半导体器件习题及参考答案
常用半导体器件复习题

第1章常用半导体器件一、判断题(正确打“√”,错误打“×”,每题1分)1.在N型半导体中,如果掺入足够量的三价元素,可将其改型成为P型半导体。
()2.在N型半导体中,由于多数载流子是自由电子,所以N型半导体带负电。
()3.本征半导体就是纯净的晶体结构的半导体。
()4.PN结在无光照、无外加电压时,结电流为零。
()5.使晶体管工作在放大状态的外部条件是发射结正偏,且集电结也是正偏。
()6.晶体三极管的β值,在任何电路中都是越大越好。
( )7.模拟电路是对模拟信号进行处理的电路。
( )8.稳压二极管正常工作时,应为正向导体状态。
( )9.发光二极管不论外加正向电压或反向电压均可发光。
( )10.光电二极管外加合适的正向电压时,可以正常发光。
( )一、判断题答案:(每题1分)1.√;2.×;3.√;4.√;5.×;6.×;7.√;8.×;9.×;10.×。
二、填空题(每题1分)1.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是。
2.由于浓度不同而产生的电荷运动称为。
3.晶体二极管的核心部件是一个,它具有单向导电性。
4.二极管的单向导电性表现为:外加正向电压时,外加反向电压时截止。
5.三极管具有放大作用的外部条件是发射结正向偏置,集电结偏置。
6.场效应管与晶体三极管各电极的对应关系是:场效应管的栅极G对应晶体三极管的基极b,源极S对应晶体三极管,漏极D对应晶体三极管的集电极c。
7.PN结加正向电压时,空间电荷区将。
8.稳压二极管正常工作时,在稳压管两端加上一定的电压,并且在其电路中串联一支限流电阻,在一定电流范围内表现出稳压特性,且能保证其正常可靠地工作。
9.晶体三极管三个电极的电流IE 、IB、IC的关系为:。
10.发光二极管的发光颜色决定于所用的,目前有红、绿、蓝、黄、橙等颜色。
二、填空题答案:(每题1分)1.空穴2.扩散运动3.PN结4.导通5.反向6.发射机e7.变薄8.反向9.IE =IB+IC10.材料三、单项选择题(将正确的答案题号及内容一起填入横线上,每题1分)1.在本征半导体中加入元素可形成N型半导体,加入三价元素可形成P型半导体。
半导体器件物理习题答案

半导体器件物理习题答案1、简要的回答并说明理由:①p+-n结的势垒宽度主要决定于n 型一边、还是p型一边的掺杂浓度?②p+-n结的势垒宽度与温度的关系怎样?③p+-n结的势垒宽度与外加电压的关系怎样?④Schottky 势垒的宽度与半导体掺杂浓度和温度分别有关吗?【解答】①p+-n结是单边突变结,其势垒厚度主要是在n型半导体一边,所以p+-n结的势垒宽度主要决定于n型一边的掺杂浓度;而与p型一边的掺杂浓度关系不大。
因为势垒区中的空间电荷主要是电离杂质中心所提供的电荷(耗尽层近似),则掺杂浓度越大,空间电荷的密度就越大,所以势垒厚度就越薄。
②因为在掺杂浓度一定时,势垒宽度与势垒高度成正比,而势垒高度随着温度的升高是降低的,所以p+-n结的势垒宽度将随着温度的升高而减薄;当温度升高到本征激发起作用时,p-n结即不复存在,则势垒高度和势垒宽度就都将变为0。
③外加正向电压时,势垒区中的电场减弱,则势垒高度降低,相应地势垒宽度也减薄;外加反向电压时,势垒区中的电场增强,则势垒高度升高,相应地势垒宽度也增大。
④Schottky势垒区主要是在半导体一边,所以其势垒宽度与半导体掺杂浓度和温度都有关(掺杂浓度越大,势垒宽度越小;温度越高,势垒宽度也越小)。
2、简要的回答并说明理由:①p-n结的势垒高度与掺杂浓度的关系怎样?②p-n结的势垒高度与温度的关系怎样?③p-n结的势垒高度与外加电压的关系怎样?【解答】①因为平衡时p-n结势垒(内建电场区)是起着阻挡多数载流子往对方扩散的作用,势垒高度就反映了这种阻挡作用的强弱,即势垒高度表征着内建电场的大小;当掺杂浓度提高时,多数载流子浓度增大,则往对方扩散的作用增强,从而为了达到平衡,就需要更强的内建电场、即需要更高的势垒,所以势垒高度随着掺杂浓度的提高而升高(从Fermi 能级的概念出发也可说明这种关系:因为平衡时p-n结的势垒高度等于两边半导体的Fermi 能级的差,当掺杂浓度提高时,则Fermi能级更加靠近能带极值[n型半导体的更靠近导带底,p型半导体的更靠近价带顶],使得两边Fermi能级的差变得更大,所以势垒高度增大)。
