【地球物理勘查】地球物理勘查(2磁法勘探)

合集下载

采矿业中的矿产勘查地球物理勘探技术

采矿业中的矿产勘查地球物理勘探技术

采矿业中的矿产勘查地球物理勘探技术矿产勘查是采矿业中至关重要的一环,而地球物理勘探技术则是矿产勘查中不可或缺的重要手段。

本文将探讨采矿业中的矿产勘查地球物理勘探技术的应用和意义。

一、地球物理勘探技术的介绍地球物理勘探技术是一种通过测量地球内部物理性质,以获取关于地下构造和地质性质的信息的方法。

它主要包括地震勘探、电磁法勘探、重力法勘探和磁法勘探等技术。

这些技术能够提供有关地下构造、矿产资源和地质背景的重要数据,对矿产勘查具有重要意义。

二、地球物理勘探技术在矿产勘查中的应用1. 地震勘探地震勘探是一种利用地震波在地下传播的特性,通过记录和分析地震波的反射、折射和干涉等现象,获得关于地下构造和岩石性质的信息。

在矿产勘查中,地震勘探可以帮助确定矿床的形状、位置和规模,为矿产资源的开发提供重要依据。

2. 电磁法勘探电磁法勘探是一种利用地下电磁场变化的特性,通过测量地下电阻率或电导率的变化,获取地下构造和岩石性质的信息。

在矿产勘查中,电磁法勘探可以帮助确定矿床的类型、分布和矿化程度,为矿产资源的勘探和评价提供重要数据。

重力法勘探是一种利用地球重力场的变化,测量地下质量分布的方法。

通过测量重力场的变化,可以推断地下构造和岩石密度的变化。

在矿产勘查中,重力法勘探可以帮助确定矿床的形态、大小和物质性质,为矿产资源的定位和评估提供依据。

4. 磁法勘探磁法勘探是一种利用地球磁场的变化,测量地下磁性物质分布的方法。

通过测量地下磁场的变化,可以推断地下构造和岩石磁性物质的变化。

在矿产勘查中,磁法勘探可以帮助确定矿床的位置、规模和矿化程度,为矿产资源的勘探和开发提供重要参考。

三、地球物理勘探技术的意义1. 提高矿产勘查效率地球物理勘探技术具有快速、高效的特点,可以大大缩短矿产勘查周期,提高矿产勘查的效率。

通过地球物理勘探技术,可以对大面积区域进行快速的勘查,筛选出潜在的矿产资源区域,减少矿产勘查的盲目性。

2. 提高资源勘探准确性地球物理勘探技术可以提供关于地下构造和岩石性质的高精度数据,提高矿产勘查的准确性。

磁法勘探的基本原理及应用

磁法勘探的基本原理及应用

磁法勘探的基本原理及应用磁法勘探的概述磁法勘探是一种非破坏性地球物理勘探方法,通过测量地球磁场的变化来获取地下结构信息。

它基于地球的地磁场以及地下的磁性物质的相互作用,可以在地下发现磁性物质的存在、分布和性质。

磁法勘探的基本原理磁法勘探利用地球磁场和地下磁性物质之间的相互作用来获取地下情况。

磁法勘探的基本原理如下:1.地球磁场:地球本身具有一个磁场,也称为地球磁场。

地球磁场是由地球内部液体外核的流动所产生的,它在地表形成一个相对稳定的磁场。

2.地下磁性物质:地下存在各种不同类型的磁性物质,如矿石、岩石、土壤、岩层或地下水。

3.磁场异常:地下磁性物质与地球磁场相互作用会导致磁场异常。

当地下磁性物质的磁性与地球磁场不同或存在不均匀分布时,就会产生磁场异常。

4.磁场测量:磁法勘探使用磁力仪器来测量地磁场的强度和方向变化。

测量点位于地表或以人工井筒方式进入地下。

5.数据处理和解释:通过对测量数据的处理和解释,可以获得地下磁性物质的位置、形状、大小、磁性强度等信息。

这些信息可用于地质勘探、矿产资源评估、地下水资源管理等领域。

磁法勘探的应用领域磁法勘探在地质和工程勘探中有广泛的应用。

以下是一些常见的应用领域:•矿产勘探:磁法勘探可以用于寻找矿藏、判断矿石的性质和储量。

根据地下磁性物质的反应,可以识别出具有磁性的矿石,如铁矿、钴矿等。

•水资源管理:磁法勘探可以用于寻找地下水的分布和储量。

