正多边形和圆的计算

合集下载

正多边形和圆、弧长公式及有关计算

正多边形和圆、弧长公式及有关计算

【本讲教育信息】一. 教学内容:正多边形和圆、弧长公式及有关计算[学习目标]1. 正多边形的有关概念;正多边形、正多边形的中心、半径、边心距、中心角。

正n边形的半径,边心距把正n边形分成2n个全等的直角三角形。

2. 正多边形和圆的关系定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆,因此可采用作辅助圆的办法,解决一些问题。

3. 边数相同的正多边形是相似多边形,具有以下性质:(1)半径(或边心距)的比等于相似比。

(2)面积的比等于边心距(或半径)的比的平方,即相似比的平方。

4. 由于正n边形的n个顶点n等分它的外接圆,因此画正n边形实际就是等分圆周。

(1)画正n边形的步骤:将一个圆n等分,顺次连接各分点。

(2)用量角器等分圆先用量角器画一个等于360︒n的圆心角,这个角所对的弧就是圆的1n,然后在圆上依次截取这条弧的等弧,就得到圆的n等分点,连结各分点即得此圆的内接正n边形。

5. 对于一些特殊的正n边形,如正四边形、正八边形、正六边形、正三角形、正十二边形还可以用尺规作图。

6. 圆周长公式:C R=2π,其中C为圆周长,R为圆的半径,把圆周长与直径的比值π叫做圆周率。

7. n°的圆心角所对的弧的弧长:ln R =π180n表示1°的圆心角的度数,不带单位。

8. 正n边形的每个内角都等于()nn-︒2180,每个外角为360︒n,等于中心角。

二. 重点、难点:1. 学习重点:正多边形和圆关系,弧长公式及应用。

正多边形的计算可转化为解直角三角形的问题。

只有正五边形、正四边形对角线相等。

2. 学习难点:解决有关正多边形和圆的计算,应用弧长公式。

【典型例题】例1. 正六边形两条对边之间的距离是2,则它的边长是()A.33 B.233 C.23 D.223解:如图所示,BF=2,过点A作AG⊥BF于G,则FG=1D又∵∠FAG =60°∴=∠==AF FG FAG sin 132233故选B点拨:正六边形是正多边形中最重要的多边形,要注意正六边形的一些特殊性质。

专题11 正多边形和圆(解析版) -2021-2022学年九年级数学之专攻圆各种类型题的解法

专题11  正多边形和圆(解析版) -2021-2022学年九年级数学之专攻圆各种类型题的解法

专题11 正多边形和圆概念规律重在理解一、正多边形和圆1.正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。