半导体物理与器件课后练习题含答案

半导体物理与器件课后练习题含答案1. 简答题1.1 什么是p型半导体?答案: p型半导体是指通过加入掺杂物(如硼、铝等)使得原本的n型半导体中含有空穴,从而形成的半导体材料。
具有p型性质的半导体材料被称为p型半导体。
1.2 什么是n型半导体?答案: n型半导体是指通过加入掺杂物(如磷、锑等)使得原本的p型半导体中含有更多的自由电子,从而形成的半导体材料。
具有n型性质的半导体材料被称为n型半导体。
1.3 什么是pn结?答案: pn结是指将p型半导体和n型半导体直接接触形成的结构。
在pn结的界面处,p型半导体中的空穴和n型半导体中的自由电子会相互扩散,形成空间电荷区,从而形成一定的电场。
当外加正向电压时,电子和空穴在空间电荷区中相遇,从而发生复合并产生少量电流;而当外加反向电压时,电场反向,空间电荷区扩大,从而形成一个高电阻的结,电流几乎无法通过。
2. 计算题2.1 若硅片的掺杂浓度为1e16/cm³,电子迁移率为1350 cm²/Vs,电离能为1.12 eV,则硅片的载流子浓度为多少?解题过程:根据硅片的掺杂浓度为1e16/cm³,可以判断硅片的类型为n型半导体。
因此易知载流子为自由电子。
根据电离能为1.12 eV,可以推算出自由电子的有效密度为:n = N * exp(-Eg / (2kT)) = 6.23e9/cm³其中,N为硅的密度,k为玻尔兹曼常数(1.38e-23 J/K),T为温度(假定为室温300K),Eg为硅的带隙(1.12 eV)。
因此,载流子浓度为1e16 + 6.23e9 ≈ 1e16 /cm³。
2.2 假设有一n+/p结的二极管,其中n+区的掺杂浓度为1e19/cm³,p区的掺杂浓度为1e16/cm³,假设该二极管在正向电压下的漏电流为1nA,求该二极管的有效面积。
解题过程:由于该二极管的正向电压下漏电流为1nA,因此可以利用肖特基方程计算出它的开启电压:I = I0 * (exp(qV / (nkT)) - 1)其中,I0为饱和漏电流(假定为0),q为电子电荷量,V为电压,n为调制系数(一般为1),k为玻尔兹曼常数,T为温度。
(完整版)半导体及其应用练习题及答案

(完整版)半导体及其应用练习题及答案题目一1. 半导体是什么?答案:半导体是介于导体和绝缘体之间的材料,在温度适当时具有导电性能。
2. 半导体的价带和导带分别是什么?答案:半导体中的价带是电子离子化合物的最高能级,而导带是能够被自由电子占据的能级。
3. 简要解释半导体中的P型和N型材料。
答案:P型半导体是通过向半导体中掺杂三价元素,如硼,来创建的,在P型材料中电子少,因此存在空穴。
N型半导体是通过向半导体中掺杂五价元素,如磷,来创建的,在N型材料中电子多,因此存在自由电子。
题目二1. 解释PN结是什么?答案:PN结是由一个P型半导体和一个N型半导体通过熔合而形成的结构,其中P型半导体中的空穴与N型半导体中的自由电子结合,形成一个边界处的耗尽区域。
2. 简要描述PN结的整流作用是什么?答案:PN结的整流作用是指在正向偏置电压下,电流可以流过PN结,而在反向偏置电压下,电流几乎不会流过PN结。
3. 什么是PN结的击穿电压?答案:PN结的击穿电压是指当反向偏置电压达到一定程度时,PN结中会发生电击穿现象,导致电流迅速增加。
题目三1. 解释场效应晶体管(MOSFET)是什么?答案:场效应晶体管是一种半导体器件,可以用于控制电流的流动,其结构包括源极、漏极和栅极。
2. 简要描述MOSFET的工作原理。
答案:MOSFET的工作原理是通过栅极电场的变化来控制其上的沟道区域导电性,从而控制漏极和源极之间的电流的流动。
3. MOSFET有哪些主要优点?答案:MOSFET的主要优点包括体积小、功耗低、响应速度快和可靠性高等。
半导体器件自测题及习题题解

第一章 常用半导体器件 自测题一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。
1、在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。
( )2、因为N 型半导体的多子是自由电子,所以它带负电。
( )3、PN 结在无光照、无外加电压时,结电流为零。
( )4、处于放大状态的晶体管,集电极电流是多子漂移运动形成的。