地下水和地下磁性物质之间存在一定的关系,通过对磁场异常的测量和分析,可以确定地下水的位置和深度,从而实现对地下水资源的科学利用。

•地下工程:磁法勘探可以用于地下隧道、地铁、坑道等地下工程的勘察和地质状况评估。

通过磁法勘探,可以探测出地下磁性物质的存在,并评估其对工程建设的影响。

•环境地质:磁法勘探可以用于环境地质调查和污染物监测。

地下沉积物中的磁性物质与环境污染物之间存在一定的关系,通过对磁性物质的测量和分析,可以识别出地下污染物的位置和分布情况。

矿产资源勘探中的地球物理勘探技术

矿产资源勘探中的地球物理勘探技术

矿产资源勘探中的地球物理勘探技术地球物理勘探技术是矿产资源勘探中不可或缺的一环。

无论是石油、天然气、金属矿物还是非金属矿物的勘探,地球物理勘探技术都有着独特的作用。

本文就矿产资源勘探中的地球物理勘探技术做一些简介。

1. 什么是地球物理勘探技术地球物理勘探技术是一种应用物理学原理和方法,通过对地球内部物理特性的测量和解释,来获取关于地下地质结构、物性、储量等信息的方法。

简单来说,就是通过物理勘探手段,对地下地质情况进行探测,以达到找矿和评估矿藏的目的。

2. 地球物理勘探技术的分类地球物理勘探技术主要可分为重力勘探、磁法勘探、地电勘探、地震勘探等多种技术。

2.1 重力勘探重力勘探技术是利用地球重力场在地表和测站之间产生的重力差异,来探测地下物质的一种物理勘探方法。

其原理是根据牛顿万有定律,利用重力加速度的差异,推算出地下物质的密度和位置分布。

通常在地表设置测量仪器,通过对地表重力场和地下重力场的差异测量,推算出地下物质密度和分布情况。

2.2 磁法勘探磁法勘探技术是利用地球磁场在地表和测站之间产生的磁场差异,来探测地下物质的一种物理勘探方法。

其原理是根据磁场的强度和方向的变化情况,推算出地下物质的含磁性和位置分布。

与重力勘探相似,通常在地表设置测量仪器,通过对地表磁场和地下磁场的差异测量,推算出地下物质的磁性和分布情况。

2.3 地电勘探地电勘探技术是利用地下物质的电性特征,通过地表电场测量,推算出地下物质的分布情况。

其原理是根据地下物质对电流的阻抗情况,推算出地下物质的电性和分布情况。

相比重力勘探和磁法勘探,地电勘探较为灵敏,可以探测到一些非常细微的变化,同时又具有一定的深度探测能力。

2.4 地震勘探地震勘探技术是通过控制地震波源、检波装置和记录仪的联合作用,来获取地下物质结构、物性的分布情况。

地震勘探通过推算不同物质对地震波速度的影响,可以得到地下物质的密度、弹性模量、泊松比等参数。

地震勘探是利用地震波传播在地下介质中的速度和反射、折射等特性,在地面或井下测量地震波的传播时间和反射能量,分析地下岩石和重要构造构型的一种技术。

地球物理勘探

地球物理勘探

03 地球物理场
02 分类 04 发展方向
05 方法
07 考古探测
目录
06 地下管线探测
勘探方法
勘探方法
相关课程书籍
地球物理勘探所给出的是根据物理现象对地质体或地质构造做出解释推断的结果,因此,它是间 接的勘探方法。此外,用地球物理方法研究或勘查地质体或地质构造,是根据测量数据或所观测 的地球物理场求解场源体的问题,是地球物理场的反演的问题,而反演的结果一般是多解的,因 此,地球物理勘探存在多解性的问题。为了获得更准确更有效的解释结果,一般尽可能通过多种 物探方法配合,进行对比研究,同时,要注重与地质调查和地质理论的研究相结合,进行综合分 析判断。人类居住的地球,表层是由岩石圈组成的地壳,石油和天然气就埋藏于地壳的岩石中, 埋藏可深达数千米,眼看不到,手摸不着,所以,要找到油气首先需要搞清地下岩石情况。怎样 才能搞清地下岩石的情况呢?这要从岩石的物理性质谈起。岩石物理性质是指岩石的导电性、磁 性、密度、地震波传播等特性,地下岩石情况不同,岩石的物理性质也随之而变化。