2.正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

二、正多边形的对称性1.正多边形的轴对称性。

正多边形都是轴对称图形。

一个正n边形共有n条对称轴,每条对称轴都通过正n 边形的中心。

2.正多边形的中心对称性。

边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

3.正多边形的画法。

先用量角器或尺规等分圆,再做正多边形。

三、正多边形的性质任何正多边形都有一个外接圆和一个内切圆.(1)正多边形的外接圆和内切圆的公共圆心,叫作正多边形的中心.(2)外接圆的半径叫作正多边形的半径.(3)内切圆的半径叫作正多边形的边心距.(4)正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360n四、正多边形的有关计算(1)正n边形的中心角怎么计算?(2)正n边形的边长a,半径R,边心距r之间有什么关系?(3)边长a,边心距r的正n边形的面积如何计算?特别重要:圆内接正多边形的辅助线(1)连半径,得中心角;(2)作边心距,构造直角三角形.典例解析掌握方法【例题1】(2021贵州贵阳)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°【答案】A【解析】先根据五边形的内角和求∠E=∠D=108°,由切线的性质得:∠OAE=∠OCD=90°,最后利用五边形的内角和相减可得结论.正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°.FA GB HC ID JE是五边形ABCDE的外接圆的切线,则【例题2】(2021南京)如图,,,,,∠+∠+∠+∠+∠=______︒.BAF CBG DCH EDI AEJ【答案】180︒【解析】由切线性质可知切线垂直于半径,所以要求的5个角的和等于5个直角减去五边形的内角和的一半.如图:过圆心连接五边形ABCDE的各顶点,∠+∠+∠+∠+∠则OAB OBC OCD ODE OEA=∠+∠+∠+∠+∠OBA OCB ODC OED OAE1=-⨯︒=︒(52)1802702∴BAF CBG DCH EDI AEJ∠+∠+∠+∠+∠=⨯︒-∠+∠+∠+∠+∠590()OAB OBC OCD ODE OEA=︒-︒450270=︒.180【例题3】如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°【答案】A【解析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB 的度数,利用弦切角定理∠PAB.连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.23,点P为六边形内任一点.则点P到各边距离之和是【例题4】如图,正六边形ABCDEF的边长为多少?【答案】18【解析】过P作AB的垂线,分别交AB、DE于H、K,连接BD,作CG⊥BD于G.∵六边形ABCDEF是正六边形∴AB∥DE,AF∥CD,BC∥EF,∴P到AF与CD的距离之和,及P到EF、BC的距离之和均为HK的长.∵BC=CD,∠BCD=∠ABC=∠CDE=120°,∴∠CBD=∠BDC=30°,BD∥HK,且BD=HK∵CG⊥BD,∴BD=2BG=2×BC×cos∠CBD=6.∴点P到各边距离之和=3BD=3×6=18.各种题型强化训练一、选择题1.(2021江苏连云港)如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,MN=1,则△AMN 周长的最小值是()A.3 B.4 C.5 D.6【答案】B【解析】由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1,连接AM、CM,则点M、N为所求点,进而求解.解:⊙O的面积为2π,则圆的半径为=AC,由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1、CM、N为所求点,理由:∵A′C∥MN,且A′C=MN,则A′N=CM=AM,故△AMN的周长=AM+AN+MN=AA′+6为最小,则A′A==2,则△AMN的周长的最小值为3+1=8.2.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.12mm C.6mm D.6mm【答案】A【解析】理解清楚题意,此题实际考查的是一个直径为24mm的圆内接正六边形的边长.已知圆内接半径r为12mm,则OB=12,∴BD=OB•sin30°=12×=6,则BC=2×6=12,可知边长为12mm,就是完全覆盖住的正六边形的边长最大.3.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2, B.2,π C., D.2,【答案】D【解析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.连接OB,∵OB=4, ∴BM=2, ∴OM=2,==π,故选D .4.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为( )A .34πB .1234πC .2438πD .34π【答案】A【解析】正六边形的面积加上六个小半圆的面积,再减去中间大圆的面积即可得到结果. 正六边形的面积为:142362432⨯⨯=六个小半圆的面积为:22312ππ⋅⨯=,中间大圆的面积为:2416ππ⋅=, 所以阴影部分的面积为:24312162434πππ+-=-. 二、填空题1.如图是由两个长方形组成的工件平面图(单位:mm ),直线l 是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm .【答案】50.【解析】根据已知条件得到CM=30,AN=40,根据勾股定理列方程得到OM=40,由勾股定理得到结论.如图,设圆心为O,连接AO,CO∵直线l是它的对称轴,∴CM=30,AN=40,∵CM2+OM2=AN2+ON2,∴302+OM2=402+(70﹣OM)2,解得:OM=40,∴OC==50,∴能完全覆盖这个平面图形的圆面的最小半径是50mm.2.(2020•徐州)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为.【答案】10.【解析】连接OA,OB,根据圆周角定理得到∠AOB=2∠ADB=36°,于是得到结论.连接OA,OB,∵A、B、C、D为一个正多边形的顶点,O为正多边形的中心,∴点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数103.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.【答案】2.【解析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF•EF•BF224.(2020•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线F A1B1C1D1E1F1的长度是.【答案】7π.【解析】利用弧长公式计算即可解决问题.的长,的长,的长,的长,的长,的长,∴曲线F A1B1C1D1E1F1的长度7π,5.(2020•贵阳)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是度.【答案】120.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解析】连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°6.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.【答案】6【解析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,∴2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.7.(2020•连云港)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.【答案】48.【分析】延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,由正六边形的性质得出∠A1A2A3=∠A2A3A4=120°,得出∠CA2A3=∠A2A3C=60°,则∠C=60°,由正五边形的性质得出∠B2B3B4=108°,由平行线的性质得出∠EDA4=∠B2B3B4=108°,则∠EDC=72°,再由三角形内角和定理即可得出答案.【解析】延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4120°,∴∠CA2A3=∠A2A3C=180°﹣120°=60°,∴∠C=180°﹣60°﹣60°=60°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4108°,∵A3A4∥B3B4,∴∠EDA4=∠B2B3B4=108°,∴∠EDC=180°﹣108°=72°,∴α=∠CED=180°﹣∠C﹣∠EDC=180°﹣60°﹣72°=48°。

