2018-2019学年安徽省铜陵市义安区九年级(上)期末数学试卷
(完整word版)2018九年级上学期末考试数学试题

2018-2019九年级上学期末考试数学试题一、精心选一选(每小题3分,共36分)1、下列图形中,既是轴对称又是中心对称图形的是( )MN 上移动时,矩形PAOB 勺形状、大小随之变化,贝U AB 的长度()A 变大B 变小C 不变D 不能确定&如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点 A (- 3,0),对称轴为直线x = - 1, 下列结论:① b 2>4ac :②2a + b = 0 ; @ a + b + c>0 ;④若 B (- 5,y 1 )、C (- 1,y ) 为函数图象上的两点,贝U %<y 2 •其中正确结论是( )A ②④B ①③④C ①④D ②③9、 如图,已知AB 是O O 的直径,AD 切O O 于点A ,点C 是EB 的中点,则下列结论: ①OC/ AE ②EC = BC ③/ DAE=Z ABE ④ACLOE 其中正确的有() A 1 个B 2 个C 3 个D 4 个10、 某种药品零售价经过两次降价后的价格为降价前的 81%则平均每场降价( )A 10%B 19%C 9.5%D 20%11、 如图,I 是厶ABC 的内心,AI 的延长线和△ ABC 的外接圆相交于点 连接BI ,BD DC 下列说法中错误的一项是( ) A 线段DB 绕点D 顺时针旋转一定能与线段DC 重合 B 线段DB 绕点D 顺时针旋转一定能与线段 DI 重合 C / CAD 绕点A 顺时针旋转一定能与/ DAB 重合A B C D 32、 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同,从中任意拿出一支笔 芯,则拿出黑色笔芯的概率为2 1 2 A -B1 C-3553、 用配方法解一元二次方程X 2-6X +6 = 0时,配方后得到的方程是()A (X - 3)2=6B (X +3)2=3C (X - 3)2 =3D (X - 3)2 =-34、 抛物线y 二a (x • 1)(x —3)(a = 0)的对称轴是直线(A X = 1B 5、 如图,四边形) x = -1 C x = 3 DABCD 是O O 的内接四边形,若/第5题 6、 已知:如图,则/ BPC 的度数是( 7、 如图,四边形PAOB 是扇形OMN 勺内接矩形,顶点P 在MN ,且不与M N 重合,当P 点在 四边形 第6题 ABCD 是O O 的内接正方形,点 第8题P 是劣弧上不同于点C 的任意一点, C 75° D 90° 尸x = -3B=110°,则/ ADE 的度数为( )D线段ID绕点I顺时针旋转一定能与线段IB重合(11题)12、用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()1 3A 丄B 1C -D 、2二、细心填一填(每小题3分,共15分)13、把抛物线y = -2(x-1)2+3向右平移2个单位再向下平移5个单位,得到抛物线解析式为_____________________ 。
铜陵市2017~2018学年第一学期期末质量检测九年级数学(word版 有答案)

铜陵市2017~2018学年第一学期期末质量检测九年级数学试题(时间:100分钟 满分:100分)一、选择题 (本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .2.某市“桃花节”观赏人数逐年增加,据有关部门统计,2015年约为20万人次,2017年约为28.8万人次,设观赏人数年平均增长率为x ,则下列方程正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+x )+20(1+x )2=28.83.点(﹣1,y 1),(2,y 2),(3,y 3)均在函数y=x1的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3<y 2<y 1B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 1<y 2<y 34.已知二次函数277y kx x =--的图像与x 轴没有交点,则k 的取值范围为( )A.k <74-B. k ≥74-且k ≠0 C.k >74-D. k >74- 且k ≠0 5. 《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是( ) A. 5步B. 6步C. 8步6.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( ) A .45° B .50° C .60°D .75°7.抛物线y=x 2﹣2x ﹣3的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x 2+bx+c ,则b 、c 的值为( )A .b=2,c=2B .b=﹣3,c=2C .b=﹣2,c=﹣1D .b=2,c=﹣18.如图,A 、B 是曲线y=x3上的点,经过A 、B 两点向x 轴、y 轴作垂线段,若S 阴影=1,则S 1+S 2=( ) A .3B .4C .5D .69.如图,有一个边长为4cm 的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片的最小直径是( ) A .8cmB .4cmC .2cmD .4cm10.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与X 轴交点的横坐标分别为x 1,x 2,其中﹣2<x 1<﹣1,0<x 2<1,下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③a+c <1;④b 2+8a >4ac ,其中正确的有( ) A .1个B .2个C .3个D .4个二、填空题(共6小题,每题3分,共18分) 11.如图、正比例函数x k y 11=与反比例函数xk y 22=的图象交于(1,2), 则在第一象限内不等式>x k 1xk 2的解集为 .第6题图第8题图第9题图第10题图12. 如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO ,以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于点F ,G ,连接EF.若∠BAC =22°,则∠EFG =________.13.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间函数表达式是y=60x ﹣1.5x 2,该型号飞机着陆后滑行的最大距离是 m .14.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为 .15.抛物线22y x x m =-+与x 轴有两个公共点,请写出一个符合条件的表达式为 .16.如图,将Rt △ABC 绕直角顶点A 顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C 的度数是 .三、解答题(本大题共7小题,满分52分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分6分)解方程:(1)3x 2﹣6x+2=0. (2) 2(x ﹣3)2=x 2﹣9.18.(本小题满分8分)△ABC 在平面直角坐标系中的位置如图,其中每个小正方形的边长为1个单位长度. (1)按要求作图:①画出△ABC 关于原点O 的中心对称图形△A 1B 1C 1; ②画出将△ABC 绕点O 顺时针旋转90°得到△A 2B 2C 2. (2)回答下列问题:第12题图第16题图①若点P (a ,b )为△ABC 边上一点,则按照(1)中①作图,点P 对应的点P 1的坐标为 .②点C 转到C 2经过的路径长为 .19.(本小题满分8分)如图,放在直角坐标系中的正方形ABCD 边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P 点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).(1)用列表法或画树形图法求P 点落在正方形ABCD 面上(含正方形内部和边界)的概率.(2)将正方形ABCD 平移整数个单位,则是否存在一种平移,使点P 落在正方形ABCD面上的概率为43;若存在,指出其中的一种平移方式;若不存在,请说明理由.20.(本小题满分6分)如图,已知△ABC 内接于⊙O ,CD 是⊙O 的切线与半径OB 的延长线交于点D ,C 是切点,∠A=30°,OB=1,求△DBC 的面积.21.(本小题满分8分)如图,直线y=mx+n 与双曲线y=xk相交于A (﹣1,2)、B (2,b )两点,与y 轴相交于点C .(1)若点D 与点C 关于x 轴对称,求△ABD 的面积;(2)在坐标轴上是否存在异于D 点的点P ,使得S △PAB =S △DAB ?若存在,直接写出P 点坐标;若不存在,说明理由.22.(本小题满分8分)如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5 m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8 s 时,离地面的高度为3.5 m . (1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44 m ,如果该运动员正对球门射门时,离球门的水平 距离为24m ,他能否将球直接射入球门?23. (本小题满分8分) 如图,已知抛物线y=221412+--x x 与x 轴交于A 、B 两点,与y 轴交于点C. (1)求点A ,B ,C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,当以A ,B ,E ,F 为顶点的四边形为平行四边形时,求点E 、点F 的坐标铜陵市2017~2018学年第一学期期末质量检测九年级数学试题参考答案及评分标准 (备课组长安排专人做卷并完善评分细则)二、填空题(共6题,每题3分,共18分) 11. 1 x12. 33°; 13. 600;14. ;15.y= x 2-2x-1(答案不唯一) ; 16. 70°;三、解答题(本大题共7小题,满分52分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分6分,每题3分)(1)x 1=,x 2=;(2) x 1=3,x 2=918.解:(1)图略…………… (4分)(2)P 1 (-a ,-b) …………… (6分)(3) 210π …………… (8分)19. (1)其中点(1,1),(1,2),(2,1),(2,2)四种情况将落在正方形ABCD 面上,故所求的概率为.…………… (5分)(2)因为要使点P 落在正方形ABCD 面上的概率为,所以只能将正方形ABCD向上或向右整数个单位平移,且使点P 落在正方形面上的数目为12.