内容摘要
在此基础上,地球物理学为探测地球内部结构与构造、寻找能源、资源和环境监测提供理论、方 法和技术,为灾害预报提供重要依据。已故著名地球物理学家赵九章先生曾这样形容地球物理 学——“上穷碧落下黄泉、两处茫茫都不见”。这句话形象地表达了地球物理学在探索地球奥秘 中的挑战和艰辛。 总体来说,地球物理学的研究内容可以分为应用和理论两个方面。在应用方面,地球物理学家利 用各种地球物理方法对地球进行勘探和研究,包括地壳、地幔和地核等深部地球结构、矿产资源 和能源蕴藏情况等。而在理论方面,地球物理学则致力于研究地球的物理性质和规律,如地球的 重力场、磁场、电场、地震波传播等。 在地球物理学的研究中,人们还涉及到许多交叉学科领域,如数学、物理学、地质学、地理学等。 这些学科的交叉融合为地球物理学的发展提供了更广阔的研究视野和更丰富的研究手段。

磁法勘探

磁法勘探

航空磁测:
工作方法
用安装在飞机的磁力仪进行磁测。具有快速,不受高山、水域、森林、 沼泽限制等特点。由于飞机距地面一定高度飞行,减弱了地表磁性不均 匀影响,更有利于磁力仪记录深部区域地质构造的磁场。
航磁比例尺根据地质任务、探测对象的规模、所测区域的地球物理特征 和航空定位技术等来确定。金属矿航磁比例尺一般多为 1:10万、1:5万, 有望远景区可达1:2.5万。构造航磁比例尺一般为1:100万、1:50万和1:20 万等。测线应与矿带或主要构造带垂直。为了获得明显可靠的磁异常信 息,飞行高度应尽量低,由比例尺、定位技术和地形条件等确定。 航磁工作中,一般采用无线电导航仪同步照相定位。为消除飞行本身的 磁干扰,还需采用特殊的磁补偿技术。航测过程中除进行测线上的磁场 测量外,还需进行基线飞行和辅助飞行。基线飞行是确定磁异常的起算 点和计算仪器的零点位移;辅助飞行包括:了解测区情况、飞行条件和 仪器工作状态的试验飞行;检查评价磁测质量的重复线飞行;检查调整 不同架次观测磁场水平的切割线飞行等。 航磁测量结果除进行与地面磁测相类似的改正外,还需进行偏向改正和 高度改正,改正后的结果再经切割线飞行观测资料调整,最后编绘航磁 异常剖面平面图和平面等值线图。
数据改正
磁法勘探野外观测数据应作各种改正才能得到正确的异常值。其中 主要的改正有﹕正常场改正﹑日变改正﹑仪器的温度系数和零点漂移改 由于磁异常的特点与磁性体的形状有关﹐故可根据磁异常的特点推断磁性体 正。作大面积磁测时﹐正常场的改正中﹐还应包括纬度改正。经过改正 的形状﹑埋深﹑走向﹑倾斜方向﹐及磁化强度的大小和方向等。这个过程称 后的异常值﹐常用等值线平面图表示。 为磁异常的解释﹐其内容大致是﹕根据工作地区已知的地质情况﹐岩石和矿 石的磁性资料﹐地磁纬度﹐磁异常的特点及积累的经验﹐初步推断引起磁异 常的地质原因﹐磁性体的大致形状和空间位置。根据上述推断结果﹐选择适 利用电子计算机可以对磁异常作各种处理﹐首先是匀滑曲线以消除 当的方法对磁异常作定量计算﹐例如计算磁性体的埋深﹑大小﹑走向和倾斜 偶然误差和随机干扰﹐提高观测数据的质量﹔其次﹐是将分布范围大的 方向等。根据前述推断结果﹐并综合其他物探方法的资料﹐确定引起磁异常 区域异常与分布范围小的局部异常分开﹐以便根据区域异常研究区域地 的地质原因﹐对工作地区的地质构造﹑矿体贮存情况及其大小等作出推论﹐ 质构造﹐根据局部异常研究局部地质构造﹐寻找有用矿产。对磁异常还 对下步工作提出建议。根据对磁异常验证结果﹐补做必要的工作﹐对异常作 可作各种变换﹐以突出异常的内在特点或改变条件 ﹐有利于解释推断。 再解释 (见地球物理勘探数据处理)。 例如将航磁异常化极﹐即化到垂直磁化时的垂向磁异常﹐可以消除倾斜 磁化的影响﹐使异常简化﹐便于解释。

