框架剪力墙结构设计

合集下载

简析框架剪力墙结构设计

简析框架剪力墙结构设计

简析框架剪力墙结构设计框架剪力墙结构设计是指在建筑物的结构设计中,利用框架结构和剪力墙结构相结合的一种结构形式。

它将框架结构和剪力墙结构的优点相结合,既能满足建筑物的刚性和稳定性要求,又能节约材料、提高空间利用率和降低结构成本。

本文将从框架剪力墙结构设计的基本原理、设计要点和实际应用等方面进行简析。

一、框架剪力墙结构设计的基本原理框架剪力墙结构设计的基本原理是在建筑物的平面和立面布局中,将剪力墙结构设置在框架结构的内部或外部,以提高建筑物的整体抗震性能。

剪力墙结构主要承担建筑物的横向荷载,起到抵抗地震、风荷载的作用,而框架结构则主要承担建筑物的纵向荷载和部分横向荷载,以保证建筑物的稳定性和承载能力。

框架结构和剪力墙结构相结合,可以充分发挥它们各自的优势:框架结构具有较好的变形能力和承载能力,适合用于支撑大跨度的建筑结构;而剪力墙结构具有较好的抗震性能和刚度,适合用于居住建筑、高层建筑和地震带地区的建筑结构。

2. 剪力墙结构加固:在设计剪力墙结构时,要考虑其受力性能和变形能力,采用合理的加固措施,提高其抗震性能。

常用的加固措施包括设置剪力墙柱、设置拱形墙、设置外包剪力墙等。

3. 结构连接可靠:框架结构和剪力墙结构之间的连接应该设计合理、施工可靠,能够确保两者之间的受力传递和协同工作。

通常情况下,采用焊接、螺栓连接、预应力梁等方式进行结构连接。

4. 钢筋深埋:在设计框架剪力墙结构时,应合理布置和设置深埋钢筋,提高构件的抗震性能和变形能力。

通常情况下,框架结构和剪力墙结构的构件都应采用深埋的钢筋,并进行合理加固和连接。

5. 结构成本控制:在设计框架剪力墙结构时,要合理控制结构成本,尽量减少结构材料的使用,提高结构的空间利用率,降低结构的建造成本。

通常情况下,采用轻质材料、预制构件和模块化设计等方式进行成本控制。

框架剪力墙结构设计已经在实际建筑中得到了广泛应用,特别适用于高层建筑、居住建筑和特殊结构的设计。

框架-剪力墙结构中剪力墙的设计

框架-剪力墙结构中剪力墙的设计

框架-剪力墙结构中剪力墙的设计框架剪力墙结构中剪力墙的设计在现代建筑结构设计中,框架剪力墙结构因其良好的抗震性能、较大的空间灵活性以及相对经济的成本,被广泛应用于各类高层建筑中。