∴存在满足题设要求的平移方式:先将正方形ABCD 上移2个单位,后右移1个单位(先右后上亦可);或先将正方形ABCD 上移1个单位,后右移2个单位(先右后上亦可). …………… (8分)20.解:解:连结OC,证明△COB 为等边三角形△CBD 的面积为43…………… (6分) 21.解:(1)∵点A (﹣1,2)在双曲线y=上,∴2=,解得,k=﹣2,∴反比例函数解析式为:y=﹣,∴b==﹣1,则点B 的坐标为(2,﹣1),∴,解得,m=﹣1,n=1;对于y=﹣x+1,当x=0时,y=1, ∴点C 的坐标为(0,1), ∵点D 与点C 关于x 轴对称, ∴点D 的坐标为(0,﹣1),∴△ABD 的面积=×2×3=3;…………… 5分 (2)P 点坐标为(﹣1,0)或(3,0)或(0,3).…………… 8分22.解:(1)抛物线的解析式为y =-2516t 2+5t +12,∴当t =85时,y 最大=4.5…………… 4分(2)把x =24代入x =10t 得t =2.4,∴当t =2.4时,y =-2516×2.42+5×2.4+12=6.5 2.44,∴他不能将球直接射入球门. …………… 8分23. 解:(1)令y=0得﹣x 2﹣x+2=0,∴x 2+2x ﹣8=0,x=﹣4或2,∴点A 坐标(2,0),点B 坐标(﹣4,0),令x=0,得y=2,∴点C 坐标(0,2).…………… 3分 (2)由图象①AB 为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1∴点E 的横坐标为﹣7或5,∴点E 坐标(﹣7,﹣)或(5,﹣),此时点F (﹣1,﹣),②当点E 在抛物线顶点时,点E (﹣1,),设对称轴与x 轴交点为M ,令EM 与FM 相等,则四边形AEBF 是菱形,此时F 点的坐标为(﹣1,-)…………… 8分。
铜陵市九年级上学期数学期末考试试卷

铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·顺义期末) 下列交通标志中是中心对称图形的是()A .B .C .D .2. (2分)二次函数y=x2-6x+5的图像的顶点坐标是()A . (-3, 4)B . (3,-4)C . (-1,2)D . (1,-4)3. (2分)下列说法正确的是()A . 掷一枚硬币,正面一定朝上B . 某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C . 旅客上飞机前的安检应采用抽样调查D . 方差越大,数据的波动越大4. (2分) (2017九上·上城期中) 如图,点,,在⊙ 上,,,则的度数为()A .B .C .D .5. (2分)已知关于x的二次方程x2+2x+k=0,要使该方程有两个不相等的实数根,则k的值可以是()A . 0B . 1C . 2D . 36. (2分)如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()A . 3≤OM≤5B . 4≤OM≤5C . 3<OM<5D . 4<OM<57. (2分)(2017·鹤壁模拟) 一个不透明的袋子中装有4张卡片,卡片上分别标有数字﹣3,1,,2,它们除所标数字外完全相同,摇匀后从中随机摸出两张卡片,则两张卡片上所标数字之积是正数的概率是()A .B .C .D .8. (2分) (2016八下·吕梁期末) 小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A .B .C .D .9. (2分)某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的,设人行通道的宽度为x千米,则下列方程正确的是()A . (2﹣3x)(1﹣2x)=1B . (2﹣3x)(1﹣2x)=1C . (2﹣3x)(1﹣2x)=2D . (2﹣3x)(1﹣2x)=210. (2分)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:①b2>4ac;②abc >0;③2a+b=0;④a+b+c>0;⑤a-b+c<0;则正确的结论是()A . ①②③④B . ②④⑤C . ②③④D . ①④⑤二、填空题 (共6题;共10分)11. (1分)若点A(n,2)与点B(-3,m)关于x轴对称,则n-m=________ .12. (1分) (2016八上·吴江期中) 已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为________13. (1分)“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________14. (5分)下表记录了一名球员在罚球线上投篮的结果,投篮次数(n)50100150209250300350投中次数(m)286078104123152175投中频率(n/m)0.560.60________________0.49________________(1)计算并填写表中的投中频率(精确到0.01);(2)这名球员投篮一次,投中的概率约是________ (精确到0.1)?15. (1分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为实现平均每月10000元的销售利润,则这种台灯的售价应定为________元.16. (1分) (2017八下·泰州期中) 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为________.三、解答题 (共7题;共90分)17. (20分)解方程:(1)(x﹣2)2﹣16=0.(2) x2﹣6x+5=0 (配方法)(3) x2﹣3x+1=0.(4)(4)x(x﹣3)=x﹣3.18. (10分) (2015九上·宜春期末) 每年淘宝网都会举办“双十一”购物活动,许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售一件A商品成本为50元,网上标价80元.(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引买主,问平均每次降价率为多少,才能使这件A商品的利润率为10%?(≈0.83)(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天,先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出60件A商品.在“双十一”购物活动这天,乙网店先将网上标价提高a%,再推出五折销售的促销活动,吸引了大量网购者,乙网店在“双十一”购物活动当天卖出的A商品数量也比原来一周卖出的A商品数量增加了a%,这样“双十一”活动当天乙网店的利润达到了3600元,求乙网店在“双十一”购物活动这天的网上标价为多少?19. (10分)(2016·嘉善模拟) 如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2.(2)求点C1在旋转过程中所经过的路径长.20. (10分) (2019九上·宝安期末) 有3张正面分别写有数字,0,1的卡片,它们的背面完全相同,现将这3张卡片背面朝上洗匀,小明先从中任意抽出一张卡片记下数字为x;小亮再从剩下的卡片中任意取出一张记下数字为y,记作.(1)用列表或画树状图的方法列出所有可能的点P的坐标;(2)若规定:点在第二象限小明获胜;点在第四象限小亮获胜,游戏规则公平吗?21. (10分)在△ABC中,∠ACB=90°,O为边AB上的一点,以O为圆心,以OA为半径,作⊙O,交AB于点D,交AC于点E,交BC于点F,且点F恰好是ED的中点,连接DF.(1)求证:BC是⊙O的切线;(2)若⊙O的直径为10,AE=6,求图中阴影部分的面积.22. (15分) (2016九上·淅川期末) 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23. (15分)某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共90分)17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。
安徽省铜陵市义安区2019届九年级上学期期末调研考试数学试题(含答案)

参考答案与试题解析一.选择题(共10小题)1.下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.2.已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1 B.0 C.1 D.2【分析】由一元二次方程的根与系数的关系x1•x2=、以及已知条件求出方程的另一根是﹣1,然后将﹣1代入原方程,求a﹣b的值即可.【解答】解:∵关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),∴x1•(﹣a)=a,即x1=﹣1,∴1﹣b+a=0,∴a﹣b=﹣1.故选:A.3.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.【分析】连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD==,OD=,再利用勾股定理即可得出结论.【解答】解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选:A.4.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【解答】解:A、通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B、抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C、明天会下雨,是随机事件,故C选项不符合题意;D、经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选:A.5.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°【分析】△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答.【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.6.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.7.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.【分析】先从1~9这九个自然数中找出是2的倍数的有2、4、6、8共4个,然后根据概率公式求解即可.