地球物理勘查

地球物理勘查

地球物理勘查武汉地大华睿地学技术有限公司一、简介地球物理勘查是指以地下物质(岩石或矿体等)的物理性质(密度、磁性、电性、弹性、放射性等)差异所引起的某些物理现象为研究对象,用不同的物理方法和仪器,探测天然或人工地球物理场的变化。

通过对上述变化的分析、研究,推断和解释地质构造、矿产分布及人为因素在地下所产生的各种情况(古墓、管线、污染范围等)。

二、勘探方法分类主要的物探方法有重力勘查、磁法勘查、电法勘查、地震勘查、放射性勘查等。

依据工作空间的不同,又可分为地面物探、航空物探、海洋物探、地下物探等。

重力勘探是测量与围岩有密度差异的地质体在其周围引起的重力异常﹐以确定这些地质体存在的空间位置﹑大小和形状﹐从而对工作地区的地质构造和矿产分布情况作出判断的一种地球物理勘探方法。

地震勘探是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理勘探方法。

地震勘探是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用。

地震勘探方法包括反射法、折射法和地震测井(见钻孔地球物理勘探)。

三种方法在陆地和海洋均可应用。

电法勘探根据地壳中各类岩石或矿体的电磁学性质(如导电性、导磁性、介电性)和电化学特性的差异,通过对人工或天然电场、电磁场或电化学场的空间分布规律和时间特性的观测和研究,寻找不同类型有用矿床和查明地质构造及解决地质问题的地球物理勘探方法。

主要用于寻找金属、非金属矿床、勘查地下水资源和能源、解决某些工程地质及深部地质问题。

磁法勘探是通过观测和分析由岩石、矿石(或其他探测对象)磁性差异所引起的磁异常,进而研究地质构造和矿产资源(或其他探测对象)的分布规律的一种地球物理勘探方法。

放射性勘探又称放射性测量或“伽玛法”。

借助于地壳内天然放射性元素衰变放出的α、β、γ射线,穿过物质时,将产生游离、荧光等特殊的物理现象,人们根据放射性射线的物理性质利用专门仪器(如辐射仪、射气仪等),通过测量放射性元素的射线强度或射气浓度来寻找放射性矿床以及解决有关地质问题的一种物探方法。