( )5、结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其RGS 大的特点。
( )6、若耗尽型N 沟道MOS 管的UGS 大于零,则其输入电阻会明显变小。
( ) 解:1、√ 2、× 3、√ 4、× 5、√ 6、×二、选择正确答案填入空内。
1、PN 结加正向电压时,空间电荷区将 。
A. 变窄 B. 基本不变 C. 变宽2、设二极管的端电压为U ,则二极管的电流方程是 。
A. ISeU B.TU U I eS C.)1e(S -TU U I3、稳压管的稳压区是其工作在 。
A. 正向导通B.反向截止C.反向击穿4、当晶体管工作在放大区时,发射结电压和集电结电压应为 。
A. 前者反偏、后者也反偏B. 前者正偏、后者反偏C. 前者正偏、后者也正偏 5、UGS =0V 时,能够工作在恒流区的场效应管有 。
A. 结型管 B. 增强型MOS 管 C. 耗尽型MOS 管 解:1、A 2、C 3、C 4、B 5、A C三、写出如图所示各电路的输出电压值,设二极管导通电压UD =0.7V 。
解:UO1≈1.3V ,UO2=0,UO3≈-1.3V ,UO4≈2V ,UO5≈1.3V ,UO6≈-2V 。
四、已知稳压管的稳压值U Z =6V ,稳定电流的最小值I Zmin =5mA 。
求如图所示电路中U O1和U O2各为多少伏。
解:U O1=6V ,U O2=5V 。
五、某晶体管的输出特性曲线如图T1.5所示,其集电极最大耗散功率P CM =200mW ,试画出它的过损耗区。
现代半导体器件习题答案

2
xyz 中检测到粒子的概率正比于 r , t xyz 。
2
1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。 解:如图 1.3 所示,从能带的观点来看,半导体和 绝缘体都存在着禁带,绝缘体因其禁带宽度较大 (6~7eV),室温下本征激发的载流子近乎为零,所 以绝缘体室温下不能导电。半导体禁带宽度较小, 只有 1~2eV,室温下已经有一定数量的电子从价 带激发到导带。所以半导体在室温下就有一定的 导电能力。而导体没有禁带,导带与价带重迭在 一起,或者存在半满带,因此室温下导体就具有 良好的导电能力。 1.4 为什么说本征载流子浓度与温度有关? 解: 本征半导体中所有载流子都来源于价带电子的本征激发。 由此产生的载流子称为本征载 流子。本征激发过程中电子和空穴是同时出现的,数量相等, n0 p0 ni 。对于某一确定 的半导体材料,其本征载流子浓度为 ni n0 p0 NC NV e
10 5 cm 3
1.6 有两块单晶硅样品,它们分别掺有 10 cm 的硼和磷,试计算 300K 时这两块样品的电 阻率,并说明为什么 N 型硅的导电性比同等掺杂的 P 型硅好。 解 : 查 P.22 图 1.4.2 可 得 空 穴 迁 移 率
3
p 400 cm 2 V s , 电 子 迁 移 率
n 1200 cm 2 V s
半导体器件物理复习题答案

半导体器件物理复习题答案一、选择题1. 半导体材料中,导电性介于导体和绝缘体之间的是:A. 导体B. 绝缘体C. 半导体D. 超导体答案:C2. PN结形成后,其空间电荷区的电场方向是:A. 由N区指向P区B. 由P区指向N区C. 垂直于PN结界面D. 与PN结界面平行答案:B3. 在室温下,硅的本征载流子浓度大约是:A. \(10^{10}\) cm\(^{-3}\)B. \(10^{12}\) cm\(^{-3}\)C. \(10^{14}\) cm\(^{-3}\)D. \(10^{16}\) cm\(^{-3}\)答案:D二、简答题1. 解释什么是PN结,并简述其工作原理。
答案:PN结是由P型半导体和N型半导体接触形成的结构。
P型半导体中空穴是多数载流子,N型半导体中电子是多数载流子。
当P型和N型半导体接触时,由于扩散作用,空穴和电子会向对方区域扩散,形成空间电荷区。
在空间电荷区,由于电荷的分离,产生一个内建电场,这个电场的方向是从N区指向P区。
这个内建电场会阻止进一步的扩散,最终达到动态平衡,形成PN结。
2. 描述半导体中的扩散和漂移两种载流子运动方式。
答案:扩散是指由于浓度梯度引起的载流子从高浓度区域向低浓度区域的运动。
漂移则是指在外加电场作用下,载流子受到电场力的作用而产生的定向运动。
