元,若平均每次下降百分率为x,则所列方程为【答案】200(1-x) 2=128【解析】试题分析:根据降价率的通用公式为:降价前的数量×=降价后的数量.考点:一元二次方程的应用【题文】已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°。
2024-2025学年九年级数学上学期第三次月考卷(湖北省卷专用,人教版九上全部)(考试版A4)

2024-2025学年九年级数学上学期第三次月考卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第21章一元二次方程19%+第22章二次函数28%+第23章旋转21%+第24章圆22%+第25章概率初步10%。
5.难度系数:0.68。
第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.数学是一门美丽的学科,在平面直角坐标系内可以利用函数画出许多漂亮的曲线,下列曲线中,既是中心对称图形,也是轴对称图形的是( )A.三叶玫瑰线B.四叶玫瑰线C.心形线D.笛卡尔叶形线2.如图,AB,CD是⊙O的直径,AE=BD,若∠AOE=32°,则∠COE的度数是( )A.32°B.60°C.68°D.64°3.下列说法正确的是( )A.“明天会下雨”是必然事件B.“概率为0.0001的事件”是不可能事件C.测试自行车的质量应采取全面普查D.任意掷一枚质地均匀的硬币20次,正面向上的次数不一定是10次4.如图,在△ABC中,AB≠AC,∠BAC=120°,将△ABC绕点C逆时针旋转,点A、B分别落在点D、E处,如果点A、D、E在同一直线上,那么下列结论错误的是( )A.∠ADC=60°B.∠ACD=60°C.∠BCD=∠ECD D.∠BAD=∠BCE5.若二次函数y=﹣2x2+8x+c的图象经过A(1,y1),B(―1,y2),C(2+y3)三点,则y1、y2、y3的大小关系是( )A.y2<y3<y1B.y1<y3<y2C.y1<y2<y3D.y2<y1<y36.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的轮子被水面截得的弦AB长8m,轮子的吃水深度CD为2m,则该桨轮船的轮子半径为( )A.2m B.3m C.4m D.5m7.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是( )A.0B.﹣1C.﹣2D.﹣38.在平面直角坐标系中,二次函数y=2x2﹣2mx+m2﹣2m(m为常数)的图象经过点(0,8),其对称轴在y轴右侧,则该二次函数有( )A.最大值0B.最小值0C.最大值6D.最小值69.如图,在△ABC中,AB=AC,以AC为直径的⊙O与AB,BC分别交于点D,E,连接AE,DE,若∠BED=45°,AB=2,则阴影部分的面积为( )A.π4B.π3C.2π3D.π10.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的为( )A.①④B.②③④C.①②④D.①②③④第二部分(非选择题共55分)二、填空题(本大题共5小题,每小题3分,满分15分)11.在平面直角坐标系中,若抛物线y=x2﹣6x+c的顶点在x轴,则c的值为 .12.如图,在⊙O中,弦BC=2,点A是圆上一点,且∠BAC=30°,则⊙O的半径是 .13.如图,AD是正五边形ABCDE的一条对角线,以C为圆心,CB为半径画弧交AD于点F,连接CF,则∠CFD= °.14.如图,一块飞镖游戏板由四个全等的直角三角形和一个正方形构成,若a=1,b=2.游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中阴影部分的概率 .15.如图,在矩形ABCD中,AB=4,AD=8,Q是矩形ABCD左侧一点,连接AQ、BQ,且∠AQB=90°,连接DQ,E为DQ的中点,连接CE,则CE的最大值为 .三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题3分,共6分)用适当的方法解下列一元二次方程:(1)x(4x﹣1)=9﹣x;(2)x2﹣6x﹣16=0.17.(6分)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1,2,且x21+x22―x1x2=7,求m的值.18.(6分)2024年巴黎奥运会新增了四个项目:霹雳舞,滑板,冲浪,运动攀岩,依次记为A,B,C,D,浔阳体育队的小明同学把这四个项目写在了背面完全相同的卡片上.将这四张卡片背面朝上,洗匀放好.(1)小明想从中随机抽取一张,去了解该项目在奥运会中的得分标准,恰好抽到是B(滑板)的概率是 .(2)体育老师想从中选出来两个项目,让小明做成手抄报给大家普及一下,他先从中随机抽取一张不放回,再从中随机抽取一张,请用列表法或画树状图法表示出所有可能的结果,并求体育老师抽到的两张卡片恰好是B(滑板)和D(运动攀岩)的概率.19.(8分)某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,这一想法能实现吗?请说明理由.20.(8分)如图,在平面直角坐标系中,已知点A(﹣2,2),B(﹣1,4),C(﹣4,5),请解答下列问题:(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(1,0)作出△A1B1C1并写出其余两个顶点的坐标;(2)将△ABC绕点O按顺时针方向旋转90°得到△A2B2C2,作出△A2B2C2;(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,直接写出旋转中心的坐标.21.(8分)如图,以点O为圆心,AB长为直径作圆,在⊙O上取一点C,延长AB至点D,连接DC,∠DCB=∠DAC,过点A作AE⊥AD交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,DB=2,求AE的长.22.