剪力墙作为这种结构体系中的重要抗侧力构件,其设计的合理性直接影响着整个结构的安全性和经济性。

接下来,让我们深入探讨一下框架剪力墙结构中剪力墙的设计要点。

一、剪力墙的作用与工作原理剪力墙,顾名思义,是一种能够承受水平和竖向荷载的墙体结构。

在框架剪力墙结构中,剪力墙主要承担水平荷载,如风荷载和地震作用,将其传递到基础。

当水平荷载作用于结构时,剪力墙通过自身的抗弯、抗剪能力来抵抗水平力。

其工作原理类似于一个竖向放置的悬臂梁,墙肢的弯曲变形和剪切变形共同消耗了水平荷载产生的能量。

二、剪力墙的布置原则1、均匀对称原则剪力墙的布置应尽量均匀、对称,使结构在各个方向上的抗侧刚度相近,避免因刚度分布不均匀而导致结构在地震作用下发生扭转破坏。

2、周边布置原则在建筑物的周边布置剪力墙,可以有效地增加结构的抗扭刚度,减小结构的扭转效应。

3、纵横墙相连原则纵横墙相互连接,可以形成有效的抗侧力体系,增强结构的整体性和稳定性。

4、避免短肢剪力墙短肢剪力墙的抗震性能相对较差,应尽量减少其使用。

三、剪力墙的类型1、整体墙当剪力墙的洞口面积小于墙体面积的 15%,且洞口之间的净距及洞口至墙边的净距大于洞口长边尺寸时,可视为整体墙。

整体墙的受力性能较好,具有较大的抗侧刚度。

2、小开口整体墙洞口面积稍大,但仍能符合一定的条件时,可视为小开口整体墙。

其受力性能介于整体墙和联肢墙之间。

3、联肢墙当洞口面积较大,墙肢之间通过连梁连接时,形成联肢墙。

联肢墙的墙肢和连梁协同工作,共同抵抗水平荷载。

4、壁式框架当连梁的刚度较大,墙肢的线刚度与连梁的线刚度接近时,剪力墙的受力性能类似于框架,称为壁式框架。

四、剪力墙的尺寸设计1、墙厚剪力墙的厚度应根据建筑物的高度、抗震等级以及墙体的受力情况确定。

框架剪力墙结构设计要点

框架剪力墙结构设计要点

框架剪力墙结构设计要点在现代建筑设计中,框架剪力墙结构因其具备良好的抗震性能、较大的室内空间利用率以及灵活的布局等优点,得到了广泛的应用。

要确保这种结构的安全性、可靠性和经济性,合理的设计至关重要。

以下将详细阐述框架剪力墙结构设计的要点。

一、结构布置1、剪力墙的布置剪力墙应均匀布置在建筑物的周边、楼梯间、电梯间及平面形状变化较大的部位。

这样可以有效地提高结构的抗扭性能和整体稳定性。

同时,剪力墙的长度不宜过长,避免出现单片剪力墙承担过大的水平荷载,导致过早破坏。

2、框架柱的布置框架柱应尽量做到上下贯通,避免在同一楼层出现框架柱截面尺寸和位置的突变。

柱网的布置应满足建筑使用功能的要求,同时要保证结构的受力合理。

3、梁的布置梁的布置应与剪力墙和框架柱协同工作,形成良好的传力体系。

框架梁应尽量避免穿过剪力墙,以免削弱剪力墙的承载能力。

二、抗震设计1、抗震等级的确定根据建筑物所在地区的抗震设防烈度、建筑高度、结构类型等因素,准确确定框架剪力墙结构的抗震等级。

抗震等级的确定直接影响到结构构件的配筋和构造要求。

2、地震作用计算采用合理的计算方法,如底部剪力法、振型分解反应谱法或时程分析法,计算地震作用下结构的内力和位移。

在计算过程中,要考虑扭转效应的影响。

3、抗震构造措施根据抗震等级,对框架柱、剪力墙、框架梁等构件采取相应的抗震构造措施,如加密箍筋、设置约束边缘构件等,以提高结构的延性和耗能能力。

三、荷载取值1、恒载包括结构自重、建筑装修材料重量、固定设备重量等。

在设计过程中,应根据实际情况准确计算恒载的大小。

2、活载按照《建筑结构荷载规范》的规定,合理取值各类活荷载,如楼面活载、屋面活载、风荷载等。

同时,要考虑活载的不利布置对结构内力的影响。

四、结构分析1、模型建立采用合适的结构分析软件,建立准确的框架剪力墙结构计算模型。

在模型中,要正确输入构件的几何尺寸、材料特性、荷载等参数。

2、计算结果分析对结构分析的计算结果进行仔细分析,包括结构的自振周期、位移比、层间位移角、内力分布等。