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选:B.8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.9.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.10.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.二.填空题(共5小题)11.把方程2x2﹣1=x(x+3)化成一般形式是x2﹣3x﹣1=0 .【分析】直接去括号,进而移项合并同类项进而得出答案.【解答】解:2x2﹣1=x(x+3)2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=0,故x2﹣3x﹣1=0.故答案为:x2﹣3x﹣1=0.12.一个多边形的每一个外角都是36°,则这个多边形的边数是10 .【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.13.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为 2 .【分析】根据扇形的面积公式S=lr,其中l=r,求解即可.【解答】解:∵S=lr,∴S=×2×2=2,故答案为2.14.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′=3.【分析】由旋转的性质可知,AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理求PP′2.【解答】解:∵△ABP绕A逆时针旋转后,能够得到△ACP′,∴AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理,得PP′2=AP2+AP′2=32+32=18,∴PP′=3故答案为:3.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0,②2a+b =0,③a﹣b+c=0;④4ac﹣b2>0,⑤4a+2b+c>0,其中正确的结论序号是①②③⑤【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:抛物线开口方向向下,则a<0,对称轴直线位于y轴右侧,则a、b异号,即b>0,抛物线与y轴交于正半轴,则c>0,abc<0,故①正确;②对称轴为x=﹣=1,b=﹣2a,故②正确;③由抛物线的对称性知,抛物线与x轴的另一个交点坐标为(﹣1,0),所以当x=﹣1时,y=a﹣b+c=0,即a﹣b+c=0,故③正确;④抛物线与x轴有两个不同的交点,则b2﹣4ac>0,所以4ac﹣b2<0,故④错误;⑤当x=2时,y=4a+2b+c>0,故⑤正确.故答案是:①②③⑤.三.解答题(共7小题)16.用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣10.(2)x2+5x﹣4=0.【分析】(1)利用因式分解法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=0,∴(2x﹣5)(x﹣2)=0,则2x﹣5=0或x﹣2=0,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>0,则x=.17.为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?【分析】(1)计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.(2)用总投篮次数乘以其概率即可求得投中次数.【解答】解:(1)估计这名球员投篮一次,投中的概率约是≈0.5;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.18.如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°,得到△OA1B1.(1)线段A1B1的长是 6 ,∠AOA1的度数是90°;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【分析】(1)根据旋转的性质即可直接求解;(2)根据旋转的性质以及平行线的判定定理证明B1A1∥OA且A1B1=OA即可证明四边形OAA1B1是平行四边形;(3)利用平行四边形的面积公式求解.【解答】解:(1)A1B1=AB=6,∠AOA1=90°.故答案是:6,90°;(2)∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,∴∠OA1B1=∠AOA1,A1B1=OA,∴B1A1∥OA,∴四边形OAA1B1是平行四边形;(3)S=OA•A1O=6×6=36.即四边形OAA1B1的面积是36.19.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?【分析】(1)根据题意可以列出相应的方程从而可以求得这两年我市推行绿色建筑面积的年平均增长率;(2)根据(1)中的增长率可以求得实际到2017年绿色建筑的面积,然后与计划的作比较,即可解答本题.【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x,950(1+x)2=1862,解得,x1=0.4,x2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,∵2606.8>2400,∴2017年我市能完成计划目标,即如果2017年仍保持相同的年平均增长率,2017年我市能完成计划目标.20.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)方法1、先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;方法2、判断出OP是CD的垂直平分线,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;方法2、∵PD,PC是⊙O的切线,∴PD=PC,∵OD=OC,∴P,O在CD的中垂线上,∴OP⊥CD(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.21.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=,∴S△OCD=,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.【分析】(1)根据题意得出关于a、b、c的方程组,求得a、b、c的值,即可得出抛物线的解析式,根据抛物线的对称性得出点B的坐标,再设出直线BC的解析式,把点B、C的坐标代入即可得出直线BC的解析式;(2)点A关于对称轴的对称点为点B,连接BC,设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小,再求得点M的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴B(﹣3,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2∴M(﹣1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2).。
{3套试卷汇总}2018年安徽省名校九年级上学期期末教学质量检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,5AE =,且2EO BE =,则OA 的长为( )A 5B .25C .35D 151313【答案】C 【分析】由矩形的性质得到:,OA OB =设,BE x = 利用勾股定理建立方程求解x 即可得到答案. 【详解】解: 矩形ABCD ,,OA OB ∴=2,EO BE =设,BE x =则2,3,OE x OA OB x ===AE BD ⊥,222(3)(2)5,x x ∴=+2525,x ∴=5,5x x ∴==3 5.OA ∴=故选C .【点睛】本题考查的是矩形的性质,勾股定理,掌握以上知识点是解题的关键.2.下列函数是二次函数的是( )A .y =2x ﹣3B .y =21xC .y =(x ﹣1)(x+3)D .233y =+【答案】C【分析】根据二次函数的定义作出判断.【详解】解:A 、该函数属于一次函数,故本选项错误;B 、该函数未知数在分母位置,不符合二次函数的定义,故本选项错误;C 、该函数符合二次函数的定义,故本选项正确;D 、该函数只有一个变量不符合二次函数的定义,故本选项错误;故选:C .【点睛】此题考查的是二次函数的判断,掌握二次函数的定义是解决此题的关键.3.若反比例函数y =k x 的图象经过点(2,-1),则该反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限 【答案】D【解析】试题分析:反比例函数k y x=的图象经过点21-(,),求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K 〈0时反比例函数的图象在第二、四象限,因为-2〈0,D 正确.故选D考点:反比例函数的图象的性质.4.如图,小江同学把三角尺含有60︒角的一端以不同的方向穿入进另一把三角尺(含有45︒角)的孔洞中,已知孔洞的最长边为2cm ,则三角尺穿过孔洞部分的最大面积为( )A .233B 23cmC .223cmD .(223cm 【答案】B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为2cm∴23a 2323=故选B.【点睛】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.5.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:3【答案】B 【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=, 3193ABE AEC S BE S EC S S ∆∆∴=== 故选B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.6.下列约分正确的是( )A .632x x x= B .0x y x y +=+ C .222142xy x y = D .1()a b x a b x+=+ 【答案】D 【分析】根据约分的运算法则,以及分式的基本性质,分别进行判断,即可得到答案.【详解】解:A 、642x x x=,故A 错误; B 、1x y x y+=+,故B 错误; C 、22242=xy y x y x,故C 错误; D 、1()a b x a b x+=+,正确; 故选:D .【点睛】本题考查了分式的基本性质,以及约分的运算法则,解题的关键是熟练掌握分式的基本性质进行解题. 7.一元二次方程x 2+4x =5配方后可变形为( )A .