正多边形和圆及正多边形的有关计算

正多边形和圆及正多边形的有关计算

中考数学辅导之—正多边形和圆及正多边形的有关计算正多边形和圆是初中几何课本中的最后一单元,它包括正多边形的定义、正多边形的判定、性质,正多边形的有关计算,圆周长及弧长公式,圆、扇形、弓形的面积。

今天我们一起学习正多边形的定义、判定、性质及有关计算.一、基础知识及其说明:1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.此定义中的条件各边相等,各角也相等 “缺一不可”.如:菱形各边相等,因四个角不等,所以菱形不一定是正多边形.矩形的四个角相等,但因四条边不一定相等,故矩形不一定是正四边形,只有正方形是正四边形.2.正多边形的判定,正多边形的定义当然是正多边形的判定方法之一,但如同全等三角形的判定一样,用定义来证明两个三角形全等显然不可取,因此需用判定定理来证.判定定理:把圆几等分()①依次连结各分点所得的多边形是这个圆的内接正边形②经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.也就是说,若要证明一个多边形是圆内接正多边形,只要证明这个多边形的顶点是圆的等分点即可, 如:要证明一个圆内接边形ABCDEF ……是圆内接正边形,就要证A 、B 、C 、D 、E 、F ……各点是圆的n 等分点,就是要证AB=BC=CD=DE=EF=…….同样,要证明一个圆外切边形是圆外切正边形,只要证明各切点是圆的等分点即可例1:证明:各边相等的圆内接多边形是正多边形.已知:在⊙O 中,多边形ABCDE ……是⊙O 的内接n 边形 且AB=BC=CD=DE=…….求证:n 边形ABCDE ……是正n 边形证明: AB=BC=CD=DE=…… ∴ AB=BC=CD=DE ……∴OEB=AEC= BED=COE=……∴ =∠=∠=∠=∠D C B A又∵AB=BC=CD=DE=……∴n 边形ABCDE ……是正n 边形.例2:证明:各角相等的圆外切n 边形是正n 边形.已知:多边形……是圆外切n 边形,切点分别是A,B,C,D,E ……,=…….求证:n 边形……是正n 边形.证明:连结OB,OC,OD ……,在四边形COD 和四边形BOC 中∵切⊙O 于B,C,D∴∴ 0''180=∠+∠=∠+∠COD C BOC B而……∴∴BC=CD(在同圆中,相等的圆 B O心角所对的弧相等).同理BC=CD=DE=FE=……'B D∴A,B,C,D,E,F……是圆的n等分点 C∴多边形ABCDEF……是圆外切n正多边形3.正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.4.正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.5.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.如图:OA,OB是半径,O是中心,OH⊥AB于H,OH是边心距,是中心角6.正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等)来解直角三角形即可.例:已知正六边形ABCDEF的半径是R,求正六边形的边长S6.解:作半径OA、OB,过O做OH⊥AB,则∠AOH==30°∵∴∴∴∵∴S6=同学们在进行正多边形的计算时,应很好的理解、掌握如何用解直角三角形的方法进行计算,但也可以推出公式,然后利用公式变形进行计算.则这是已知半径R,求的公式,若记住公式则正多边形的计算就简单了很多,如已知半径R,求解:再如:已知正三角形的边长为,可以先由,求出半径,再将求得的R代入;若已知边心距求边长,则先用,求出R,再代入求边长公式即可求出,此法好处是不用画图,只需将上面两个公式反复变形即可.7.如何求同圆的圆内接正边形与圆外切正边形的边长比,半径比,边心距比.如:求同圆的圆内接正边形和圆外切正边形的边长比.设⊙O的半径的为R则圆内接正边形的边长是而在Rt△OBC中,OB=R,则,即外切正边形的边长是,∴=实际上,=,OB是的邻边,OC是Rt△BOC的斜边,,希望同学们记住此结论.如圆内接正四边形的边心距与圆外切正四边形的边心距之比是,圆内接正六边形与圆外切正六边形的边长之比是,而圆内接正三角形与圆外切正三角形的面积之比是.(注意:①此结论必须是同圆的边数相同的圆内接正边形与圆外切正边形的相似比是.②若求圆外切正边形与圆内接正边形的相似比则是).二、练习题:1.判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2.填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3.选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D.:1④正六边形的两条平行边间距离是1,则边长是( )A. B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1::C.1::3D.1:2:三、练习答案:1.判断题①×②×③√④√⑤√2.填空题①四②45°,135°,45°③④12⑤1:2 1:4 ⑥8 ⑦⑧:1 ⑨1:3.选择题①D ②A ③C ④C ⑤B ⑥A。