框架剪力墙结构设计

框架剪力墙结构设计

框架剪力墙结构设计在现代建筑领域中,框架剪力墙结构因其在结构性能和空间利用上的优势,成为了广泛应用的一种结构形式。

框架剪力墙结构是由框架和剪力墙共同组成的一种结构体系,它融合了框架结构和剪力墙结构的特点,既能提供较大的使用空间,又具有良好的抗侧力性能。

一、框架剪力墙结构的基本概念框架剪力墙结构,简单来说,就是在框架结构中布置一定数量的剪力墙。

框架主要承受竖向荷载,而剪力墙则主要承担水平荷载,如风力和地震力。

这样的组合使得建筑物在承受各种荷载时,能够更加稳定和安全。

剪力墙是一种竖向的钢筋混凝土墙板,其具有较大的抗侧刚度,能够有效地抵抗水平荷载引起的侧向变形。

框架则由梁和柱组成,提供了灵活的空间布局和良好的竖向承载能力。

二、框架剪力墙结构的特点1、空间灵活性与纯剪力墙结构相比,框架剪力墙结构在空间布局上更加灵活。

框架部分可以根据建筑功能的需要进行灵活划分,满足不同的使用要求。

2、抗侧力性能好剪力墙的存在大大提高了结构的抗侧力能力,使其在地震等水平荷载作用下的变形较小,保障了建筑物的安全。

3、经济性在一定条件下,框架剪力墙结构比纯框架结构或纯剪力墙结构更经济,能够在保证结构性能的前提下降低造价。

三、框架剪力墙结构的受力分析在框架剪力墙结构中,框架和剪力墙共同工作,相互影响。

在水平荷载作用下,剪力墙如同一个竖向悬臂梁,其变形以弯曲变形为主。

而框架的变形则以剪切变形为主。

由于框架和剪力墙的变形特性不同,它们之间会产生相互作用。

在结构的底部,剪力墙承担的水平力较大;而在结构的上部,框架承担的水平力逐渐增大。

这种内力的分布特点在设计中需要特别关注。

四、框架剪力墙结构的设计要点1、结构布置剪力墙的布置应均匀、合理,尽量沿建筑物的周边、楼梯间、电梯间等部位布置,以增强结构的抗扭性能。

框架的柱网布置应满足建筑使用功能的要求,并保证结构的传力明确。

2、抗震设计根据建筑物所在地区的抗震设防烈度,确定结构的抗震等级,并采取相应的抗震构造措施。

简析框架剪力墙结构设计

简析框架剪力墙结构设计

简析框架剪力墙结构设计框架剪力墙结构是一种常见的建筑结构形式,它主要由框架和剪力墙组成。

这种结构形式在抗震性能方面具有很好的表现,因此在地震频发地区得到广泛的应用。

接下来,我们将对框架剪力墙结构的设计原理、应用范围以及设计注意事项进行简要分析。

一、框架剪力墙结构设计原理1.框架剪力墙结构的作用机理框架剪力墙结构主要是利用钢筋混凝土构件的受力性能来抵抗水平荷载,提高建筑物的抗震性能。

框架的作用是通过承担较大的剪力和弯矩来抵抗水平荷载,而剪力墙则通过承担剪力来增加整体的抗震性能。

在进行框架剪力墙结构设计时,需要遵循以下原则:(1)合理配置结构布局,使得框架和剪力墙能够充分发挥作用;(2)采用合理的截面尺寸和配筋,确保结构的受力性能;(3)设计合理的连接部位,提高结构的整体刚度和稳定性。

1.适用于高层建筑框架剪力墙结构由于其良好的抗震性能,因此特别适用于高层建筑。

通过合理设计和布置框架和剪力墙,可以有效提高建筑的抗震能力,降低地震风险。

3.适用于复杂地形地质条件在一些复杂地形和地质条件下,建筑物需要更高的抗震性能。

框架剪力墙结构可以通过合理的设计和施工,在复杂地形和地质条件下具有较好的应用性能。

1.合理确定结构布局2.选择合适的构件材料框架剪力墙结构的设计中需要选择合适的构件材料,如混凝土、钢筋等,确保结构的受力性能和耐久性能。

3.考虑连接部位的设计在进行框架剪力墙结构设计时,需要充分考虑连接部位的设计,采用合理的连接方式和构件,提高结构的整体刚度和稳定性。

4.考虑地震荷载的影响框架剪力墙结构是一种常见的建筑结构形式,它具有良好的抗震性能,适用于高层建筑、大跨度建筑和复杂地形地质条件下的建筑,但在进行设计时需要充分考虑结构布局、构件材料、连接部位和地震荷载的影响,确保结构具有良好的受力性能和稳定性。