(x+2)2=5B .(x+2)2=9C .(x ﹣2)2=9D .(x ﹣2)2=21【答案】B【分析】两边配上一次项系数一半的平方可得.【详解】∵x 2+4x=5,∴x 2+4x+4=5+4,即(x+2)2=9,故选B .【点睛】本题主要考查解一元二次方程的基本技能,熟练掌握解一元二次方程的常用方法和根据不同方程灵活选择方法是解题的关键.8.某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为( )A .150B .100C .50D .200 【答案】A【分析】根据大量重复试验中的频率估计出概率,利用概率公式求得草鱼的数量即可.【详解】∵通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,∴捕捞到草鱼的概率约为0.5,设有草鱼x 条,根据题意得: 10050++x x =0.5, 解得:x =150,故选:A .【点睛】本题考查用样本估计总体,解题的关键是明确题意,由草鱼出现的频率可以计算出鱼的数量. 9.如图,点(),A m n ,34,2B ⎛⎫ ⎪⎝⎭在双曲线k y x=上,且0m n <<.若AOB 的面积为454,则m n +=( ).A .7B .112C .252D .33【答案】A 【分析】过点A 作AC ⊥x 轴,过点B 作BD ⊥x 轴,垂足分别为点C ,点D ,根据待定系数法求出k 的值,设点6,A m m ⎛⎫ ⎪⎝⎭,利用△AOB 的面积=梯形ACDB 的面积+△AOC 的面积-△BOD 的面积=梯形ACDB 的面积进行求解即可.【详解】如图所示,过点A 作AC ⊥x 轴,过点B 作BD ⊥x 轴,垂足分别为点C ,点D ,由题意知,3462k =⨯=, 设点6,A m m ⎛⎫ ⎪⎝⎭, ∴△AOB 的面积=梯形ACDB 的面积+△AOC 的面积-△BOD 的面积=梯形ACDB 的面积,∴13645()(4)224AOB S m m ∆=⨯+⨯-=, 解得,1m =或16m =-(舍去),经检验,1m =是方程的解,∴6n =,∴7m n +=,故选A .【点睛】本题考查了利用待定系数法求反比例函数的表达式,反比例函数系数k 的几何意义,用点A 的坐标表示出△AOB 的面积是解题的关键.10.如图,AB 是O 的直径,CD 是O 的弦,若56ABD ∠=︒,则BCD ∠=( ).A .32︒B .34︒C .44︒D .46︒【答案】B 【分析】根据AB 是⊙O 的直径得出∠ADB =90°,再求出∠A 的度数,由圆周角定理即可推出∠BCD 的度数.【详解】∵AB 是⊙O 的直径,∴∠ADB =90°,∴在Rt △ABD 中,∠A =90°﹣∠ABD =34°,∵弧BD =弧BD ,∴∠BCD =∠A =34°,故选B .【点睛】本题考查圆周角定理及其推论,熟练掌握圆周角定理是解题的关键.11.如图,双曲线k y x=与直线y mx =相交于A 、B 两点,B 点坐标为()2,3--,则A 点坐标为( )A .()2,3? --B .()2,3C .()2,3-D .()2,3-【答案】B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A 与B 关于原点对称, B 点坐标为()2,3--∴A 点的坐标为(2,3).所以B 选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.12.菱形的两条对角线长分别为60cm 和80cm ,那么边长是( )A .60cmB .50cmC .40cmD .80cm【答案】B【分析】根据菱形的对角线互相垂直平分求出OA 、OB 的长,再利用勾股定理列式求出边长AB ,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm 和8cm ,∴OA=12×80=40cm ,OB=12×60=30cm , 又∵菱形的对角线AC ⊥BD ,∴223040+,∴这个菱形的边长是50cm .故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.二、填空题(本题包括8个小题)13.在一个不透明的袋中装有12个红球和若干个白球,它们除颜色外都相同.从袋中随机摸出一个球,记下颜色后放回,并搅均,不断重复上述的试验共5000次,其中2000次摸到红球,请估计袋中大约有白球______个.【答案】1【解析】根据口袋中有12个红球,利用小球在总数中所占比例得出与实验比例应该相等求出即可. 【详解】解:通过大量重复摸球试验后发现,摸到红球的频率是2000250005=,口袋中有12个红球, 设有x 个白球, 则122125x =+,解得:12x=,答:袋中大约有白球1个.故答案为:1.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.14.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是_______ ,阴影部分面积为(结果保留π) ________.【答案】相切6-π【详解】∵正方形ABCD是正方形,则∠C=90°,∴D与⊙O的位置关系是相切.∵正方形的对角线相等且相互垂直平分,∴CE=DE=BE,∵CD=4,∴BD=42,∴CE=DE=BE=22梯形OEDC的面积=(2+4)×2÷2=6,扇形OEC的面积=904 360π=π,∴阴影部分的面积=6-π.15.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为23,则x=_______.【答案】1【分析】直接以概率求法得出关于x的等式进而得出答案.【详解】解:由题意得:6263x =+ , 解得3x =,故答案为:1.【点睛】 本题考查了概率的意义,正确把握概率的求解公式是解题的关键.16.观察下列各式:2(1)(1)1x x x -+=-; 23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-; 4325(1)(1)1x x x x x x -++++=-则2019201820172222...221++++++=_______________________.【答案】202021-【分析】由所给式子可知,(1x -)(122...1n n n x x x x x --++++++)=11n x +-,根据此规律解答即可.【详解】由题意知(21-)(2019201820172222...221++++++)=202021-,∴20192018201722020222...22121++++++=-.故答案为202021-.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.17.如图,矩形ABCD 中,AB=1,AD=2.以A 为圆心,AD 的长为半径做弧交BC 边于点E ,则图中DE 的弧长是_______.【答案】24π 【分析】根据题意可得2,则可以求出sin∠AEB,可以判断出可判断出∠AEB=45°,进一步求解∠DAE=∠AEB=45°,代入弧长得到计算公式可得出弧DE 的长度.【详解】解:∵AD 半径画弧交BC 边于点E ,2∴2,又∵AB=1,∴2 sin22ABAEBAE∠===∴∠AEB=45°,∵四边形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,故可得弧DC的长度为=452180π⋅⋅=24π,故答案为:24π.【点睛】此题考查了弧长的计算公式,解答本题的关键是求出∠DAE的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.18.将抛物线y=(x+2)2-5向右平移2个单位所得抛物线解析式为_____.【答案】y=x2−1【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−1向右平移2个单位,得:y=(x+2−2)2−1,即y=x2−1.故答案是:y=x2−1.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.三、解答题(本题包括8个小题)19.如图,点B,E,C,F 在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.【答案】证明见解析;【解析】试题分析:由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D .考点:全等三角形的判定与性质.20.已知抛物线y =ax 2+2x ﹣32(a ≠0)与y 轴交于点A ,与x 轴的一个交点为B . (1)①请直接写出点A 的坐标 ;②当抛物线的对称轴为直线x =﹣4时,请直接写出a = ;(2)若点B 为(3,0),当m 2+2m+3≤x ≤m 2+2m+5,且am <0时,抛物线最低点的纵坐标为﹣152,求m 的值;(3)已知点C (﹣5,﹣3)和点D (5,1),若抛物线与线段CD 有两个不同的交点,求a 的取值范围.【答案】(1)①3(0,)2-;②14;(2)1m =;(1)a >1750或a <﹣1. 【分析】(1)①令x =0,由抛物线的解析式求出y 的值,便可得A 点坐标;②根据抛物线的对称轴公式列出a 的方程,便可求出a 的值;(2)把B 点坐标代入抛物线的解析式,便可求得a 的值,再结合已知条件am <0,得m 的取值范围,再根据二次函数的性质结合条件当m 2+2m+1≤x ≤m 2+2m+5时,抛物线最低点的纵坐标为152-,列出m 的方程,求得m 的值,进而得出m 的准确值;(1)用待定系数法求出CD 的解析式,再求出抛物线的对称轴1x a=-,进而分两种情况:当a >0时,抛物线的顶点在y 轴左边,要使抛物线与线段CD 有两个不同的交点,则C 、D 两必须在抛物线上方,顶点在CD 下方,根据这一条件列出a 不等式组,进行解答;当a <0时,抛物线的顶点在y 轴的右边,要使抛物线与线段CD 有两个不同的交点,则C 、D 两必须在抛物线下方,抛物线的顶点必须在CD 上方,据此列出a 的不等式组进行解答.【详解】(1)①令x =0,得32y =-, ∴3(0,)2A -, 故答案为:3(0,)2-;②∵抛物线的对称轴为直线x =﹣4, ∴ 242a-=-, ∴a =14, 故答案为:14; (2)∵点B 为(1,0),∴9a+6﹣32=0,∴抛物线的解析式为:213222y x x =+-, ∴对称轴为x =﹣2,∵am <0,∴m >0,∴m 2+2m+1>1>﹣2, ∵当m 2+2m+1≤x ≤m 2+2m+5时,y 随x 的增大而减小,∵当m 2+2m+1≤x ≤m 2+2m+5,且am <0时,抛物线最低点的纵坐标为﹣152, ∴ 2221315(25)2(25)222m m m m -+++++-=-, 整理得(m 2+2m+5)2﹣4(m 2+2m+5)﹣12=0,解得,m 2+2m+5=6,或m 2+2m+5=﹣2(△<0,无解),∴1m =-∵m >0,∴1m =;(1)设直线CD 的解析式为y =kx+b (k ≠0),∵点C (﹣5,﹣1)和点D (5,1),∴ 5351k b k b -+=-⎧⎨+=⎩, ∴251k b ⎧=⎪⎨⎪=-⎩,∴CD 的解析式为215y x =-, ∵y =ax 2+2x ﹣32(a ≠0) ∴对称轴为1x a=-, ①当a >0时,10a-<,则抛物线的顶点在y 轴左侧, ∵抛物线与线段CD 有两个不同的交点, ∴23251032325101211321()2()()125a a a a a a ⎧---⎪⎪⎪+-⎨⎪⎪-+----⎪⎩>><,②当a <0时,10a ->,则抛物线的顶点在y 轴左侧,∵抛物线与线段CD 有两个不同的交点,∴23251032325101211321()2()()125a a a a a a ⎧---⎪⎪⎪+-⎨⎪⎪-+----⎪⎩<<>, ∴a <﹣1,综上,1750a >或a <﹣1. 