华为微波通信基本原理(笔记)
微波通信技术的原理及其应用

微波通信技术的原理及其应用微波通信技术,顾名思义,是指通过微波信号进行通信的技术。
微波信号具有高频率、大带宽、高速度的特点,因此被广泛应用于通信领域。
本文将具体介绍微波通信技术的原理及其应用。
一、微波通信技术的原理微波通信技术的原理是基于微波信号的传输和接收。
微波信号是一种高频率、大带宽的电磁波信号,其频率在300MHz-300GHz之间。
不同频率的微波信号有不同的特点,如高频率的微波信号具有更高的速度和更大的带宽,能够传输更多的数据信息。
在微波通信中,需要使用微波天线进行信号的发射和接收。
微波天线分为发射天线和接收天线两种,发射天线将电能转化为电磁波信号,而接收天线则将电磁波信号转化为电能信号。
微波信号的传输主要通过微波传输线进行。
微波传输线分为两种,一种是同轴电缆,另一种是微带传输线。
同轴电缆是由内部导体、绝缘层和外部导体三部分组成,能够有效地抑制电磁辐射和干扰。
微带传输线则是一种新型的微波传输线,其基本结构由介质基板、金属层和地面层组成,具有结构简单、体积小和易于集成的优点。
二、微波通信技术的应用微波通信技术具有广泛的应用,主要包括无线通信、卫星通信、雷达测速、微波光纤通信等领域。
1、无线通信无线通信是指无需线缆连接的通信方式,主要包括移动通信和无线局域网。
移动通信是指通过移动电话、无线上网卡等设备进行通信,其中使用的微波信号主要有GSM、CDMA等。
无线局域网则是指由多个设备组成的局域网,通信通过无线路由器进行。
2、卫星通信卫星通信是指使用人造卫星进行通信,其优点是远距离通信可靠性高、抗干扰能力强及覆盖面广,可以覆盖全球各地。
微波通信技术是卫星通信技术中最基本和重要的组成部分,主要用于卫星与地面站之间的通信。
3、雷达测速雷达测速是指通过雷达测量物体的速度,常用于机场、公路、铁路等场所。
微波通信技术在雷达测速中扮演着重要角色,在物体反射回雷达波后进行信息传输和处理。
4、微波光纤通信微波光纤通信是指通过光纤传输微波信号进行通信。
学习笔记-微波通信基础知识汇编

CH3NCHA0个人学习资料微波通信基础知识[学习笔记]编辑整理:Ch3nCha02017/07/17原始资料均来源于网络,本人整理编辑以供自己学习,不做任何商业用途。
版权归属原作者。
目录1微波通信概述 (4)1.1数字微波的基本概念 (4)1.2微波的发展历程 (5)1.3数字微波通信的特点 (5)1.4数字微波通信面临的挑战及机遇 (6)1.4.1数字微波通信方式的最大的挑战是光纤通信 (6)1.4.2数字微波的发展机遇 (7)1.5微波频段选择和射频波道配置 (7)1.6数字微波通信系统模型 (9)2数字微波设备简介 (10)2.1数字微波设备分类 (10)2.2微波天馈线和分路系统 (12)2.2.1微波天线 (12)2.2.2微波天线的分类 (13)2.2.3馈线系统 (13)2.2.4分路系统 (14)2.3室外单元(ODU) (14)2.4室内单元(IDU) (15)2.5分体式微波的安装和调整 (15)3微波的组网和应用 (17)3.1微波的常见组网方式及站型 (17)3.1.1微波的常见组网方式 (17)3.1.2微波站型 (18)3.2中继站 (18)3.2.1无源中继站 (19)3.2.2有源中继站 (20)3.3数字微波的应用 (20)4微波的传播理论 (21)4.1几种大气和地面效应造成的衰落 (21)4.1.1衰落的种类 (21)4.1.2衰落规律(10GHz以下频段微波) (22)5数字微波的衰落对抗技术 (23)5.1微波设备的保护模式 (23)5.1.1无误码切换模块(HSM) (23)5.1.2热备份(Hot