希望本文能够对框架剪力墙结构的设计和应用有所帮助。

10层框架—剪力墙结构体系设计

10层框架—剪力墙结构体系设计

10层框架—剪力墙结构体系设计在现代建筑设计中,框架—剪力墙结构体系因其在抗震性能、空间布局灵活性以及结构稳定性等方面的优势,得到了广泛的应用。

本文将详细探讨 10 层框架—剪力墙结构体系的设计要点和方法。

首先,我们来了解一下框架—剪力墙结构体系的基本构成和工作原理。

这种结构体系由框架和剪力墙两部分组成。

框架主要承担竖向荷载,同时也能承受一定的水平荷载;而剪力墙则主要承担水平荷载,如地震力和风荷载等。

在水平荷载作用下,框架和剪力墙协同工作,共同抵抗外力,从而保证结构的整体稳定性和安全性。

对于 10 层的建筑高度,在进行框架—剪力墙结构体系设计时,需要合理确定框架和剪力墙的布置。

剪力墙的布置应遵循均匀、对称的原则,尽量使结构的质心和刚心重合,以减少扭转效应。

一般来说,可以在建筑的周边、楼梯间、电梯间等部位布置剪力墙,以增强结构的抗侧力能力。

同时,框架的柱网布置应考虑建筑功能的需求,既要保证结构的合理性,又要满足使用空间的要求。

在结构计算方面,需要使用专业的结构分析软件进行建模和分析。

首先要确定结构的计算参数,包括地震烈度、场地类别、风荷载等。

然后,对结构进行静力分析和动力分析,以获取结构在各种荷载组合下的内力、位移等结果。

在计算过程中,要特别注意框架和剪力墙之间的内力分配和协同工作情况,确保结构的安全性和可靠性。

在构件设计方面,框架柱和框架梁的设计要满足承载力和变形要求。

柱子的截面尺寸和配筋要根据轴力、弯矩等内力进行计算确定。

梁的设计要考虑正截面受弯和斜截面受剪承载力,同时要控制梁的挠度和裂缝宽度在规范允许范围内。

剪力墙的设计则要重点考虑其墙身的配筋、边缘构件的设置以及连梁的设计。

剪力墙的厚度应根据抗震等级和轴压比等要求确定,配筋要满足受力和构造要求。

材料的选择对于结构的性能也有着重要的影响。

一般来说,框架柱和框架梁可以采用钢筋混凝土结构,混凝土强度等级不宜低于 C30。

剪力墙的混凝土强度等级可以根据具体情况适当提高。

框架剪力墙结构设计

框架剪力墙结构设计

框架剪力墙结构设计框架剪力墙结构设计一、引言框架剪力墙结构是一种常用的抗震结构形式。

本旨在提供详细的设计指南,以确保结构的安全性和可靠性。

二、结构设计原则1. 结构目标:满足建筑的使用功能和抗震要求。

2. 轴力和剪力分配:根据合理的静力平衡原理进行设计,确保轴力和剪力在整个结构中的合理分配。

3. 材料选用:选用具有良好抗震性能和稳定性的材料。

4. 节点设计:合理设计节点连接,保证结构的整体性和稳定性。

5. 设计荷载:根据设计规范和建筑用途确定设计荷载。

三、结构设计流程1. 确定建筑使用功能和荷载要求。

2. 进行地基和基础设计,确保结构的稳定性。

3. 设计结构的整体布局和尺寸,包括墙体、柱子和梁的定位和尺寸。

4. 进行剪力墙的布置设计,确保剪力墙能够充分发挥其抗震作用。

5. 进行梁柱的设计计算,确定其尺寸和钢筋配筋。

6. 设计节点连接,确保连接的可靠性。

7. 进行结构的抗震验算,检查结构的抗震性能是否满足要求。

8. 编制施工图纸,包括结构图、节点图和细部图纸。

四、结构设计细化1. 地基和基础设计原则地基的承载能力应满足设计荷载要求。

基础的尺寸应满足结构的稳定性和刚度要求。

合理设计排水系统,防止地基的液化和沉降。

2. 结构整体布局设计根据建筑使用要求和功能布局,确定结构的整体形式。

根据荷载要求,确定结构的层高和间距。

考虑结构的整体稳定性和刚度要求,进行布局设计。