初三数学正多边形和圆公式

初三数学正多边形和圆公式

初三数学正多边形和圆公式
正多边形和圆是中学数学学习中一个重要的课题,其中正多边形和圆的公式是学生必须掌握的知识点。

一、正多边形的公式
1、行心角公式:Σinterior angles = (n - 2 )×180°
其中,Σinterior angles表示角之和,n表示多边形内角的个数。

2、每内角度数公式:interior angle = (n - 2 )×180°/n
3、外角之和公式:Σexterior angles = 360°
其中,Σexterior angles表示外角之和。

4、外角度数公式:exterior angle= 360°/n
5、正多边形的周长公式:P= a × n
二、圆的公式
1、定义公式:圆:(x-a)^2+(y-b)^2=r^2
其中,a和b表示圆心坐标,r表示圆的半径。

2、圆的周长公式:C=2πr
3、圆的面积公式:S=πr^2
4、弦长公式:L=2πr × 角度
5、弦长公式:A=2πR × (1-cosα)
以上就是高中数学关于正多边形和圆的公式,希望可以帮助到大家学习和掌握。

(完整word版)正多边形和圆及圆的有关计算

(完整word版)正多边形和圆及圆的有关计算

正多边形和圆及圆的有关计算一、知识梳理: 1、正多边形和圆各边相等,各角也相等的多边形叫正多边形. 定理:把圆分成n(n >3)等分:(l)依次连结各分点所得的多边形是这个圆的内按正多边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形。

定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.正多边形的外接(或内切)圆的圆心叫正多边形的中心。

外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。

正n 边形的每个中心角等于n360正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心. 若n 为偶数,则正n 边形又是中心对称图形,它的中心就是对称中心.边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。

2、正多边形的有关计算正n 边形的每个内角都等于nn180)2(-定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。

正多边形的有关计算都归结为解直角三角形的计算. 3、画正多边形(1)用量角器等分圆 (2)用尺规等分圆 正三、正六、正八、正四及其倍数(正多边形). 正五边形的近似作法(等分圆心角) 4、圆周长、弧长(1)圆周长C =2πR ;(2)弧长180Rn L π=5、圆扇形,弓形的面积 (l )圆面积:2R S π=;(2)扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

在半径为R 的圆中,圆心角为n °的扇形面积S 扇形的计算公式为:3602R n S π=扇形注意:因为扇形的弧长180R n L π=。

所以扇形的面积公式又可写为LR S 21=扇形(3)弓形的面积由弦及其所对的弧组成的圆形叫做弓形。

弓形面积可以在计算扇形面积和三角形面积的基础上求得.如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。