Standby,HSB) (23)5.1.3数字微波设备保护方式的分类 (24)5.2干扰及抗干扰的主要方法 (26)5.2.1干扰源 (26)5.2.2通信系统抗干扰的基本途径 (27)6微波勘查设计流程 (28)6.1获取客户需求 (28)6.2获取设备信息 (28)6.3获取勘查工具 (29)6.4获取组网信息 (30)6.5微波线路现场勘查 (30)6.6微波站点现场勘查 (30)7微波应用案例 (32)数字微波通信原理1 微波通信概述1.1 数字微波的基本概念微波是指频率在300MHz-300GHz范围内的电磁波,是全部电磁波频谱的一个有限频段。
《微波通信原理》课件

高频段:微波通信向更高频段发展,如毫米波、太赫兹等
大容量:微波通信向大容量、高速率方向发展,如5G、6G等
技术挑战:高频段与大容量发展面临的技术挑战,如信号衰减、干扰等问题
应用前景:高频段与大容量发展在物联网、自动驾驶等领域的应用前景
卫星通信与地面微波通信的融合是未来发展趋势
地面微波通信具有建设成本低、传输距离短等优点
5G技术的普及将推动微波通信的发展
Байду номын сангаас
汇报人:PPT
单击此处添加标题
天线是微波通信系统的重要组成部分
天线的性能指标包括增益、方向性、极化方式等
天线的种类包括定向天线、全向天线、阵列天线等
天线的作用是将微波信号转换为电磁波,或将电磁波转换为微波信号
电缆:微波在电缆中传播,速度较慢,但稳定性高
空气:微波在空气中传播,不受地形和建筑物的影响
真空:微波在真空中传播,速度最快,但需要特殊设备
天线选择:根据通信距离、环境等因素选择合适的天线
天线安装:正确安装天线,保证通信质量
添加标题
添加标题
添加标题
添加标题
电磁屏蔽:如何通过电磁屏蔽技术降低电磁辐射对环境的影响
电磁辐射:微波通信产生的电磁辐射对环境和生物的影响
电磁兼容:微波通信设备与其他电子设备之间的电磁兼容问题
电磁污染:微波通信产生的电磁污染及其对环境的影响
光纤:微波在光纤中传播,速度最快,但需要特殊设备
调制:将信息信号转换为适合传输的电信号
解调:将接收到的电信号还原为信息信号
调制方式:幅度调制、频率调制、相位调制等
解调方式:幅度解调、频率解调、相位解调等
应用:无线通信、卫星通信、广播电视等
微波基础原理

一个月的可用性建议值
可用性是链路可用时间与总时间的比值。
可用性 99.9% 99.99% 99.999% 99.9999%
不可用性 0.1% 0.01%
0.001% 0.0001%
每年不可用时间 9h 1h
5min 30s
秘密▲
频率规划配置
频率申请 频率选择
频率申请
ITU-R 建议的微波频率带宽:
TN 4
4 x 480 channels 1920 channels
传输速率级别
2/34 Mbit/s PDH
ADM 155 Mbit/s Tx/Rx
155 CMI
4 34,268 Mbit/s 3
2 1
TN4 140 Mbit/s
CMI
Tx/Rx
4 8,448 Mbit/s 3
2 1
TN3
34 Mbit/s HDB3
3
频率选择性衰落与平衰落
秘密▲
秘密▲
选择性衰落
起因:
多径传播
折射
反射
A 1,T 1
A 2,T 2
A1
A2
发射器
A max
F=
1
A min For A1 = A2
A1 -A2 A1+A 2
A max dB = + 6 A min dB = -
8
Frequency Radio channel
接收器
频率选择
1
信号频率越低,传播越远。
2
低频率容易对周围区域产生干扰。
3
更高的频率能获得更高的天线增益。
4
更高的频率,有更小的菲涅耳区。
更高的频带,有更宽的带宽,可用
微波通信基本原理ppt课件

几个基本概念 费涅耳半径(The Fresnel Radius)