扩散和漂移共同决定了半导体中的电流流动。
三、计算题1. 假设一个PN结的内建电势差为0.7V,求其空间电荷区的宽度。
答案:设PN结的空间电荷区宽度为W,内建电势差为Vbi,则有:\[ V_{bi} = \frac{qN_{A}N_{D}}{2\varepsilon}W \] 其中,q是电子电荷量,\( N_{A} \)和\( N_{D} \)分别是P型和N型半导体中的掺杂浓度,\( \varepsilon \)是半导体的介电常数。
通过这个公式可以计算出空间电荷区的宽度W。
四、论述题1. 论述半导体器件中的载流子注入效应及其对器件性能的影响。
半导体复习题(带答案)

半导体物理复习题一、选择题1.硅晶体结构是金刚石结构,每个晶胞中含原子个数为(D)P1A.1B.2C.4D.82.关于本征半导体,下列说法中错误的是(C)P65A.本征半导体的费米能级E F=E i基本位于禁带中线处B.本征半导体不含有任何杂质和缺陷C.本征半导体的费米能级与温度无关,只决定于材料本身D.本征半导体的电中性条件是qn0=qp03.非平衡载流子的复合率定义为单位时间单位体积净复合消失的电子-空穴对数。
下面表达式中不等于复合率的是(D)P130A. B. C. D.4.下面pn结中不属于突变结的是(D)P158、159A.合金结B.高表面浓度的浅扩散p+n结C.高表面浓度的浅扩散n+p结D.低表面浓度的深扩散结5.关于pn结,下列说法中不正确的是(C)P158、160A.pn结是结型半导体器件的心脏。
B.pn结空间电荷区中的内建电场起着阻碍电子和空穴继续扩散的作用。
C.平衡时,pn结空间电荷区中正电荷区和负电荷区的宽度一定相等。
6.对于小注入下的N型半导体材料,下列说法中不正确的是(B)P128A. B. C. D.7.关于空穴,下列说法不正确的是(C)P15A.空穴带正电荷B.空穴具有正的有效质量C.空穴同电子一样都是物质世界中的实物粒子D.半导体中电子空穴共同参与导电8.关于公式,下列说法正确的是(D)P66、67A.此公式仅适用于本征半导体材料B.此公式仅适用于杂质半导体材料C.此公式不仅适用于本征半导体材料,也适用于杂质半导体材料D.对于非简并条件下的所有半导体材料,此公式都适用9.对于突变结中势垒区宽度,下面说法中错误的是(C)P177A.p+n结中B.n+p结中C.与势垒区上总电压成正比D.与势垒区上总电压的平方根成正比10.关于有效质量,下面说法错误的是(D)P13、14A.有效质量概括了半导体内部势场的作用B.原子中内层电子的有效质量大,外层电子的有效质量小C.有效质量可正可负D.电子有效质量就是电子的惯性质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为μm,求零偏压下的总耗尽层宽度、内建电势和最大电场强度。
解:)0(,22≤≤-=x x qax dxd p S εψ)0(,22n S D x x qN dx d ≤≤-=εψ0),(2)(22≤≤--=-=E x x x x qa dx d x p p Sεψ n n SDx x x x qN dx d x ≤≤-=-=E 0),()(εψ x =0处E 连续得x n =µm x 总=x n +x p =µm⎰⎰=--=-npx x bi V dx x E dx x E V 0516.0)()(m V x qa E p S/1082.4)(252max ⨯-=-=ε,负号表示方向为n 型一侧指向p 型一侧。
2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp=τn=10-6s ,器件的面积为×10-5cm -2,计算300K 下饱和电流的理论值,±时的正向和反向电流。
解:D p =9cm 2/s ,D n =6cm 2/scm D L p p p 3103-⨯==τ,cm D L n n n 31045.2-⨯==τ np n pn p S L n qD L p qD J 0+=I S =A*J S =*10-16A 。
+时,I =µA , -时,I =*10-16A3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性区内存贮的少数载流子总量。
设n 型中性区的长度为1μm,空穴扩散长度为5μm。