平面几何中的正多边形与圆的周长

平面几何中的正多边形与圆的周长

平面几何中的正多边形与圆的周长在平面几何中,正多边形与圆的周长是一个重要的概念。

正多边形是指所有边长相等且所有内角相等的多边形,而圆的周长则是指圆的边缘一周的长度。

本文将探讨正多边形和圆的周长的关系,并介绍一些计算正多边形和圆的周长的方法。

一、正多边形的周长正多边形的周长可以通过计算每条边的长度之和来得到。

设正多边形有n条边,边长为a,则正多边形的周长L可以表示为L = n * a。

例如,一个有6条边的正六边形,若每条边的长度为3cm,则正六边形的周长L = 6 * 3 = 18cm。

需要注意的是,正多边形的周长与边数以及边长有关。

当边数n增加时,正多边形的周长也会增加;当边长a增加时,正多边形的周长也会增加。

二、圆的周长在平面几何中,圆的周长又称为圆的周长或圆周长。

圆的周长C可以通过计算圆的直径或半径与圆周率π的乘积来得到。

根据定义,圆周率π的近似值约为3.14159。

1. 通过直径计算设圆的直径为d,则圆的周长C可以表示为C = π * d。

例如,一个直径为10cm的圆的周长C = 3.14159 * 10 = 31.4159cm。

2. 通过半径计算设圆的半径为r,则圆的周长C可以表示为C = 2 * π * r。

例如,一个半径为5cm的圆的周长C = 2 * 3.14159 * 5 = 31.4159cm。

需要注意的是,无论是通过直径还是半径计算,圆的周长都与圆周率π有关。

当直径或半径增加时,圆的周长也会增加。

三、正多边形与圆的周长的关系在考察正多边形和圆的周长时,我们可以发现一个有趣的现象。

当正多边形的边数n足够大时,正多边形的周长L会趋近于圆的周长C。

这可以通过以下推理来解释:首先,在一个给定的正多边形中,边数越多,每条边的长度a则越短,这意味着多边形的周长L越接近于n * a。

而当n趋近于无穷大时,正多边形的周长L趋近于无限,也就是周长无限长。

而圆的周长C是有限且确定的,不会随着边数的增加而增加。

北师大版 九年级数学下册 第三章 圆 专题课讲义 正多边形与圆的相关计算(解析版)

北师大版 九年级数学下册 第三章 圆 专题课讲义 正多边形与圆的相关计算(解析版)

正多边形与圆的相关计算课前测试【题目】课前测试如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.【答案】∠AED=45°;DE =。

【解析】(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF、CE、CA,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠ABF=∠CDE,∵∠CFA=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC==,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或(舍弃),∴DE=DH=总结:本题考查正多边形与圆、全等三角形的判定和性质、勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型。

【难度】4【题目】课前测试如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°.(1)求tan∠OAB的值;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S△POA=S△AOB时,求P点所经过的弧长.(不考虑点P与点B重合的情形)【答案】tan∠OAB=;S△AOB=(cm2);的长度==(cm).【解析】(1)作OC⊥AB.∵∠AOB=120°,∴∠AOC=60°.∴OC=1,AC=.∴tan∠OAB=.(2)AC=,∴AB=2.∴S△AOB=2×1÷2=(cm2).(3)如图,延长BO交⊙O于点P1,∵点O是直径BP1的中点,S△AP1O=AD×P1O,S△AOB=AD×BO,∵P1O=BO,∴S△P1OA=S△AOB,∠AOP1=60°.∴的长度为(cm).作点A关于直径BP1的对称点P2,连接AP2,OP2,AP3,易得S△P2OA=S△AOB,∠AOP2=120°.∴的长度为(cm).过点B作BP3∥OA交⊙O于点P3,则P2P3直径,易得S△P3OA=S△AOB,∴的长度==(cm).总结:本题综合考查了解直角三角形,及三角形的面积公式及弧长公式.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:正多边形与圆的相关计算是九年级下册第三章的内容,主要讲解了正多边形的相关概念、圆内接正多边形与外切正多边形定义与相关计算、弧长和扇形面积的计算公式。