(10分)网络直播销售已经成为一种热门的销售方式,某生产商在一销售平台上进行直播销售板栗.已知板栗的成本价为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w (元).(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?23.(11分)已知∠AOB=∠COD=90°,OA=OB=10,OC=OD=8.(1)如图1,连接AC、BD,问AC与BD相等吗?并说明理由.(2)若将△COD绕点O逆时针旋转,如图2,当点C恰好在AB边上时,请写出AC、BC、OC之间关系,并说明理由.(3)若△COD绕点O旋转,当∠AOC=15°时,直线CD与直线AO交于点F,请直接写出AF的长.24.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y 轴交于点C,作直线BC,点P是抛物线上一个动点(点P不与点B,C重合),连接PB,PC,以PB,PC为边作平行四边形CPBD,设平行四边形CPBD的面积为S,点P的横坐标为m.(1)求抛物线函数解析式;(2)当点P在第四象限,且S=6时,求点P坐标.(3)①求S与m之间的函数关系式.②根据S的不同取值,试探索点P的个数情况.。
湖北省九年级上学期数学12月月考试卷

湖北省九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2015九上·福田期末) 抛物线y=2(x﹣1)2+1的顶点坐标是()A . (1,1)B . (1,﹣1)C . (﹣1,1)D . (﹣1,﹣1)2. (2分) (2020八上·松阳期末) 已知直角三角形的两条边长分别是3cm和4cm,则它的第三边长为()A . 4cmB . cmC . 5cmD . 5cm或 cm3. (2分)如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则CE的长为()A . 9B . 15C . 12D . 64. (2分) (2020八上·盐田期末) 如图,数轴上点C所表示的数是()A . 2B . 3.7C . 3.8D .5. (2分) (2019九下·临洮月考) 如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长()A .B .C .D .6. (2分)如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A . 4.5米B . 6米C . 3米D . 4米7. (2分) (2017九上·鄞州月考) 若点A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1 , y2 , y3的大小关系为()A . y3>y1>y2B . y1>y3>y2C . y3>y2>y1D . y1>y2>y38. (2分) (2019九上·巴南期末) 已知过点的抛物线的对称轴是,若,则()A .B .C .D . 当时,二、填空题 (共9题;共15分)9. (1分) (2018九上·江阴期中) 直接写出解: ________;若,则 ________。
湖北省鄂州市九年级上学期数学12月月考试卷

湖北省鄂州市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·开封期中) 下列方程中是关于x的一元二次方程的是()A . x2+ =5B . 3x2+4xy﹣y2=0C . ax2+bx+c=0D . 2x2+x+1=02. (2分)(2020·武汉模拟) 抛物线 y=(x﹣1)2﹣2 的顶点是()A . (1,﹣2)B . (﹣1,2)C . (1,2)D . (﹣1,﹣2)3. (2分)有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。
小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A . 6B . 16C . 18D . 244. (2分) (2017九上·长春月考) 方程x2-3x-2 = 0的根的情况是()A . 有两个相等的实数根B . 只有一个实数根C . 没有实数根D . 有两个不相等的实数根5. (2分) (2019九下·东莞月考) 已知⊙O的半径是5cm,点O到同一平面内直线a的距离为4cm,则直线a与⊙O的位置关系是()A . 相交B . 相切C . 相离D . 相交或相离6. (2分)鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为()A . 10只B . 11只C . 12只D . 13只7. (2分)(2017·石狮模拟) 如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则的长度为()A . πB . 2πC . 5πD . 10π8. (2分)(2019·泸州) 如图,等腰的内切圆⊙ 与,,分别相切于点,,,且,,则的长是()A .B .C .D .9. (2分)(2017·历下模拟) 定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A . 当m=﹣3时,函数图象的顶点坐标是()B . 当m>0时,函数图象截x轴所得的线段长度大于C . 当m≠0时,函数图象经过同一个点D . 当m<0时,函数在x 时,y随x的增大而减小10. (2分)(2017·和平模拟) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .二、填空题 (共6题;共10分)11. (1分) (2017九上·孝南期中) 若点P( , )关于原点的对称点在第一象限,则a的取值范围是________.12. (5分)在-1,0,,,π,0.10110中任取一个数,取到无理数的概率是________.13. (1分)(2017·淮安) 如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D 的度数是________°.14. (1分)(2018·衡阳) 如图,点A、B、C、D、O都在方格纸的格点上,若是由绕点O按顺时针方向旋转而得到的,则旋转的角度为________.15. (1分)(2018·临河模拟) 如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是________16. (1分)(2017·赤峰模拟) 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论是________.三、解答题 (共8题;共56分)17. (5分)解方程(若题目有要求,请按要求解答)(1) x2﹣4x+2=0(配方法);(2) x2+3x+2=0.18. (5分)一块长方形菜地的面积是150cm2 ,如果它的长减少5cm,那么它就成为正方形菜地,求这个长方形菜地的长和宽?19. (10分) (2018九上·阜宁期末) 甲、乙、丙3名学生各自随机选择到A、B 2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率.20. (11分) (2018八上·宁波期中) 已知,如图,四边形,.(1)尺规作图,在线段上找一点,使得,连接,(不写作法,保留作图痕迹);(2)在(1)在图形中,若,且,,求的长.21. (2分) (2019九上·鄂州期末) 如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB 于点D,延长AO交⊙O于点E,连接CD、CE,若CE是⊙O的切线.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为4,OC=7,求BD的长.22. (2分) (2017八上·阳江期中) 已知一次函数y=kx+5的图象经过点A(1,4).(1)求这个一次函数的解析式.(2)求出当x=﹣1时的函数值.23. (6分)(2019·东台模拟) 如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则 ________.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中的大小有无变化?如果不变,请求出的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则的值为________.(用含β的式子表示)24. (15分)(2014·茂名) 如图,在△ABC中,AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,),点B在y轴的负半轴上,抛物线y=﹣ x2+bx+c经过点A和点C(1)求b,c的值;(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共56分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鄂州市梁子湖区2020年秋季九年级月考数学试卷
一.选择题(共10小题,每题3分,共30分)
1.下列图案中,既是轴对称图形又是中心对称图形的是()
A.B.C. D.
2.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()
A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5
3.点P
1(﹣1,y
1
),P
2
(3,y
2
),P
3
(5,y
3
)均在二次函数y=﹣x2+2x+c的图象
上,则y
1,y
2
,y
3
的大小关系是()
A.y
3>y
2
>y
1
B.y
3
>y
1
=y
2
C.y
1
>y
2
>y
3
D.y
1
=y
2
>y
3
4.已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()
A.B.C.
D.
5.若关于x的方程4x2﹣(2k2+k﹣6)x+4k﹣1=0的两根互为相反数,则k的值为()
A.B.﹣2 C.﹣2或D.2或
6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()
A.15°B.20°C.25°D.30°
7.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()
A.2 B.3 C.4 D.12
8.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()
A.40cm B.50cm C.60cm D.80cm
9.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA 的长等于()
A.B.C.3 D.2
10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④<a<
⑤b>c.
其中含所有正确结论的选项是()
A.①③B.①③④C.②④⑤ D.①③④⑤
二.填空题(共7小题,每题3分,共21分)
11.如图1,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.
图1 图2 图3
12.如图2,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.
13.如图3,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发秒时,四边形DFCE的面积为20cm2.
14.如图4,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.
15.关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.