解:P +>>n ,正向注入:0)(20202=---pn n n n L p p dx p p d ,得:)sinh()sinh()1(/00pnn pn kTqV n n n L x W L xW e p p p ---=- ⎰⨯=-=nnW x n n A dx p p qA Q 20010289.5)(4一个硅p +-n 单边突变结,N D =1015cm -3,求击穿时的耗尽层宽度,若n 区减小到5μm,计算此时击穿电压。
解:m V N E B g c /1025.3)1.1E )q(101.14814321S7⨯=⨯=(εV qN E V BCS B 35022==εm qN V x BBS mB με5.212==n 区减少到5µm 时,V V x W x V B mBmB B9.143])(1[22/=--= 第三章1 一个p +-n-p 晶体管,其发射区、基区、集电区的杂质浓度分别是5×1018,1016,1015cm -3,基区宽度W B 为μm,器件截面积为3mm 2。
当发射区-基区结上的正向偏压为,集电区-基区结上反向偏压为5V 时,计算(a)中性基区宽度,(b)发射区-基区结的少数载流子浓度,(c)基区内的少数载流子电荷。
解:(a )热平衡下,内建电势2ln i DA bi n N N q kT V =EB 结,V bi =;m V V N N N N q x eb bi BB E ES neb με217.0)()(2=-+=CB 结,V bi =;m V V N N N N q x cb bi BB E CS ncb με261.0)()(2=-+=W =W B -x neb -x ncb =µm(b )312/01073.4)0(-⨯==cm e p p kT qV n n BE(c )C qAWp Q n B 131093.52)0(-⨯==2 推导基区杂质浓度为l x B B e N x N /)0()(-=时的基区内建电场公式及基区少子浓度分布表达式。
解:不妨设为NPN 晶体管,由于基区中杂质存在浓度梯度,其多数载流子(空穴)的分布也存在浓度梯度,它使空穴作扩散运动,这一运动的产生破坏了基区中的电中性,为维持电中性,基区中就产生一电场来阻止基区中空穴的扩散运动。
电场的大小是恰好使电场产生的空穴漂移流与因杂质浓度梯度所引起的扩散流相抵消,这一电场就称为缓变基区内建电场。
考虑基区中自建电场对电流的贡献,热平衡时,净空穴电流为零。
即0)()()(00=-=dxx dp qD x x p q J B pBB B pB pB εμ 由此求得εB 为 dxx dp x p D x B B pBpBB )()(1)(00⋅=με平衡时基区中的空穴浓度P B0等于基区的杂质浓度N B ,于是上式写为dx x dN x N q kT x B B B )()(1)(=ε,代入lx B B e N x N /)0()(-= 则有lq kT B 1⋅-=ε 考虑电子电流密度:dxx dn qD x x n q J B nBB B nB nB )()()(+⋅⋅=εμ 将εB (x )代入上式,可得 ))()()()((dxx dn dx x dN x N x n qD J B B B B nB nB +⋅= 若忽略基区中空穴的复合,即J nB 为常数,我们可以用N B (x )乘上式两端,并从x 到W B 积分,得⎰⎰=BBW xB B W xB nBnB dx dxx n x N d dx x N qD J ))()(()(近似认为在x=W B 处,n B =0,有⎰-=B W x B B nB nBB dx x N x N qD J x n )()()( 积分之得到 {}]/)(ex p[1)(l x W l qD J x n B nBnBB ----= 若忽略发射极电子电流在发射结势垒区中的复合,即用J nE 代替上式中的J nB ,有{}]/)(ex p[1)(l x W l qD J x n B nBnEB ----= 3 一个硅n +-p-n 晶体管的发射区和集电区两侧的掺杂是突变的。
其发射区、基区、集电区的杂质浓度分别为1019,3×1016,5×1015cm -3,(a)求集电区-基区电压的上限,在该电压下,发射结偏置电压已不再能控制集电极电流,设基区宽度为μm。