正多边形和圆

正多边形和圆

A.1个 B.2个 C.3个 D 4个
• 8.正多边形的中心角与该正多边形一个内角的 关系是
A.互余 B.互补 C.互余或互补 D.不能确定
• 9.若一个正多边形的每一个外角都等于 36°,那么这个正多边形的中心角为
A.36°
B、 18°
C.72°
D.54°
• 10.将一个边长为a正方形硬纸片剪去四 角,使它成为正n边形,那么正n边形的面积 为
思考3: 过圆的5等份点画圆的切线, 则以相邻切
线的交点为顶点的多边形是正多边形吗
证明:连结OA、OB、OC,则: ∠OAB=∠OBA=∠OBC=∠OCB
PA T
∵TP、PQ、QR分别是以A、B、C 为切点的⊙O的切线 ∴∠OAP=∠OBP=∠OBQ=∠OCQ ∴∠PAB=∠PBA=∠QBC=∠QCB
24.3 正多边形和圆
E
A
D
B
C
观察下列图形他们有什么特点
三条边相等,
四条边相等,四
正三 三个角相等 正方形 个角相等 900 ,
角形 60度 ,
一 .正多边形定义
各边相等,各角也相等的多边形叫做 正多边形.
如果一个正多边形有n条边,那么这个正多边形
叫做正n边形, 思考: 菱形是正多边形吗 矩形是正多边形呢
8、∠AOB叫做正五边形ABCDE的__中__心___角, 它的度数是_7_2_度_____
D
E
C
.O
A FB
9、它图的中度正数六是边_形__A6_B_0C_度_D_E_;F的中心角是_∠__A_O__B_;
10、你发现正六边形ABCDEF的半径与边长具有
什么数量关系 为什么
E
D
F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆和正多边形的有关计算(30分钟 50分)一、选择题(每小题4分,共16分)1.(2015·凉山州期末)☉O的内接正三角形和外切正方形的边长之比是 ( )A.∶2 ﻩB.1∶1 C.1∶ﻩﻩ D.∶【解析】选A.如图所示,连接CO,过点O作OE⊥CD于点E,四边形AMNB是☉O的外切正方形,☉O切AB于点C,△CFD是☉O的内接正三角形,设圆的外切正方形的边长为a,则CO=,∠OCE=30°,∴CE=·cos30°=,∴☉O的内接正三角形的边长为2EC=,∶a=∶2.2.(2015·广州越秀区期末)如图,AB与☉O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的弧长是( )A.ﻩﻩﻩB.ﻩﻩC.ﻩﻩ D.【解析】选B.连接OB,OC,∵AB为☉O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧的长为=.3.如图,☉O为正五边形ABCDE的外接圆,☉O的半径为2,则的长为( )A.ﻩﻩB.ﻩC.ﻩD.【解析】选D.如图所示,∵☉O为正五边形ABCDE的外接圆,☉O的半径为2,∴∠AOB==72°,∴的长为:=.【知识拓展】正n边形的有关计算(1)边长:an=2Rn·sin.(2)周长:P n=n·an.(3)边心距:r n=Rn·cos.(4)面积:Sn=an·rn·n.(5)每一个内角的度数为.(6)每一个外角的度数为.(7)中心角的度数为.4.如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( )A.πaﻩ B.2πaC.πaD.3a【解析】选A.∵四边形ABCD是正方形,∴∠B=∠D=90°.则扇形ABC的弧长为l==aπ,同理可求扇形ADC的弧长为aπ,∴树叶形图案的周长为aπ×2=πa.【一题多解】选A.由题意知树叶形图案的周长为以a为半径的圆周长的一半,∴树叶形图案的周长为×2πa=πa.【互动探究】若求阴影部分的面积呢?提示:S阴影=2×=a2.二、填空题(每小题4分,共12分)5.如图所示,正六边形ABCDEF内接于☉O,若☉O的半径为4,则阴影部分的面积等于________.【解析】正六边形的六条半径把正六边形分成六个全等的等边三角形,阴影部分的面积转化为扇形OBD的面积,即为圆面积的.