3. 剪力墙的布置设计根据剪力墙的抗震效果和要求,在结构中合理布置剪力墙。

根据设计荷载和力学分析,确定剪力墙的尺寸和位置。

确保剪力墙的布置满足结构的稳定性和抗震要求。

4. 梁柱的设计计算根据设计荷载和力学分析,计算梁柱的尺寸和钢筋配筋。

考虑梁柱的受力和变形,确保满足结构的刚度和强度要求。

5. 节点连接设计根据剪力墙和梁柱的连接要求,设计节点连接形式和尺寸。

考虑节点连接的刚度和强度要求,确保结构的整体性和稳定性。

6. 抗震验算对设计好的结构进行抗震验算,检查结构的抗震性能是否满足要求。

框架剪力墙结构设计

框架剪力墙结构设计
总框架的反力pF(x); 框架:总剪力墙的反力pF(x)。
41
42
43
44
45
悬臂剪力墙内力和变形的关系
d2 y
Mw EIw dx2
(6.4)
VwddM w xEw Idd3x3y
(6.5)
p (x)pF(x)pw (x)d dw V x Ewd d I44 yx
总剪力墙的抗弯刚度:
≥50mm C20~C40
Φ6~8@150~ 宜≥40mm 200
5
(2)框架和剪力墙的布置方式 :灵活、对称 ① 框架与剪力墙(单片墙、联肢墙或较小井筒)分
开布置; ② 在框架结构的若干跨内嵌入剪力墙(带边框剪力
墙); ③在单片抗侧力结构内连续分别布置框架和剪力墙; ④ 上述两种或三种形式的混合。
36
一、计算简图
框架—剪力墙结构铰接体系:剪力墙与框架之间只
通过刚性楼板联系,共同承担水平荷载;
框架—结构刚接体系:部分或全部剪力墙与框架
之间有连梁联系,连梁对与之相连的剪力墙有约束 作用;(当连梁的尺寸较小时,对墙肢的约束很弱, 也可视为铰接体)。 刚接结点数目确定。
37
38
39
二、水平荷载作用下框架—剪力墙结构内力和位移 计算
设计条件 70,Ⅱ类土
构件截面面积与楼面面积之比 (AW+AC)/Af
0.03~0.05
剪力墙截面面积与楼面 面积之比AW/Af
0.02~0.03
80,Ⅲ类土
0.04~0.06
0.03~0.04
1、AW—剪力墙截面面积、AC—柱截面面积、Af—楼面 面积;2、表中数值是纵横两方面的总量,应使两个方向的剪 力墙数量接近;3、高度较大的框架—剪力墙结构,宜取表中 的上限值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表 7.1.2 设计条件
底层剪力墙(柱)截面面积与楼面面积的比值
(Aw+Ac) / Af
Aw / Af
7 度,Ⅱ类场地 8 度,Ⅱ类场地
3% ~ 5% 4% ~ 6%
2% ~ 3% 3% ~ 4%
-2-
高层建筑结构设计
7 框架-剪力墙结构设计
7.2 基本假定与计算简图
7.2.1 框架与剪力墙的协同工作 1. 定义: 框架-剪力墙结构是由框架和剪力墙组成的结构体系。在水平荷载作用下,平面内刚度
图 7.2.1 框架与剪力墙的侧移曲线
图 7.2.2 三种侧移曲线
7.2.2 基本假定与计算简图 1. 基本假定 (1) 楼板在自身平面内的刚度为无限大。整个结构单元内的所有框架和剪力墙连为整
体,不产生相对变形。 (2) 房屋的刚度中心与作用在结构上的水平荷载(风荷载或水平地震作用)的合力作用
点重合,在水平荷载作用下房屋不产生绕竖轴的扭转。 z 在这两个基本假定的前提下,同一楼层标高处,各榀框架和剪力墙的水平位移相
很大的楼盖将二者连接在一起组成框架-剪力墙结构时,二者之间协同工作。 2.特点: 1)在水平荷载作用下,单独剪力墙的变形曲线以弯曲变形为主;单独框架的变形曲线
以整体剪切变形为主。