【点睛】本题为二次函数综合题,难度较大,解题时需注意用待定系数法求出CD 的解析式,再求出抛物线的对称轴1x a=-,要分两种情况进行讨论. 21.如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,CF ⊥AF ,且CF=CE(1)求证:CF 是⊙O 的切线;(2)若sin ∠BAC=25,求CBD ABC S S ∆∆的值.【答案】(1)见解析 (2)825【分析】(1)首先连接OC ,由CD ⊥AB ,CF ⊥AF ,CF=CE ,即可判定AC 平分∠BAF ,由圆周角定理即可得∠BOC=2∠BAC ,则可证得∠BOC=∠BAF ,即可判定OC ∥AF ,即可证得CF 是⊙O 的切线.(2)由垂径定理可得CE=DE ,即可得S △CBD =2S △CEB ,由△ABC ∽△CBE ,根据相似三角形的面积比等于相似比的平方,易求得△CBE 与△ABC 的面积比,从而可求得CBD ABCS S ∆∆的值. 【详解】(1)证明:连接OC .∵CE ⊥AB ,CF ⊥AF ,CE=CF ,∴AC 平分∠BAF ,即∠BAF=2∠BAC .∵∠BOC=2∠BAC ,∴∠BOC=∠BAF .∴OC ∥AF .∴CF ⊥OC .∴CF 是⊙O 的切线.(2)解:∵AB 是⊙O 的直径,CD ⊥AB ,∴CE=ED ,∠ACB=∠BEC=90°.∴S △CBD =2S △CEB ,∠BAC=∠BCE .∴△ABC ∽△CBE . ∴.∴.22.如图,有一个斜坡AB ,坡顶B 离地面的高度BC 为20米,坡面AB 的坡度为25,求坡面AB 的长度.【答案】29【分析】根据坡度的定义可得25BC AC =,求出AB ,再根据勾股定理求222050.AB =+ 【详解】∵坡顶B 离地面的高度BC 为20米,坡面AB 的坡度为25即25BC AC =, 2025AC = ∴50AC =米由勾股定理得2220501029AB =+=答:坡面AB 的长度为29.【点睛】考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.23.用配方法解方程2x 2-4x-3=0.【答案】x 110,x 210.【分析】借助完全平方公式,将原方程变形为25(1)2x -=,开方,即可解决问题. 【详解】解:∵2x 2-4x-3=0, 2322x x ∴-= 25(1)2x ∴-= 1210101,1x x ∴=+=- 点睛:用配方法解一元二次方程的步骤:移项(常数项右移)、二次项系数化为1、配方(方程两边同加一次项一半的平方)、开方、求解、定解24.如图,C 地在B 地的正东方向,因有大山阻隔,由B 地到C 地需绕行A 地,已知A 地位于B 地北偏东53°方向,距离B 地516千米,C 地位于A 地南偏东45°方向.现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B 地前往C 地的路程.(结果精确到1千米)(参考数据:sin53°=45,cos53°=35,tan53°=43)【答案】建成高铁后从B 地前往C 地的路程约为722千米.【分析】作AD ⊥BC 于D ,分别根据正弦、余弦的定义求出BD 、AD ,再根据等腰直角三角形的性质求出CD 的长,最后计算即可.【详解】解:如图:作AD ⊥BC 于D ,在Rt △ADB 中,cos ∠DAB =AD AB,sin ∠DAB =BD AB , ∴AD =AB •cos ∠DAB =516×35=309.6,BD =AB •sin ∠DAB =516×45=412.8, 在Rt △ADC 中,∠DAC =45°,∴CD =AD =309.6,∴BC =BD+CD ≈722,答:建成高铁后从B 地前往C 地的路程约为722千米.【点睛】本题考查了方向角问题,掌握方向角的概念和熟记锐角三角函数的定义是解答本题的关键.25.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°.求CD的长.【答案】CD=2 3 .【分析】根据相似三角形的判定定理求出ABP PCD∽,再根据相似三角形对应边的比等于相似比解答.【详解】解:∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠APB=∠PAC+∠C,∠PDC=∠PAC+∠APD,∵∠APD=60°,∴∠APB=∠PAC+60°,∠PDC=∠PAC+60°,∴∠APB=∠PDC,又∵∠B=∠C=60°,∴△ABP∽△PCD,∴AB BP PC CD=,即312CD =,∴CD=2 3 .【点睛】本题考查了相似三角形的判定和性质、等边三角形的性质,证出两三角形相似是解题的关键.26.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE的长度.(结果保留根号)【答案】AE的长为(123)+【分析】在Rt ACF中求AF的长, 在Rt CEF中求EF的长,即可求解.【详解】过点C作CF AB⊥于点F由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AF ACF CF ∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒tan EF ECF CF∴∠=312EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为()1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.27.已知:点D 是△ABC 中AC 的中点,AE ∥BC ,ED 交AB 于点G ,交BC 的延长线于点F . (1)求证:△GAE ∽△GBF ;(2)求证:AE=CF ;(3)若BG :GA=3:1,BC=8,求AE 的长.【答案】(1)详见解析;(2)详见解析;(3)AE=1【分析】(1)由AE ∥BC 可直接判定结论;(2)先证△ADE ≌△CDF ,即可推出结论;(3)由△GAE ∽△GBF ,可用相似三角形的性质求出结果.【详解】(1)∵AE ∥BC ,∴△GAE ∽△GBF ;(2)∵AE ∥BC ,∴∠E=∠F ,∠EAD=∠FCD ,又∵点D 是AC 的中点,∴AD=CD ,∴△ADE≌△CDF(AAS),∴AE=CF;(3)∵△GAE∽△GBF,∴BG BF BC CF GA EA AE+==,又∵AE=CF,∴BC AE BGAE GA+==3,即8AEAE+=3,∴AE=1.【点睛】本题考查了相似三角形的判定与性质等,解答本题的关键是灵活运用相似三角形的性质.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.32D.33【答案】B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=2BD.cos∠ACB=1222ADAB==,故选B.2.如图,在平面直角坐标系中,直线OA过点(4,2),则tanα的值是( )A.12B.5C.5D.2【答案】A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【详解】如图:过点(4,2)作直线CD⊥x轴交OA于点C,交x轴于点D,∵在平面直角坐标系中,直线OA过点(4,2),∴OD=4,CD=2,∴tanα=CD OD =24=12, 故选A .【点睛】本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.3.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0【答案】B【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y 轴的右侧,∴x=﹣2b a>0, ∴b>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.4.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或【答案】C 【分析】根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,1),然后观察函数图象,找出抛物线在x 轴上方的部分所对应的自变量的范围即可.【详解】∵y =ax 2+bx +c 的对称轴为直线x =−1,与x 轴的一个交点为(1,1),∴抛物线与x 轴的另一个交点为(−3,1),∴当−3<x <1时,y >1.故选:C .【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x 轴的交点. 5.关于抛物线y =x 2﹣6x+9,下列说法错误的是( )A .开口向上B .顶点在x 轴上C .对称轴是x =3D .x >3时,y 随x 增大而减小【答案】D【分析】直接利用二次函数的性质进而分别分析得出答案.【详解】解:22693y x x x , 则a=1>0,开口向上,顶点坐标为:(3,0),对称轴是x=3,故选项A ,B ,C 都正确,不合题意;x >3时,y 随x 增大而增大,故选项D 错误,符合题意.故选:D .【点睛】此题主要考查了二次函数的性质,正确掌握相关性质是解题关键.6.如图所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( )A .(-3,0)B .(-2,0)C .(-4,0)或(-2,0)D .(-4,0)【答案】A 【解析】此题根据切线的性质以及勾股定理,把要求PQ 的最小值转化为求AP 的最小值,再根据垂线段最短的性质进行分析求解.【详解】连接AQ ,AP .根据切线的性质定理,得AQ ⊥PQ ;要使PQ 最小,只需AP 最小,则根据垂线段最短,则作AP ⊥x 轴于P ,即为所求作的点P ;此时P 点的坐标是(-3,0).故选A .【点睛】此题应先将问题进行转化,再根据垂线段最短的性质进行分析.7.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?若设每轮传染中平均一个人传染了x 个人,那么x 满足的方程是( )A .(1)121x x +=B .1(1)121x x ++=C .