T
F1
R
d1 P
d2
d
图1
第一费涅耳区半径
F1=(λd1d2/d)1/2 F2=(2λd1d2/d)1/2
= (2)1/2 F1
...... Fn=(nλd1d2/d)1/2
= (n)1/2 F1
微波通信的基本原理
• 几个基本概念 • 自由空间的电波传播 • 各种衰落及抗衰落技术 • 微波通信对设计的要求 • 干扰信号
几个基本概念
费涅耳区定义(The Fresnel Zone Definition)
费涅耳区 The Fresnel Zone:
➢ 如果前述定义的一系列费涅耳椭球面,与我们从T或R点出发认定的某一波前面相交 割,在交割的界面上我们就可以得到一系列的圆和环,中心是一个圆,称为第一费 涅耳区。
➢ 其外的圆环(外圆减内圆得到的圆环)称为第二个费涅耳区,再往外的圆环称为第 三费涅耳区、第四费涅耳区...... 第N费涅耳区。
线传播。
即:R e =KR
R为实际地球半径。
K值的实际测量平均值为4/3左右。但实际地段的K值和该地段的气象 有关,可以在较大范围内变化,影响视距传播。
自由空间的电波传播
• 自由空间的定义 • 自由空间损耗的定义 • 自由空间损耗的计算
自由空间的电波传播
自由空间的定义
自由空间 Free Space:
又称为理想介质空间,它相当于真空状态的理想空间。 在这个空间中充满均匀的、理想的介质,它的导电率σ=0,介电常数ε=ε0=109/36π F/m(法拉/米),导磁系数μ=μ0=4π×10-7 H/m (亨/米)。
几个基本概念
微波通信系统的原理

微波通信系统的原理
微波通信系统是一种利用微波频段进行通信的无线通信系统。
其原理是利用发射端将信息信号转换成微波信号,通过空气传输到接收端后再将微波信号转换为信息信号。
微波通信系统主要由三个部分组成:发射端、传输介质和接收端。
发射端:发射端主要由调制器、放大器、天线和发射机构等组成。
调制器将信息信号转换为高频电压变化,放大器将电压变化放大到一定程度,天线将电压变化转换为电磁波并向空间辐射,发射机构则控制整个系统的启动和停止以及输出功率的大小。
传输介质:传输介质指微波在空气中的传输。
由于微波具有高频率、短波长和直线传播等特点,因此在空气中的衰减非常小,可以实现远距离通信。
接收端:接收端主要由天线、放大器、检测器和解调器等组成。
天线接收到经过空气传输的微波信号,并将其转换为电压变化;放大器对电压变化进行放大;检测器检测出电压变化的大小和频率,并将其转换为信息信号;解调器将调制信号还原为原始信息信号。
微波通信系统具有传输速度快、传输距离远、抗干扰能力强等优点,广泛应用于卫星通信、雷达测量、无线电视等领域。
《微波通信原理》课件

个人移动通信的发展
总结词
随着个人移动设备的普及,微波通信在 个人移动通信领域的应用越来越广泛, 为人们提供了更加便捷的通信方式。
VS
详细描述
个人移动通信是微波通信的重要应用领域 之一。通过微波通信技术,人们可以使用 智能手机、平板电脑等移动设备随时随地 进行语音、视频通话和数据传输,极大地 丰富了人们的通信方式和生活方式。
ERA
微波通信定义
微波通信是一种利用微波频段的电磁 波进行信息传输的通信方式。
它利用频率在0.3GHz至300GHz之间 的电磁波,通过定向天线将信号传输 到远方,实现信息的传递。
微波通信特点
传输容量大
微波频段具有丰富的频谱资源 ,可以实现高速、大容量的信
息传输。
传输质量稳定
微波信号在自由空间中传播时 受气象和地形影响较小,传输 质量较为稳定。
BIG DATA EMPOWERS TO CREATE A NEW ERA
《微波通信原理》PPT课件