阴影部分的面积为=π.答案:π如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点B 的直线折叠,点O恰好落在上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.【解析】连接OD,∵将扇形OAB沿过点B的直线折叠,点O恰好落在上点D处,∴OB=BD,OC=CD.又∵OD=OB,∴△OBD是等边三角形,∴C阴影部分=+AC+CD+BD=3π+12.∵△OBD是等边三角形,∴∠DBC=∠OBC=30°.在Rt△OCB中,tan∠OBC==,∴OC=tan30°×6=2.∴S阴影=S扇形OAB-2S△OCB=-2×=9π-12.6.如图,在△ABC中,AB=4cm,BC=2cm,∠ABC=30°,把△ABC 以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C′处,那么AC边扫过的图形(图中阴影部分)的面积是________cm2.【解析】根据旋转的性质和全等三角形的性质可知,AC边扫过的图形(图中阴影部分)的面积=扇形BAA′与扇形BCC′的面积差,为×(42-22)=5π(cm2).答案:5π7.(2015·密云期末)如图,边长为1的正方形ABCD放置在平面直角坐标系中,顶点A与坐标原点O重合,点B在x轴上.将正方形ABCD沿x轴正方向作无滑动滚动,当点D第一次落在x轴上时,D 点的坐标是________,D点经过的路径的总长度是________;当点D 第2014次落在x轴上时,D点经过的路径的总长度是________.【解析】如图,正方形ABCD每滚动4次为一个周期,当点D第一次落在x轴上时,正方形ABCD滚动2次,D点的坐标是(3,0);D点经过的路径的总长度是+=π.每一个周期中D点经过的路径的总长度是+×2=π,当点D第2014次落在x轴上时,D点经过的路径的总长度是:2013×π+π=π.答案:(3,0)ππ三、解答题(共22分)8.(6分)(2015·官渡期末)如图,已知☉O的半径为8cm,点A为半径OB延长线上一点,射线AC切☉O于点C,的长为.求∠AOC的度数和线段AC的长.【解析】设∠AOC=n°;=,解得:n=60,∴∠AOC=60°.∵AC切☉O于点C,∴∠ACO=90°,∴∠A=90°-∠AOC=30°,∴AO=2OC=16,∴AC===8.9.(7分)(2015·南昌期末)如图,边长为4cm的等边△ABC与☉O等高(即高与直径相等),☉O与BC相切于点C,☉O与AC相交于点E.求:(1)CE的长.(2)阴影部分的面积.【解析】(1)连接OC,并过点O作OF⊥CE于F,且△ABC为等边三角形,边长为4,故高为2,即OC=,又∠ACB=60°,☉O与BC相切,∴OC⊥BC,故有∠OCF=30°,在Rt△OFC中,可得OF=,FC=,即CE=3.(2)连接OE,S阴影=S扇形OCE-S△OCE=-×3×=π-. 【知识拓展】与直角三角形有关的计算公式(1)直角三角形外接圆半径等于斜边的一半(R=).(2)直角三角形内切圆半径等于两直角边的和与斜边差的一半(r=).(3)直角三角形两条直角边的乘积等于斜边与斜边上的高的乘积,即ab=ch.10.(9分)(2015·龙岩期末)如图,△ABC中,AB=AC,以AB为直径的☉O,交BC于点D,交AC于点F,过点D作DE⊥AC,垂足为E.(1)求证:=.(2)求证:DE为☉O的切线.(3)若CE=2,∠BAC=60°,求由DC,CF与所围成图形的面积S.【解析】(1)连接AD.∵AB为☉O的直径,∴∠ADB=90°,即AD⊥BC.∵AB=AC,∴∠CAD=∠BAD,∴=,(2)连接OD.∵AB为☉O的直径,∴AO=BO.∵AD⊥BC,AB=AC,∴CD=DB.∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE.∵OD是半径,∴DE为☉O的切线.(3)连接OF.∵AB=AC,OF=OA,∠BAC=60°,∴△ABC,△AFO都是等边三角形.