(1)121x x x ++=D .1(1)121x x x +++=【答案】D【分析】先由题意列出第一轮传染后患流感的人数,再列出第二轮传染后患流感的人数,即可列出方程.【详解】解:设每轮传染中平均一个人传染了x 个人,则第一轮传染后患流感的人数是:1+x ,第二轮传染后患流感的人数是:1+x+x (1+x ),因此可列方程,1+x+x (1+x )=1.故选:D .【点睛】本题主要考查一元二次方程的应用,找到等量关系是解题的关键.8.下列几何体的三视图相同的是( ) A .圆柱 B .球 C .圆锥D .长方体【答案】B 【解析】试题分析:选项A 、圆柱的三视图,如图所示,不合题意;选项B 、球的三视图,如图所示,符合题意;选项C 、圆锥的三视图,如图所示,不合题意;选项D 、长方体的三视图,如图所示,不合题意;.故答案选B.考点:简单几何体的三视图.9.如图,在ABC 中,AB BC =,90ABC ∠=︒,点D 、E 、F 分别在边AC 、BC 、AB 上,且CDE △与FDE 关于直线DE 对称.若2AF BF =,72AD =,则CD =( ).A .3B .5C .D .【答案】D 【分析】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,根据勾股定理求出AC ,FH ,AH ,设EC x =,根据轴对称的性质知3BE a x =-,在Rt △BFE 中运用勾股定理求出x ,通过证明FHDEBF ∆∆,求出DH 的长,根据AD AH HD =+求出a 的值,进而求解.【详解】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,由题意知,2AF a =,3BC AB a ==,由勾股定理知,AC =,FH AH ==, ∵CDE ∆与FDE ∆关于直线DE 对称,∴EC FE =,45DFE DCE ︒∠=∠=,设EC x =,则3BE a x =-,在Rt △BFE 中,222(3)a a x x +-=, 解得,53x a =,即53EC a =,43BE a =, ∵45DFE DCE A AFH ︒∠=∠=∠=∠=,∴90DFH BFE ︒∠+∠=,90BEF BFE ︒∠+∠=,∴DFH BEF ∠=∠,∵90DHF FBE ︒∠+∠=,∴FHDEBF ∆∆, ∴DH FH BF BE=,∴4DH a =,∵AD AH HD =+== ∴解得,4a =,∴CD AC AD =-==,故选D .【点睛】本题考查了轴对称图形的性质,相似三角形的判定与性质,勾股定理,等腰直角三角形的性质等,巧作辅助线证明FHD EBF ∆∆是解题的关键.10.方程x 2=2x 的解是( )A .2B .0C .2或0D .﹣2或0【答案】C【分析】利用因式分解法求解可得.【详解】解:∵x 2=2x ,∴x 2﹣2x =0,则x (x ﹣2)=0,∴x =0或x ﹣2=0,解得:x 1=0,x 2=2,故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.11.如图是我们学过的反比例函数图象,它的表达式可能是( )A .22y x =B .4y x =C .3y x =-D .3y x =-【答案】B 【分析】根据反比例函数图象可知,经过第一三象限,0k >,从而得出答案.【详解】解:A 、22y x =为二次函数表达式,故A 选项错误;B 、4y x=为反比例函数表达式,且0k >,经过第一三象限,符合图象,故B 选项正确;C 、3y x =-为反比例函数表达式,且0k <,经过第二四象限,不符合图象,故C 选项错误;D 、3y x =-为一次函数表达式,故D 选项错误.故答案为B .【点睛】本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.12.如图,线段AB 两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)【答案】C 【解析】直接利用位似图形的性质得出对应点坐标乘以12得出即可. 【详解】解:∵线段AB 两个端点的坐标分别为A (4,4),B (6,2), 以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD , ∴端点的坐标为:(2,2),(3,1).故选C .【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.二、填空题(本题包括8个小题)13.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).【答案】38π 【解析】试题分析:将左下阴影部分对称移到右上角,则阴影部分面积的和为一个900角的扇形面积与一个450角的扇形面积的和:2290145133603608πππ⨯⨯⨯⨯+=. 14.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.【答案】70°【分析】根据CB =CD ,得到30CAB CAD ∠=∠=︒,根据同弧所对的圆周角相等即可得到50ABD ACD ∠=∠=︒,根据三角形的内角和即可求出.【详解】∵CB =CD ,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.故答案为70.︒【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.15.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为 ________. 【答案】16【分析】采用列举法求概率.【详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P (抽取的2名学生是甲和乙)=1÷6=16. 故答案为:16 【点睛】本题考查概率的计算,题目比较简单.16.若一个反比例函数的图像经过点(),Aa a 和()3,2B a -,则这个反比例函数的表达式为__________. 【答案】36y x= 【分析】这个反比例函数的表达式为k y x=,将A 、B 两点坐标代入,列出方程即可求出k 的值,从而求出反比例函数的表达式.【详解】解:设这个反比例函数的表达式为k y x =将点(),A a a 和()3,2B a -代入,得23k a a k a ⎧=⎪⎪⎨⎪-=⎪⎩化简,得260a a +=解得:126,0a a =-=(反比例函数与坐标轴无交点,故舍去)解得:36k = ∴这个反比例函数的表达式为36y x =故答案为:36y x =. 【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.17.如果在比例尺1:100000的滨海区地图上,招宝山风景区与郑氏十七房的距离约是19cm ,则它们之间的实际距离约为_____千米.【答案】1.【分析】根据比例尺=图上距离∶实际距离,列比例式即可求得它们之间的实际距离. 要注意统一单位.【详解】解:设它们之间的实际距离为xcm ,1∶100000=1∶x ,解得x =100000.100000cm =1千米.所以它们之间的实际距离为1千米.故答案为1.【点睛】本题考查了比例线段. 熟练运用比例尺进行计算,注意单位的转换.18.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到A B C ''''''△的位置.设1BC =,AC =A 运动到点A ''的位置时,点A 经过的路线长为_________.【答案】433π⎛⎫+⎪ ⎪⎝⎭【分析】根据题意得到直角三角形在直线l上转动两次点A分别绕点B旋转120°和绕C″旋转90°,将两条弧长求出来加在一起即可.【详解】解:在Rt△ABC中,∵BC=1,3AC=,∴AB=2,∠CBA=60°,∴弧AA′=12024 1803ππ⨯=;弧A′A′′=9033ππ⨯=;∴点A经过的路线的长是4343() 3232πππ+=+;故答案为:43 () 32π+.【点睛】本题考查了弧长的计算方法及勾股定理,解题的关键是根据直角三角形的转动过程判断点A是以那一点为圆心转动多大的角度.三、解答题(本题包括8个小题)19.某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;(2)这个苗圃的面积能否是120平方米?请说明理由.【答案】(1)x的值为12;(2)这个苗圃的面积不能是120平方米,理由见解析.【分析】(1)用x表示出矩形的长为30-2x,利用矩形面积公式建立方程求解,根据平行于墙的边长不能大于18米,舍去不符合题意的解;(2)根据面积120平方米建立方程,若方程有解,则可以达到120平米,否则不能.。
安徽省铜陵市九年级上学期数学期末考试试卷

安徽省铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)方程x2+2x-3=0的解是()A . x1=1,x2=3B . x1=1,x2=-3C . x1=-1,x2=3D . x1=-1,x2=-32. (2分)下列运算正确的是()A . +=B . 3x2y﹣x2y=3C . =a+bD . (a2b)3=a6b33. (2分) (2019九上·嘉定期末) 如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A . AD:DB=AE:ECB . DE:BC=AD:ABC . BD:AB=CE:ACD . AB:AC=AD:AE4. (2分)下列方程有实数根的是()A . x2-x-1=0B . x2+x+1=0C . x2-6x+10=0D . x2-x+1=05. (2分)(2017·西安模拟) 如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB 于点D,交AC于点E,连接CD,则CD=()A . 3B . 4C . 4.8D . 56. (2分)下列说法正确的是()A . 一个游戏中奖的概率是,则做500次这样的游戏一定会中奖B . 了解50发炮弹的杀伤半径,应采用普查的方式C . 一组数据1,2,3,2,3的众数和中位数都是2D . 数据:1,3,5,5,6的方差是3.27. (2分)已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A . (2,3)B . (3,1)C . (2,1)D . (3,3)8. (2分) (2016九上·芜湖期中) 如图,在⊙O中,AB是直径,点C是的中点,点P是的中点,则∠PAB的度数()A . 30°B . 25°C . 22.5°D . 不能确定9. (2分) (2019九上·慈溪期中) 已知抛物线具有如下性质:抛物线上任意一点到定点F(0,2)的距离与到x轴的距离相等,点M的坐标为(3,6),P是抛物线上一动点,则△PMF周长的最小值是()A . 5B . 9C . 11D . 