• 微波通信概述 • 微波通信系统组成 • 微波传播特性 • 数字微波通信原理 • 模拟微波通信原理 • 微波通信的发展趋势与展望
目录
CONTENTS
01
微波通信概述
BIG DATA EMPOWERS TO CREATE A NEW
大气中的水蒸气、氧气和气溶胶等成分对微波信号产生吸收和 散射,导致信号衰减。
02
不同的大气条件(如湿度、温度和气压)对微波衰减有显著影
响。
大气衰减随频率增加而增大,因此高频率微波在传播过程中损
03
耗较大。
反射、折射与散射
1
微波遇到障碍物时,会部分地被反射、折射和散 射。
2
障碍物的电导率和介电常数对反射、折射和散射 有重要影响。
微波通信的原理

微波通信的原理
微波通信是一种利用微波进行信息传输的通信方式。
微波通信具有传输速度快、传输距离远、抗干扰能力强等优点,因此在现代通信领域得到了广泛的应用。
微波通信的原理主要包括微波的产生、调制、传输和接收等几个方面。
首先,微波的产生是微波通信的基础。
微波是一种电磁波,其频率一般在3GHz至300GHz之间。
产生微波的常用方法包括振荡器产生、频率合成器产生和放大器产生等。
其中,振荡器产生是最常用的方法,通过振荡器产生的微波具有稳定的频率和幅度,适合用于通信传输。
其次,微波通信需要对信息进行调制。
调制是指将要传输的信息信号转换成适合在微波载波上传输的调制信号。
常见的调制方式包括幅度调制、频率调制和相位调制等。
通过调制,可以使信息信号与微波载波结合起来,形成适合传输的调制信号。
然后,经过调制的微波信号需要进行传输。
微波通信的传输一般采用天线进行,通过天线将微波信号发送出去。
在传输过程中,需要考虑到传输路径的障碍物、衰减等因素,以保证微波信号能够稳定地传输到目标地点。
最后,接收端需要对接收到的微波信号进行解调和解码。
解调是将接收到的调制信号转换成原始的信息信号,解码是将数字信号转换成模拟信号或者数字数据。
通过解调和解码,可以获取到原始的信息信号,完成整个通信过程。
除了以上几个基本原理外,微波通信还涉及到天线设计、频谱管理、功率控制等方面的技术。
通过不断地技术创新和发展,微波通信在移动通信、卫星通信、雷达监测等领域得到了广泛的应用,并在信息社会的建设中发挥着重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
费涅耳区定义(The Fresnel Zone Definition)
费涅耳区 The Fresnel Zone:
➢ 如果前述定义的一系列费涅耳椭球面,与我们从T或R点出发认定的某一波前面相交 割,在交割的界面上我们就可以得到一系列的圆和环,中心是一个圆,称为第一费 涅耳区。
➢ 其外的圆环(外圆减内圆得到的圆环)称为第二个费涅耳区,再往外的圆环称为第 三费涅耳区、第四费涅耳区...... 第N费涅耳区。
Radio beam One multiplex per radio channel Applications: Civiliars and military telecommunication networks
微波通信的基本介绍
微波通信
✓通常把频率300MHz-300GHz的射频无线信号称为微波信号 ✓利用微波作为载体的通信称为微波通信 ✓基带传输信号为数字信号的微波通信是数字微波通信 ✓一般基带信号处理在中频完成,再通过频率变换到微波频段 ✓也可以在微波频段直接调制,但调制限于PSK ✓微波通信的理论基础是电磁场理论
微波通信的基本介绍 射频传输的两种基本形式
广播
点-点视距微波
Broadcasting
Maximum coverage One programme per radio channel Applications: Radio (LW, MW, SW, FM); TV etc ...