∴∠AFO=∠C=60°.∴OF∥CD.∵OD∥AC,∴四边形DCFO是平行四边形.∵OD=OF,∴四边形DCFO是菱形.∴∠C=∠FOD=60°,OD=DC=CF.∵DE⊥AC,∴DC=2CE=4=OD=CF,∴DE==2.∴S=S四边形DCFO-S扇形FOD=4×2-=8-π.【备选习题】1.(2014·内蒙古中考)如图,菱形ABCD的对角线BD,AC分别为2,2,以点B为圆心的弧与AD,DC相切,则阴影部分面积为( )A.2-πB.4-πC.2-πﻩD.4-π【解析】选A.如图,连接AC,BD,相交于点O,设以B为圆心的弧与AD相切于E点,连接BE,则BE⊥AD,∵菱形ABCD的对角线BD,AC分别为2,2,∴S菱形ABCD=·AC·BD=×2×2=2,在Rt△AOD中,∵tan∠DAO===,∴∠DAO=30°,∠ABC=120°,∴∠DAB=2∠DAO=60°,∴△ABD是等边三角形,∴BE=OA=,∴S扇形=·π·()2=π,∴阴影部分的面积是S菱形ABCD-S扇形=2-π.2.(2014·河北中考)如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形,则S扇形=________cm2.【解析】由题意可知扇形的弧长为:l=4cm,所以S扇形=lr=×4×2=4cm2.答案:43.(2014·荆门中考)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与☉A相交于点F.若的长为,则图中阴影部分的面积为________. 【解析】连接AC,设☉A的半径为R,∵CD切☉A于点C,∴AC⊥CD,即∠ACD=90°,在▱ABCD中,∵AB∥CD,∴∠BAC=∠ACD=90°,∵AB=AC,∴△BAC是等腰直角三角形,∠B=45°,∵AD∥BC,∴∠FAD=∠B=45°,又∵的长为,∴=,解得R=2,∵∠D=∠B=45°,∴△ACD也是等腰直角三角形,即AC=CD=R=2,∠CAD=45°,∴S阴影=S△ACD-S扇形ACE=×2×2-=2-.答案:2-4.(2014·抚顺中考)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、AD长为半径作☉A交AB于点M,过点B作☉A的切线BF,切点为F.(1)请判断直线BE与☉A的位置关系,并说明理由.(2)如果AB=10,BC=5,求图中阴影部分的面积.【解析】(1)过点A作AG⊥BE,垂足为G,连接AE.∵四边形ABCD是矩形,∴AB∥CD,∠BAE=∠AED.又BE=BA,∴∠BAE=∠AEB,即∠BAE=∠AEG.∴∠AEG=∠AED.又∵∠AGE=∠ADE=90°,AE=AE,∴△AEG≌△AED(AAS).∴AG=AD.∴直线BE与☉A相切.(2)连接AF,∵BF与BG都是☉A的切线,由切线长定理得,△ABF≌△ABG,∠BAF=∠BAG,于是S阴影=S△ABF-S扇形AMF=S△ABG -S扇形AMG.由(1)知,AG=AD,∴AG=AD=BC=5.在Rt△ABG中,AG=5,AB=10,∴∠ABG=30°,∠BAG=60°.∴BG=AB·cos∠ABG=10×=5.∴S阴影=S△ABG-S扇形AMG=×5×5-=-.5.(2014·昆明中考)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的圆O经过点D.(1)求证:AC是☉O的切线.(2)若∠A=60°,☉O的半径为2,求阴影部分的面积(结果保留根号和π).【解析】(1)连接OD,OB=OD,则∠1=∠BDO,∴∠DOC=2∠1=∠A,在Rt△ABC中,∠A+∠C=90°,即∠DOC+∠C=90°∴∠ODC=90°,即OD⊥DC.∴AC为☉O的切线.(2)当∠A=60°时,即在Rt△OCD中,∠C=30°,OD=r=2.∴∠DOC=60°,CD=2.∴S△ODC=OD×DC=2,S扇形==,∴S阴影=S△ODC-S扇形=2-.。

相关文档
最新文档