2)框架-剪力墙结构中,其变形曲线介于弯曲型与整体剪切型之间。 z 结构下部,剪力墙的位移比框架小,墙将框架向左拉,框架将墙向右拉,故而框 架-剪力墙结构的位移比框架的单独位移小,比剪力墙的单独位移大; z 结构上部,剪力墙的位移比框架大,框架将墙向左推,墙将框架向右推,因而框 架-剪力墙的位移比框架的单独位移大,比剪力墙的单独位移小。 3) 两者之间的协同工作是非常有利的,它使框架-剪力墙结构的侧移大大减小,内力 分布更趋合理。
(3)连梁的线约束弯矩
当采用连续化方法计算框架-剪力墙结构内力时,应将 S12 和 S21 化为沿层高 h 的线约
束刚度 C12 和 C21,其值为
C12
=
S12 h
C 21
=
S 21 h
(7.2.11)
单位高度上连梁两端线约束刚度之和为
Cb = C12 + C21 z 当第 i 层的同一层内有 s 根刚结连梁时,总连梁的线约束刚度:
(a) 图 7.2.3 框架-剪力墙铰结体系计算简图
(b)
2)框架-剪力墙刚结体系。 图 7.2.4(a)所示,沿房屋横向有 3 片剪力墙,剪力墙与框
架之间有连梁连结,当考虑连梁的转动约束作用时,连梁两端可按刚结考虑。
z 总剪力墙代表②⑤⑧轴线的 3 片剪力墙的综合;
z 总框架代表 9 榀框架的综合,其中①③④⑥⑦⑨轴线均为 3 跨框架,②⑤⑧轴线
-4-
高层建筑结构设计
7 框架-剪力墙结构设计
z 以上计算简图仍是一个多次超静定的平面结构。可用力法或位移法借助电子计算 机计算,也可采用适合于手算的连续栅片法。
7.2.3 基本计算参数 框架-剪力墙结构分析时,需确定总剪力墙的弯曲刚度、总框架的剪切刚度和总连梁
的等效剪切刚度。采用连续栅片法计算时,假定这些结构参数沿房屋高度不变。如有变化, 可取沿高度的加权平均值。
Cf
(7.2.8)
式中, uM 为仅考虑梁、柱弯曲变形时框架的顶点侧移,可用D值法计算; u N 为柱轴向变形引起的框
架顶点侧移,可按式(5.4.26)或其他简化方法计算。
2. 连梁的约束刚度
框架-剪力墙刚结体系的连梁进入墙的部分刚度很大,因此连梁应作为带刚域的梁进 行分析。
z 剪力墙间的连梁是两端带刚域的梁; z 剪力墙与框架间的连梁是一端带刚域的梁。
1. 梁、柱截面尺寸
框架梁截面尺寸一般根据工程经验确定, 框架柱截面尺寸可根据轴压比要求确定,详 见第 5.2.1 节。
2. 剪力墙数量
在初步设计阶段,可根据房屋底层全部剪力墙截面面积 Aw 和全部柱截面面积 Ac 之和 与楼面面积 Af 的比值,或者采用全部剪力墙截面面积 Aw 与楼面面积 Af 的比值,来粗估剪 力墙的数量。
心区的完整性。
-1-
高层建筑结构设计
7 框架-剪力墙结构设计
7.1.2 框架-剪力墙结构中剪力墙的布置(了解) 1、剪力墙的数量 z 在框架-剪力墙结构中,结构的侧向刚度主要由同方向各片剪力墙截面弯曲刚度的
总和 Ec I w 控制,结构的水平位移随 Ec I w 增大而减小。 z 剪力墙数量也不宜过多,否则地震作用相应增加,还会使绝大部分水平地震力被
(2)特点 1)框架-剪力墙铰结体系。图 7.2.3(a)所示,沿房屋横向的 3 榀剪力墙均为双肢墙,
因连梁的转动约束作用已考虑在双肢墙的刚度内,且楼板在平面外的转动约束作用很小可 予以忽略,则总框架与总剪力墙之间可按铰结考虑,其横向计算简图如图 7.2.3(b)所示。
z 总剪力墙代表 3 榀双肢墙的综合; z 总框架则代表 6 榀框架的综合; z 铰结连杆代表各层楼板,是刚性的(即轴向刚度 EA→∞),保证总框架与总剪力墙 在同一楼层标高处的水平位移相等。
H h
q(z) z= H
q(z) qf (z)
+V +M
y
(a)
(b)
(c)
图 7.3.1 框架-剪力墙铰结体系协同工作计算简图
以总剪力墙为隔离体,并采用图 7.3.1(c)所示的正负号规定,根据材料力学可得如下微
分方程
Ec I eq
d4y dz 4
=
q(z)