Microwave links
微波通信原理
第一章 微波通信的基式 第四章 微波频率规划 第五章 微波中继站
微波通信的基本原理
• 几个基本概念 • 自由空间的电波传播 • 各种衰落及抗衰落技术 • 微波通信对设计的要求 • 干扰信号
几个基本概念
• 电波的干涉及极化 • 矩形波导的场结构 • 惠更斯—费涅耳原理 • 费涅耳椭球面 • 费涅耳区定义 • 费涅耳半径
几个基本概念 费涅耳椭球面
第一费涅耳椭球面: d
d1
d2
d1 + d2 - d = /2
几个基本概念
费涅耳区定义(The Fresnel Zone Definition)
T
d1
FN
s1
s2 s3
sn
无限大平面
d2 o
F1
sn s2 s3
R s1
F2 F3
任意无限大平面
费涅尔区的划分示意图
几个基本概念
微波通信原理
工程规划设计部
微波通信原理
第一章 微波通信的基本介绍 第二章 微波通信的基本原理 第三章 微波调制方式 第四章 微波频率规划 第五章 微波中继站
微波通信的基本介绍
微波的定义
微波Microwave:
微波是一种电磁波,微波射频为300MHz~300GHz,是全部电磁波频谱的一个 有限频段。 微波一般称为厘米波。 根据微波传播的特点,可视其为平面波。 平面波沿传播方向是没有电场和磁场纵向分量的,所以称为横电磁波,记为 TEM波(Transverse Electric and Magnetic Field)。有时我们把这种电磁波简 称为电波。
几个基本概念
惠更斯—费涅耳原理
互易定理的概念:
指出,在线性和各向同性的媒质中,任何无线电路上,当发射天 线互换时,不会影响电路的传输特性,或者发射机移到接收点, 而接收机同时移到发射点时,则接收性能,不变。 根据这个原理,对流层是电波的主要传输媒质空间,它就是具有 线性和各向同性的媒质,因此在其中就可以减化工程计算。
几个基本概念 费涅耳半径(The Fresnel Radius)
T
F1
R
d1
P
d
图1
d2 第一费涅耳区半径
F1=(λd1d2/d)1/2 F2=(2λd1d2/d)1/2
= (2)1/2 F1
...... Fn=(nλd1d2/d)1/2
= (n)1/2 F1
微波通信的基本原理
• 几个基本概念 • 自由空间的电波传播 • 各种衰落及抗衰落技术 • 微波通信对设计的要求 • 干扰信号
D 或 f 增加一倍,损耗将增加6 dB
自由空间的电波传播
自由空间传输损耗(Free Space Basic Transmission Loss )
GTX
Power Level
G P PTX
A0
接收门限(Receiver Threshold)
GRX
P = 发射功率(TX Power)
G = 天线增益(Antenna Gain)
➢ 但10GHZ以上频段,中继段间的距离将受到降雨衰耗的限制,不能 过长。
➢ 在微波规划时,可用下图的曲线来计算。
各种衰落及抗衰落技术
雨雾衰减 Attenuation due to Rain and Fog
在10GHZ频段以下,雨雾损耗并不显得特别严重,对一个中继段可能 会引入几个分贝。 在10GHZ以上频段,中继间隔主要受降雨损耗的限制,如对13GHZ以上 频段,100mm/小时的降雨会引起5dB/km的损耗,所以在13GHZ,15GHZ 频段,一般最大中继距离在10km左右 在20GHZ以上频段,由于降雨损耗影响,中继间距只能有几公里
• 相邻费涅耳区在收信点处产生的场强的相位相反; • 若以第一费涅耳区为参考,则奇数区产生的场强是使接收点
的场强增强,偶数区产生的场强是使接收点的场强减弱。
几个基本概念
费涅耳半径
费涅耳半径 The Fresnel Radius:
我们把费涅区上的任意一点到R-T连线的距离称为费涅耳区半径, 用F 表示。 当这一点为第一费涅耳区上的点时,此半径称为第一费涅耳区半 径。 第二...第N 个费涅耳区半径表达式:Fn= (n)1/2 x F1 上式中:F1为第一费涅耳半径。