16.如图5,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD 的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q.则AB= .
17.如图6,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x
1,0)、B(x
2
,0)两
点,其中x
1<0<x
2
,当x=x
1
+2时,y 0(填“>”“=”或“<”号).
三.解答题(共7小题,共69分)
18.(12分)解方程
(1)(x﹣1)(x+3)=12 (2)(x﹣3)2=3﹣
23(10分).西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,设每千克降价x元每天销量为y千克.
(1)求y与x的函数关系式;
(2)如何定价,才能使每天获得的利润为200元,且使每天的销量较大?
24.(12分)如图:对称轴x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(﹣3,0),且点(2,5)在抛物线y=ax2+bx+c上.(1)求抛物线的解析式.
(2)点C为抛物线与y轴的交点.
①点P在抛物线上,且S
△POC =4S
△BOC
,求点P点坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
2020年12月九年级月考数学
参考答案与试题解析
一.选择题(共10小题)1.B.2.B.3.D.4.C.5.B.6.B.7.B.8.A.9.B.10.D.
二.填空题(共7小题)
11.. 12.. 13.1或5. 14. +. 15.<a<﹣2.16.6. 17.<.
三.解答题(共7小题)
18.
(1)解得:x
1=3,x
2
=﹣5;(2)解得:x
1
=3,x
2
=2;
(3)∴x==.
19.解:(1)∵良有70人,占70%,
∴统计图共统计了的空气质量情况的天数为:70÷70%=100(天);
(2)如图:条形统计图中,空气质量为“优”的天数为100×20%=20(天),空气质量为“优”所在扇形的圆心角度数是:20%×360°=72°,
(3)画树状图得:
∵共有12种等可能情况,其中符合一男一女的有8种,∴恰好选到一名男同学和一名女同学的概率是=.故答案为:(1)100,(2)72°,(3).
20.解:(1)方程有不相等的实数根,
△=b2﹣4ac=4m2﹣4(m﹣3)(m+1)>0,
解得
∵两个根又不互为相反数,
解得m≠0,
故m且m≠0且m≠3.
(2)当m在取值范围内取最小正偶数时,
m=2时,方程是:﹣x2+4x+3=0
解得
21.解:(1)DE与⊙O相切.
证明:连接OD、AD,
∵点D是的中点,
∴=,
∴∠DAO=∠DAC,
∵OA=OD,
∴∠DAO=∠ODA,
∴∠DAC=∠ODA,
∴OD∥AE,
∵DE⊥AC,
∴DE⊥OD,
∴DE与⊙O相切.
(2)连接BC交OD于H,延长DF交⊙O于G,
由垂径定理可得:OH⊥BC, ==,
∴=,
∴DG=BC,
∴弦心距OH=OF=4,
∵AB是直径,
∴BC⊥AC,
∴OH∥AC,
∴OH是△ABC的中位线,
∴AC=2OH=8.
22.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,
在△AQE和△AFE中
,
∴△AQE≌△AFE(SAS),
∴∠AEQ=∠AEF,
∴EA是∠QED的平分线;
(2)由(1)得△AQE≌△AFE,
∴QE=EF,
在Rt△QBE中,
QB2+BE2=QE2,
则EF2=BE2+DF2.
23.解:(1)∵每千克降价x元每天销量为y千克,∴y=200+,即y=200+400x;
(2)设应将每千克小型西瓜的售价降低x元.
根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,
解这个方程,得x
1=0.2,x
2
=0.3.
为使每天的销量较大,应降价0.3元,即定价2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.
24.
解:(1)因为抛物线的对称轴为x=﹣1,A点坐标为(﹣3,0)与(2,5)在抛物线上,则:
,
解得:.
所以抛物线的解析式为:y=x2+2x﹣3.
(2)二次函数的解析式为y=x2+2x﹣3,
∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.
设P点坐标为(x,x2+2x﹣3),
∵S
△POC =4S
△BOC
,
∴×3×|x|=4××3×1,
∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;
当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.
∴点P的坐标为(4,21)或(﹣4,5);
(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,﹣3)代入,得,
解得:.
即直线AC的解析式为y=﹣x﹣3.
设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣,
∴当x=﹣时,QD有最大值.。