qf
(z)
式中, qf (z) 表示框架与剪力墙的相互作用力;
h
Cf
=1
-8-
高层建筑结构设计
7 框架-剪力墙结构设计
根据框架剪切刚度 C f 的定义,当楼层的剪切角为φ 时,楼层剪力Vf 为:
Vf
= Cfφ
= Cf
dy dz
将上式微分一次,得:

qf
(z)
=
dVf dz
= Cf
d2y dz 2
(7.3.1)
将式(7.3.1)代入微分方程,并引入ξ = z H ,则得
高层建筑结构设计
7 框架-剪力墙结构设计
第 7 章 框架-剪力墙结构房屋设计
主要内容 结构布置(了解) 基本假定与计算简图 (重点) 框架-剪力墙铰结体系结构分析 (重点) 框架-剪力墙刚结体系结构分析(重点) 框架-剪力墙结构内力计算步骤及计算实例(了解)
7.1 结构布置
结构布置的总体要求 1)总体平面布置、竖向布置及变形缝设置等,见第 2.2 节所述; 2)具体布置除应符合下述的规定外,其框架和剪力墙的布置尚应分别符合框架结构 和剪力墙结构的有关规定。
等。 z 可将结构单元内所有剪力墙综合在一起,形成一榀假想的总剪力墙,总剪力墙的
弯曲刚度等于各榀剪力墙弯曲刚度之和; z 可把结构单元内所有框架综合起来,形成一榀假想的总框架,总框架的剪切刚度
等于各榀框架剪切刚度之和。 2.计算模型
-3-
高层建筑结构设计
7 框架-剪力墙结构设计
(1)分类:按照剪力墙之间和剪力墙与框架之间有无连梁,或者是否考虑这些连梁对 剪力墙转动的结束作用,框架-剪力墙结构可分为:框架-剪力墙铰结体系、框架-剪力墙刚 结体系。
图 7.2.5 框架的剪切刚度
当各层 Cf i 不相同时,计算中所用的 Cf 可近似地以各层的 Cf i 按高度加权取平均值, 即
Cf =
Cf1 h1 + Cf2 h2 + L + Cfn hn h1 + h2 + L + hn
(7.2.2)
3)考虑柱轴向变形时框架的剪切刚度
Cf0
=
uM uN + uM
d 4 y − λ2 d 2 y = q(ξ )H 4
dξ 4
为单跨框架。
z 总剪力墙与总框架之间有一列总连梁,总连梁代表②⑤⑧轴线 3 列连梁的综合。
图 7.2.4 框架-剪力墙刚结体系计算简图
注意: z 当考虑连梁的转动约束作用时,上述两结构的纵向计算简图可按刚结体系考虑; z 框架-剪力墙结构的下端为固定端,一般取至基础顶面;当设置地下室,且地下室 的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的 2 倍时,可将地下室的顶板作为上 部结构嵌固部位。
7.3 框架-剪力墙铰结体系结构分析
7.3.1 基本方程及其一般解 问题:连续栅片法的基本思路? 连续栅片法是沿结构的竖向采用连续化假定,即把连杆作为连续栅片。这个假定使总
剪力墙与总框架不仅在每一楼层标高处具有相同的侧移,而且沿整个高度都有相同的侧 移,从而使计算简化到能用四阶微分方程来求解。
● 计算模型的简化
h1 + h1
C +
b2 h2 h2 +
+L L+
+C hn
bn
hn
(7.2.13)
3. 剪力墙的弯曲刚度
总剪力墙的等效刚度为结构单元内 同一方向(横向或纵向)所有剪力墙等效刚度之 和,即
Ec I eq = ∑ (Ec I eq ) j
(7.2.14)
-7-
高层建筑结构设计
7 框架-剪力墙结构设计
S 21
=
6EI 0 l
1−a +b (1 − a − b)3 (1 +
β)
(7.2.9)
(2)一端带刚域的梁 在上式中令 b=0,可得一端带刚域连梁的杆端转动刚度
S 12
=
6EI 0 l
1+ a (1 − a)3 (1 + β )
S 21
= 6EI 0 l
1 (1 − a)2 (1 + β )
(7.2.10)
楼面形式
表 7.1.1 剪力墙的间距限值(m)
相关文档
最新文档