➢上衰落:高于自由空间电平值的叫上衰落
➢下衰落:低于自由空间的电平值的叫下衰落
多径衰落Multipath fading和闪烁衰落(按衰落发生的物理成因划分):
➢闪烁衰落:主要是因为大气局部微小扰动引起电波射束散射所造成,各散射
波的振幅小,相位着大气变化而随机变化。结果它们在接收点的合成振幅变
化很小,对主波影响不大,因此,这种衰落对视距微波接力电路的稳定性影
线传播。
即:Re =KR
R为实际地球半径。
K值的实际测量平均值为4/3左右。但实际地段的K值和该地段的气象 有关,可以在较大范围内变化,影响视距传播。
各种衰落及抗衰落技术
衰落的种类
衰落
快衰落Rapid fading和慢衰落Slow fading(按持续时间划分):
➢慢衰落:持续时间长的叫慢衰落,其持续时间一般长达数分种到几小时。
➢快衰落:持续时间短的叫快衰落,一般发生在几秒到几分钟之间。
上衰落Up fading和下衰落Down fading(按接收点场强的高低划分):
响不大。
➢多径衰落:主要是由于多径传播造成的,它是视距传播信道深衰落的主要原
因。所谓多径传播,就是电波离开发射天线后,通过两条以上的不同路径到
达接收天线的传播现象。
衰落
各种衰落及抗衰落技术
衰落现象规律:
➢波长短,距离长,衰落严重 ➢跨水面,平原,衰落严重 ➢夏秋季衰落频繁 ➢昼夜交替时,午夜容易出现深衰落 ➢雨过天晴及雾散容易出现快衰落
微波通信的基本介绍
微波信号的频率范围
LF MF HF VHF UHF SHF EHF 红外 可见 线光
Microwave
10Km 1Km 100m 10m 1m 10cm 1cm 1mm f 30KHz 300KHz 3MHz 30MHz 300MHz 3GHz 30GHz 300GHz
工业和天电干扰,太阳黑子对微波通信影响较小
A0 = 自由空间损耗(Free Space Loss) M = 衰落储备(Fading Margin)
PRX G
M
Distance
微波通信的基本原理
• 几个基本概念 • 自由空间的电波传播 • 各种衰落及抗衰落技术 • 微波通信对设计的要求 • 干扰信号
各种衰落及抗衰落技术
• 衰落 • 大气吸收衰减 • 雨雾衰减 • 对流层对微波传播的影响 • 地面反射对微波传播的影响 • 数字微波的抗衰落技术
• 气象条件变化通常比较是缓慢的,因此受其影响产生的衰 落是慢衰落。
各种衰落及抗衰落技术
对流层对微波传播的影响
大气折射( refraction in the atmosphere ):
因为大气折射的影响,波在传播过程中,实际上是弯曲的。大气折
射的最后效果可看成电磁波在一个等效半径为 Re 的地球上空沿直
自由空间的电波传播
• 自由空间的定义 • 自由空间损耗的定义 • 自由空间损耗的计算
自由空间的电波传播
自由空间的定义
自由空间 Free Space:
又称为理想介质空间,它相当于真空状态的理想空间。 在这个空间中充满均匀的、理想的介质,它的导电率σ=0,介电常数ε=ε0=109/36π F/m(法拉/米),导磁系数μ=μ0=4π×10-7 H/m (亨/米)。
➢ 这些圆和环我们可以把它们近似地看成,都为在垂直于地面且垂直与T与R间射线的 平面区域图形。
Line of sight
1st zone
The signal power is distributed in the space surrounding the direct line of sight
The First Fresnel Zone
几个基本概念
费涅耳区定义(The Fresnel Zone Definition) 非涅耳区的能量分布:
• 经有关研究知道:在电波的传播空间中,在接收点的合成 场强,当费涅耳区号趋近于无限多时,就接近于自由空间 场强;