地球物理勘探方法简介

地球物理勘探方法简介

地球物理勘探方法简介地球物理勘探作为地球科学领域中的重要分支,通过测量地球的物理特征,以及地下介质的物理属性,来获取地下资源的信息。

本文将对地球物理勘探方法进行简要介绍。

一、重力勘探法重力勘探法是利用地球重力场的变化来推测地下物质的分布情况。

勘探人员通过测量不同地点的重力值,分析地球物质的密度分布。

这种方法在石油、地质灾害等领域有较广泛应用。

二、磁法勘探法磁法勘探法是测量地球表面垂直指向的磁场强度和方向,推测地下物质的磁性变化。

勘探人员通过磁力仪器测量地磁场的强度和方向变化,进而得出地下磁性物质的大致分布情况。

磁法勘探法在寻找矿藏、勘探地下管道等方面具有重要意义。

三、电法勘探法电法勘探法是利用电磁场的特性来推断地下物质的电性变化。

勘探人员通过在地下埋设电极,在地表上施加电流,测量地下电势分布和电阻率变化,从而推测地下物质的导电性差异。

电法勘探法在矿产资源勘探和地下水资源调查中具有广泛应用。

四、地震勘探法地震勘探法是通过分析地震波在地下介质传播的速度和幅度变化,来推断地下介质的结构和组成。

勘探人员通过放置震源和接收器,记录地震波传播的信息,并进行数据处理和解释。

地震勘探法在石油勘探、地质灾害预测等领域有着重要应用。

五、测井技术测井技术是通过在钻井过程中使用各种物理测量手段,获取地下岩石的物理特性和储量分布信息。

测井仪器可以测量地层电阻率、自然伽马辐射、声波速度等参数,帮助勘探人员判断地层岩性、含油气性质等重要信息。

六、地电磁勘探法地电磁勘探法是通过测量地下介质中电磁场的变化,推测地下物质的分布情况。

勘探人员通过放置电磁发射器和接收器,记录电磁场的变化情况。

地电磁勘探法在矿产资源调查、地质工程勘察等方面起到了重要作用。

七、地热勘探法地热勘探法是通过测量地壳中的温度分布,推测地下热流和地热资源的分布情况。

测温井、测温孔等技术手段可以帮助勘探人员获取地温数据,并进行数据处理与解释。

地热勘探法在地热能利用和环境地质研究中有着重要应用。

【地球物理勘查】地球物理勘查(2磁法勘探)

【地球物理勘查】地球物理勘查(2磁法勘探)