(b)若截止频率主要受少子穿过基区的渡越时间限制,求在零偏压下共基极和共发射级的电流截止频率(晶体管的发射效率为,基区传输因子为)。
解:(a )热平衡下,V n N N q T k V i BC B biCB 707.0ln 2==当B bc bi BB E CS p W V V N N N N q x =-+=)()(2ε时穿通,可得:V V V PT BC 5.39==(b )s D W nB 1121068.32-⨯==τ而f T 主要受B τ限制,GHz f BT 32.421==πτ9010=-=T T γαγαβ,MHz ff T 1.480==ββ,GHz f f T 38.4)1(0=+=βα4 一个开关晶体管,基区宽度为μm,扩散系数为10cm 2/s ,基区内的少数载流子寿命为10-7s ,晶体管加偏压V CC =5V ,负载电阻为10KΩ,若在基极上加2μA 的脉冲电流,持续时间为1μs,求基区的存贮电荷和存贮延迟时间。
解:不妨设为N +PN 管,)1()(/n t n B B e I t Q ττ--=在t 1时刻达到饱和,相应集电极电流为mA R V V I CCECC CS 5.0=-=s D W nB 1021025.12-⨯==τC I Q B CS S 141025.6-⨯==τs Q I t SnB n S 71016.1ln-⨯==ττ 存储电荷为C e I s Q n t n B B 13/102)1()1(--⨯=-=ττμ5. 一理想的PNP 晶体管,其发射区、基区、集电区的杂质浓度分别为1019、1017、5×1015cm-3,而少数载流子的寿命分别为10-8、10-7和10-6s ,假设器件有效横截面积A2, W =μm 。
解:0γααT =6. 欲设计一双极型硅晶体管,其截止频率f T 为5GHz ,请问中性基区宽度W 需为多少?假设Dp 为10cm 2/s,并可忽略发射极和集电极延迟。
解:PNP 管,f T 忽略E τ和C τ,主要受B τ限制,GHz f BT 521==πτpB D W 22=τ=*10-11s 则:B p D W τ2==*10-5cm=μm第四章1、求势垒高度为的Au -Si 肖特基二极管的空穴电流和电子电流的比值。
硅为n 型,电阻率为1Ωcm,寿命τp=100μs,μp=400cm 2/(Vs)。
解:电阻率为1Ωcm ,查n -Si 的电阻率和浓度的关系图可得N D =×1015cm -3。
s cm qkTD p p /4.102==μ,m D L p p p μτ2.32==,空穴电流密度为Dp i p p N L n qD J 20==×10-12A/cm 2,电子电流密度为kTq S Bn eT A J φ-=2*=×10-7A/cm 2,其中A *=110A/K 2cm 2。
401062.5-⨯=Sp J J2、一个欧姆接触的面积为10-5cm 2,比接触电阻为10-6Ωcm 2,这个欧姆接触是在一个n 型硅上形成的。
若N D =5×1019cm -3,ФBn=,电子有效质量为0.26m 0,求有1A 正向电流通过时,欧姆接触上的电压降。
解:比接触电阻为10-6Ωcm 2, N D =5×1019cm -3,是高掺杂,因此隧道电流起主要支配作用,))(2exp(DBn S n N V m AK I η--=φε,1)])(2exp(2[--=DBn S n DS n C N m K N m ηηφεερ,其中K 是常数。
由此得到)2exp(21V N m N A m I DS n DS n Cηηεερ-=,计算得,V =。
由此在流过1A 的大电流下欧姆接触结上电压降才为。
3. 当T=300K 时,考虑以金作接触的n 沟GaAs MESFET ,假设势垒高度为,n 沟道浓度为2×1015cm -3,沟道厚度为μm ,计算夹断电压和内建电势。
(GaAs介电常数为) 解: 夹断电压为:4.1210854.82)106.0(102106.121424151902⨯⨯⨯⨯⨯⨯⨯⨯==---GaAs D P a qN V εε= n -GaAs 材料的导带有效态密度为×1017 cm -3, 故V N N q kTV DC n 142.0)ln(==, 内建电势为:V V V n Bn bi 748.0=-=φ因此,阈值电压也可以求得:0223.0>=-=V V V V p bi T ,因此是增强型的。