1310. (2分)已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点的坐标为()A . (1,)B . (4,2)C . (1,)或(-1,- )D . (4,2)或(-4,-2)二、填空题 (共5题;共5分)11. (1分)(2016·鸡西模拟) 函数y= 中,自变量x的取值范围是________.12. (1分)某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是________.13. (1分) (2016九上·北京期中) “圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.14. (1分) (2018八上·阜宁期末) 在中,,,AD是角平分线,则的面积为________cm2 .15. (1分)(2018·龙湖模拟) 如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点 .若 =1,则矩形的面积为________.三、解答题 (共8题;共97分)16. (5分)(2017·灌南模拟) 计算:()﹣1﹣(π﹣2)0+| ﹣2|+sin60°.17. (15分) (2017九上·海淀月考) 已知二次函数.(1)请你将函数解析式化成的形式,并在直角坐标系中画出的图像.(2)利用()中的图像结合图像变换表示出方程的根,要求保留画图痕迹,指出方程根的图形意义.18. (2分)(2018·岳阳模拟) 如图,有小岛A和小岛B,轮船以45km/h的速度由C向B航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A 在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)19. (15分)(2012·宜宾) 某市政府为落实“保障性住房政策”,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2013年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为x1,x2,且mx12﹣4m2x1x2+mx22的值为12,求m的值.20. (15分) (2019九上·东台期中) 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价x元,则平均每天销售数量为________件(用含x的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?21. (10分)(2018·安徽) 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M 为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.22. (10分) (2019八上·洪山期末) 如图1,△ABC中;(1)若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,求∠ACB的大小.(2)如图2,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE=α.①连接DC与BE,G、F分别是DC与BE的中点,求∠AFG的度数.________②如图3,DC、BE交于点M,连接AM,直接写出∠AMC与α的数量关系是________.23. (25分)(2017·徐汇模拟) 如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当△ABD的面积为4时,①求点D的坐标;②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共97分)16-1、17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-2、。
铜陵市九年级上学期数学期末考试试卷

铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·库伦旗期末) 下列事件是必然事件的是()A . 明天气温会升高B . 随意翻到一本书的某页,这页的页码是奇数C . 早晨太阳会从东方升起D . 某射击运动员射击一次,命中靶心2. (2分) (2019七下·景县期中) 如图,在数轴上标注了四段范围,则表示的点落在()A . 段(1)B . 段(2)C . 段(3)D . 段(4)3. (2分)二次函数y=x2+2x﹣7的函数值是8,那么对应的x的值是()A . 3B . 5C . ﹣3和5D . 3和﹣54. (2分) (2019九上·黄石期中) 二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax﹣bc的图象大致是()A .B .C .D .5. (2分)在抛一枚均匀硬币的实验中,如果没有硬币,则作为实验替代物的是()A . 同一副扑克中的任意两张B . 图钉C . 瓶盖D . 一个小长方体6. (2分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2 .若设道路的宽为,则下面所列方程正确的是()A . (32-x)(20-x)=32×20-570B . 32x+2×20x=32×20-570C . 32x+2×20x-2x2=570D . (32-2x)(20-x)= 5707. (2分)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A'的纵坐标是()A . 3B . -3C . -4D . 48. (2分) (2018九下·市中区模拟) 如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P 从点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD 于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为()A .B .C .D .9. (2分)如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A . M或O或NB . E或O或CC . E或O或ND . M或O或C10. (2分)如图,已知坡面AB的坡度i=1∶,则坡角α为()A . 15°B . 20°C . 30°D . 45°二、填空题 (共5题;共6分)11. (1分)计算:2342﹣468×134+1342=________.12. (1分) (2015九上·潮州期末) 某网店一种玩具原价为100元,“双十一”期间,经过两次降价,售价变成了81元,假设两次降价的百分率相同,则每次降价的百分率为________.13. (2分)一山坡的坡度为i=1:,那么该山坡的坡角为________度.14. (1分)(2018·泸县模拟) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x <3;⑤当x<0时,y随x增大而增大;其中结论正确有________.15. (1分)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2, BC=2,则图中阴影部分的面积为________三、解答题 (共8题;共59分)16. (5分)(2017·武汉模拟) 先化简,再求值:• ﹣,其中a=1+ ,b=1﹣.17. (10分) (2018九上·萧山开学考) 已知关于x的方程(a﹣1)x2+2x+a﹣1=0.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.18. (10分)如图是二次函数y=a(x+1)2+2的图象的一部分,根据图象回答下列问题:(1)抛物线与x轴的一个交点A的坐标是________,则抛物线与x轴的另一个交点B的坐标是________;(2)确定a的值;(3)设抛物线的顶点是P,试求△PAB的面积.19. (5分) (2019九上·定边期中) 在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在某个路口,一辆长为的大巴车遇红灯后停在距交通信号灯的停止线处,小张驾驶一辆小轿车跟随大巴车行驶,设小张距离大巴车,已知大巴车车顶高于小张的水平视线,红灯下沿高于小张的水平视线,若小张能看到整个红灯,求的最小值.20. (15分)(2016·怀化) 甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.21. (2分)某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=68°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长(精确到0.1m);(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?(精确到0.1m)(参考数据:sin68°=0.9272,cos68°=0.3746,tan68°=2.4751,sin50°=0.766O,cos50°=0.6428,tan50°=1.1918)22. (2分) (2019七上·武昌期末) 已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.23. (10分)(2017·港南模拟) 如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共59分)16-1、17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、。
铜陵市九年级上学期数学期末考试试卷

铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2012·贵港) 从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k值,则所得的直线不经过第三象限的概率是()A .B .C .D . 12. (2分) (2015九上·宜昌期中) 一元二次方程x2﹣3x=0的根是()A . x=3B . x1=0,x2=﹣3C . x1=0,x2=D . x1=0,x2=33. (2分)(2020·乾县模拟) 如图,内接于,连接并延长交于点,若,则的度数是()A .B .C .D .4. (2分) (2018九上·徐闻期中) 二次函数y=(x﹣1)2+1的图象顶点坐标是()A . (1,-1)B . (-1,1)C . (1,1)D . (-1,-1)5. (2分) 2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()成绩(个/分钟)140160169170177180人数111232A . 众数是177B . 平均数是170C . 中位数是173.5D . 方差是1356. (2分) (2017九上·宝坻月考) 初中毕业时,九年级(1)班的每个同学都将自己的相片向全班其他同学各送1张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为()A . x(x-1)=2 070B . x(x+1)=2 070C . 2x(x+1)=2 070D . =2 0707. (2分) (2017·桂平模拟) 将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A . 10cmB . 30cmC . 45cmD . 300cm8. (2分) (2017九上·沙河口期中) 从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为80cm2 ,则原来正方形的面积为()A . 100cm2B . 121cm2C . 144cm2D . 169cm29. (2分)(2017·和平模拟) 有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为()A .B . 4C .D . 210. (2分)已知:二次函数y=x2-4x-a,下列说法错误的是()A . 当x<1时,y随x的增大而减小B . 若图象与x轴有交点,则a≤4C . 当a=3时,不等式x2-4x+a<0的解集是1<x<3D . 若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=3二、填空题 (共8题;共8分)11. (1分)在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组6人)测试成绩如下(单位:次/分):44,42,48,46,47,45.则这组数据的极差为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年安徽省铜陵市义安区九年级(上)期末数学试卷一、选择题[本题共30分,每小题3分)1.(3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个2.(3分)已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1B.0C.1D.23.(3分)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.4.(3分)下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯5.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°6.(3分)对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)7.(3分)从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.8.(3分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°9.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4B.k<﹣4C.k≤4D.k<410.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(本题共15分,毎小题3分)11.(3分)把方程2x2﹣1=x(x+3)化成一般形式是.12.(3分)一个多边形的每一个外角都是36°,则这个多边形的边数是.13.(3分)如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为.14.(3分)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′=.15.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0,②2a+b=0,③a﹣b+c=0;④4ac﹣b2>0,⑤4a+2b+c>0,其中正确的结论序号是三、解答题(共55分)16.(6分)用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣10.(2)x2+5x﹣4=0.17.(6分)为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n)50100150200250300500投中次数(m)286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?18.(6分)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°,得到△OA1B1.(1)线段A1B1的长是,∠AOA1的度数是;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.19.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?20.(9分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.21.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.22.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.2018-2019学年安徽省铜陵市义安区九年级(上)期末数学试卷参考答案与试题解析一、选择题[本题共30分,每小题3分)1.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.2.【解答】解:∵关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),∴x1•(﹣a)=a,即x1=﹣1,∴1﹣b+a=0,∴a﹣b=﹣1.故选:A.3.【解答】解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选:A.4.【解答】解:A、通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B、抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C、明天会下雨,是随机事件,故C选项不符合题意;D、经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选:A.5.【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.6.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.7.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选:B.8.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.9.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.10.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.二、填空题(本题共15分,毎小题3分)11.【解答】解:2x2﹣1=x(x+3)2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=0,故x2﹣3x﹣1=0.故答案为:x2﹣3x﹣1=0.12.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.13.【解答】解:∵S=lr,∴S=×2×2=2,故答案为2.14.【解答】解:∵△ABP绕A逆时针旋转后,能够得到△ACP′,∴AP=AP′=3,∠P AP′=∠BAC=90°,在Rt△APP′中,由勾股定理,得PP′2=AP2+AP′2=32+32=18,∴PP′=3故答案为:3.15.【解答】解:①由图象可知:抛物线开口方向向下,则a<0,对称轴直线位于y轴右侧,则a、b异号,即b>0,抛物线与y轴交于正半轴,则c>0,abc<0,故①正确;②对称轴为x=﹣=1,b=﹣2a,故②正确;③由抛物线的对称性知,抛物线与x轴的另一个交点坐标为(﹣1,0),所以当x=﹣1时,y=a﹣b+c=0,即a﹣b+c=0,故③正确;④抛物线与x轴有两个不同的交点,则b2﹣4ac>0,所以4ac﹣b2<0,故④错误;⑤当x=2时,y=4a+2b+c>0,故⑤正确.故答案是:①②③⑤.三、解答题(共55分)16.【解答】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=0,∴(2x﹣5)(x﹣2)=0,则2x﹣5=0或x﹣2=0,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>0,则x=.17.【解答】解:(1)估计这名球员投篮一次,投中的概率约是≈0.5;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.18.【解答】解:(1)A1B1=AB=6,∠AOA1=90°.故答案是:6,90°;(2)∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,∴∠OA1B1=∠AOA1,A1B1=OA,∴B1A1∥OA,∴四边形OAA1B1是平行四边形;(3)S=OA•A1O=6×6=36.即四边形OAA1B1的面积是36.19.【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x,950(1+x)2=1862,解得,x1=0.4,x2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,∵2606.8>2400,∴2017年我市能完成计划目标,即如果2017年仍保持相同的年平均增长率,2017年我市能完成计划目标.20.【解答】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;方法2、∵PD,PC是⊙O的切线,∴PD=PC,∵OD=OC,∴P,O在CD的中垂线上,∴OP⊥CD(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.21.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=,∴S△OCD=,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴B(﹣3,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2∴M(﹣1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2).。