地磁场的构成
偶极子磁场(BSN)
稳定的磁场
基本磁场(B0)
(内源场) 非偶极子场(Bm) (约占地磁场的95%)
地磁场 (B)
磁异常(Ba)
长期变化的磁场
变化的磁场 δB(外源场) 短期变化的磁场
静日变化 扰动变化
B B0 Ba B B0 BSN Bm
地磁场的构成
(一)偶极子磁场BSN
应用地球物理学概论 磁法勘探
磁法勘探是应用最早的地球物理方法。
磁法勘探的历史源远流长。我国是最早发 现和利用磁现象的国家,早在战国时代人 们就发现了天然磁石和指极性。随后在公 元11世纪初期,我国制造出了指南针并在 航海中得到了应用。
古代对磁场的观察和利用
• “先王立司南以端朝夕” • ——《韩非子》
短期变化的磁场
静日变化 扰动变化
B B0 Ba B B0 BSN Bm
地磁场的构成
(三)变化的磁场δB
1、长期变化的磁场
基本磁场随时间的缓慢变化,称为地磁场的长期变化。 特点: (1)周期长(周期为年、几十年或更长),变化缓慢; (2)地球磁场的西向漂移(如大陆磁场中心、磁倾角等
的西向漂移)。 (3)地球磁矩的衰减变化
• 为此他断言,地球本身就是一个巨大的球形磁体,并且地 球的磁性作用是从地球内部发出的。
• 从吉尔伯特那个时代开始;伦敦就开始了地磁场的系统观测, 至今已逾300多年。
1640年,瑞典人首次尝试用罗盘调查磁铁矿,开辟了 利用磁场变化来寻找矿产的新途径。
直到1870年,瑞典人泰朗(Thalen)和铁贝尔(Tiberg) 制造了万能磁力仪后,磁法勘探才作为一种地球物理 方法建立和发展起来。
在CGSM制中:CGSM
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1915年德国人施密特(Schmidt)制成刃口式磁称,大 大提高了磁测精度,使磁法不仅在寻找铁矿中起作用, 同时还用来寻找其他矿产,并在圈定磁性岩体,研究 地质构造以及寻找油田,盐丘中得到应用。
1936年前苏联人阿·阿·罗加乔夫试制成功感应式航 空磁力仪,大大提高了磁测速度和磁测范围,使磁法 工作进入了一个新的阶段。
磁法勘探的理论基础
一、有关的磁学知识(复习)
(一)磁场(Magnetic Field)
磁性:磁铁能吸引铁、钴、镍等物质的特性,称 为磁性
磁性体:具有磁性的物体;
磁极:磁体中两个磁性最强的部位,指北的一极 称为指北极或正磁极,用N表示,指南的一极称为 指南极或负磁极,用S表示;
磁荷:正磁荷—集中在磁体的N极(+) 负磁荷—集中在磁体的S极(-)
海洋磁测是在质子旋进式磁力仪问世后才发展起 来的。
它是综合性海洋地质调查的组成部分,此外、还 用于寻找滨海砂矿,以及为海底工程(寻找沉船、 敷设电缆、管道等)服务。
井中磁测是地面磁测向地下的延伸,主要 用于划分磁性岩层,寻找盲矿等,其资料 对地面磁测起印证和补充作用。
磁法勘探与重力勘探间的几点差别
H
F Qm0
1
4 0

Qm r2
方向为单位正磁荷在场中受力的方向
r

Qm
Qm0

磁感应强度B,根据毕奥—萨伐尔定律:恒定电流I的无限长 直导线周围,距离为a的各点上该电流产生的磁场。
B 0 2I 4 a
B H
SI制单位特斯拉(T),1T=1Wb/m2,通常用较小的单位nT (纳特),1nT=10-9T
就异常的幅值而言,磁法异常比重力异常大得多; 重力异常反映的地质因素较多,而磁异常反映的地质因素较单
一; 地质体的磁异常特征比相应的重力异常复杂
磁法勘探的应用
1、直接寻找具有磁性的金属矿体,如磁铁矿、磁黄铁矿等; 2、间接寻找无磁性的金属矿与非金属矿体,如铅锌矿、铜矿、石棉矿
等; 3、地质填图,如圈定磁性的岩体、断裂等; 4、研究大地构造、了解结晶基底的起伏等; 5、在古地质学方面的应用等; 6、其它方面的应用
• “郑人取玉,必载司南,为其不惑也” • ——《鬼谷子》
古代对磁场的观察和利用
“方家以磁石磨针锋, 则能指南……水浮多荡 摇,指抓及碗唇上皆可 为之,运转尤速,但坚 滑易坠,不若缕悬之最 善。”
《梦溪笔谈》 沈括(宋)
指南车的复原模型 一种用来辨认方向的仪器。车上有一小人, 其手指的方向即为南方,传说司南、罗盘都是根据它而发明。
磁力:两个磁体的磁极之间的相互作用力;
两个点磁极间的相互作用力为:
F
1
4 0

Qm1 • Qm2 r2

r r
磁场:磁力作用的物质空间称为磁场
F

Qm1
r Q ● m2
F
磁力线:由磁体的正极出发终止于负极的封闭曲线
磁场强度(H):单位磁荷在磁场中所受的力,称为该点的磁 场强度,用H表示,单位为A/m(安培/米)
地面磁测应用最早,而今它是在航空磁测资料的 基础上所作的更详细的磁测工作。
用以判断引起磁异常的地质原因及磁性体的赋存 形态。在地质调查的各个阶段都有有广泛应用。
航空磁测是第二次世界大战后发展起来的方法。 特点: 不受水域、森林、沙漠等自然条件的限制 测量速度快、效率高
广泛应用于区域地质调查、储油气构造和含煤构 造勘查、成矿远景预测,以及寻找大型磁铁矿床 等
之间的关系:
Pm 0m J 0M
当物体磁化后,若磁体内各处的磁化强度大小相等,方向相
同,则称该磁体为均匀磁化体。均匀磁化体内无磁荷分布,仅在 其表面有磁荷分布。
+
H
M
+
+
4、 面磁荷密度(m)与M的关系
由右图可见,若把小圆柱体看成磁
偶极子,则有:
Pm Qm l (m s)l
在外磁场作用下,物体中原子磁矩(m)趋外磁场方向定 向排列的结果。
3、磁化强度(M)或磁极化强度(J) —表示物体被磁化的程度。
● 磁化强度(M) —单位体积的总磁矩
M
1
m
v v
● 磁极化强度(J) —单位体积的总磁偶极矩
1
J
v
v
PmPm ຫໍສະໝຸດ Qm l●在SI单位制中 Pm

m
、J

M
在CGSM单位制中:用 γ(伽傌)为磁场强度的单位;两种 单位制之间的关系为: 1 γ =1nT
(二)磁化 在外磁场作用下,没有磁性的物体获得磁性,称为磁化
1、磁偶极子
相距很近的两个等量异性磁极,作为一个整体称为磁偶
极子。
l
Pm Qm l
Qm
Qm
Pm
Pm 称为磁偶极矩,方向由负磁极指向正磁极。
2、磁化的本质
biāo

“司南之杓,投之于地,其柢指南”
《论衡》王充(东汉)
地球磁场
迁徙海龟依靠地球磁场找到回归路
本草纲目 李时珍
• 中国古代四大发明之一的指南针传入欧洲后, 16世纪末, 英国威廉·吉尔伯特做过这样的实验,他把一块吸铁石磨制 成圆球形,用小磁针测试这圆球面上的磁力分布。
• 结果发现,小磁针倾斜的情况与当时地面上实测的磁倾角 很相似。
50年代末和60年代初,前苏联、美国又相继把质子旋 进磁力仪装于船上,开展了海洋磁测。
什么是磁法勘探?
• 它是以地壳中各种岩、矿石间的磁性差异为物质基础的,由于岩、矿石 间的磁性差异将引起正常地磁场的变化(即磁异常),通过观测和研究 磁异常来寻找有用矿产或查明地下地质构造的一种地球物理方法。
• 分类:地面磁测、航空磁测、海洋磁测、井中磁测
应用地球物理学概论 磁法勘探
磁法勘探是应用最早的地球物理方法。
磁法勘探的历史源远流长。我国是最早发 现和利用磁现象的国家,早在战国时代人 们就发现了天然磁石和指极性。随后在公 元11世纪初期,我国制造出了指南针并在 航海中得到了应用。
古代对磁场的观察和利用
• “先王立司南以端朝夕” • ——《韩非子》
• 为此他断言,地球本身就是一个巨大的球形磁体,并且地 球的磁性作用是从地球内部发出的。
• 从吉尔伯特那个时代开始;伦敦就开始了地磁场的系统观测, 至今已逾300多年。
1640年,瑞典人首次尝试用罗盘调查磁铁矿,开辟了 利用磁场变化来寻找矿产的新途径。
直到1870年,瑞典人泰朗(Thalen)和铁贝尔(Tiberg) 制造了万能磁力仪后,磁法勘探才作为一种地球物理 方法建立和发展起来。
相关文档
最新文档