土壤结构性
合集下载
土壤的基本理化性质[专业内容]
![土壤的基本理化性质[专业内容]](https://img.taocdn.com/s3/m/9f193b68ed630b1c58eeb532.png)
<0.001
腐殖质(克/千克) 29.5 0 4.3 14.8 53.7 64.2
密度(克/厘米 3) 2.62 2.66 2.66 2.62 2.59 2.59
常用土壤密度值:
2.65克/厘米3。
高等教育
6
2、土壤容重:单位容积原状土壤(包括孔隙)的干质
量。
土壤容重值多介于1.0-1.5克/厘米3范围内,
沼泽土
1.10~1.30
对于大多数植物来说,土壤容重在1.14—1.26g/cm3之间比较适宜。
高等教育
7
容重、孔隙度与土壤松紧程度关系
松紧程度
最松 松 适合 稍紧 紧实
容重(g/cm3)
<1.0 1.0~1.14 1.14~1.26 1.26~1.30
>1.30
孔度(%)
>60 60~56 56~52 52~50
夯实的土壤容重典则型可土高壤达容1.重8-2.0克/厘米3。
土壤
容重(g/cm3)
土壤
容重(g/cm3)
泥炭
0.20~0.50
黄土
1.35~1.50
蓬松盐土 灰化层
0.80~1.00 0.80~1.00
土壤碱化层 土壤龟裂层
1.50~1.70 1.70~1.90
黑钙土耕层 1.10~1.30 灌溉后土壤结壳 1.60~1.90
注:式中土壤水吸力以 kPa为单位
高等教育
11
(二)土壤孔隙类型
土壤孔隙的持水功 能和毛管水上升情况 成为孔隙分类的主要 依据
孔隙类型
孔径大小 ( mm) 土壤水吸力 (kPa) 所含水分有效性
非活性孔隙(无效孔隙) < 0.002
腐殖质(克/千克) 29.5 0 4.3 14.8 53.7 64.2
密度(克/厘米 3) 2.62 2.66 2.66 2.62 2.59 2.59
常用土壤密度值:
2.65克/厘米3。
高等教育
6
2、土壤容重:单位容积原状土壤(包括孔隙)的干质
量。
土壤容重值多介于1.0-1.5克/厘米3范围内,
沼泽土
1.10~1.30
对于大多数植物来说,土壤容重在1.14—1.26g/cm3之间比较适宜。
高等教育
7
容重、孔隙度与土壤松紧程度关系
松紧程度
最松 松 适合 稍紧 紧实
容重(g/cm3)
<1.0 1.0~1.14 1.14~1.26 1.26~1.30
>1.30
孔度(%)
>60 60~56 56~52 52~50
夯实的土壤容重典则型可土高壤达容1.重8-2.0克/厘米3。
土壤
容重(g/cm3)
土壤
容重(g/cm3)
泥炭
0.20~0.50
黄土
1.35~1.50
蓬松盐土 灰化层
0.80~1.00 0.80~1.00
土壤碱化层 土壤龟裂层
1.50~1.70 1.70~1.90
黑钙土耕层 1.10~1.30 灌溉后土壤结壳 1.60~1.90
注:式中土壤水吸力以 kPa为单位
高等教育
11
(二)土壤孔隙类型
土壤孔隙的持水功 能和毛管水上升情况 成为孔隙分类的主要 依据
孔隙类型
孔径大小 ( mm) 土壤水吸力 (kPa) 所含水分有效性
非活性孔隙(无效孔隙) < 0.002
第三章__土壤的孔性、结构性与耕性

孔隙度计算*:
非活性孔度=非活性孔容积/土壤容积*100% 毛管孔度=毛管孔隙容积/土壤容积*100% 通气孔度=通气孔隙容积/土壤容积*100% 土壤总孔隙度=非活性孔度+毛管孔度+通气孔度
小 孔 隙
大 孔 隙
三、土壤的密度和容重
土壤孔隙一般很难直接测定,常常通过土壤容重和土壤密度来 计算。同时在土壤其他性状的研究中,其应用也十分广泛。
土壤容重的在农业上的应用:
1)反映土壤松紧状况
相同质地时,疏松的土壤容重较小,紧实的土壤容重较大。 不同质地时,一般砂土〉壤土〉粘土。
2)计算土壤三相比
孔隙度=V孔/V土体=(V土体-V固体)/V土体=1-V固体/V土体 =1-(w/土壤密度)/(w/土壤容重)=1-土壤容重/土壤密度
固相率=1-孔隙度=土壤容重/土壤密度 液相率(土壤容积含水量)=土壤质量含水量×土壤容重 气相率=1-固相率-液相率=孔隙度-液相率 土壤三相比=固相率:液相率:气相率 适宜的土壤三相百分数为: 固相率50%左右; 容积含水率25-30%; 气相率15-25%。
4、改良耕性和有利于作物根系伸展。
团粒之间接触面积减少而大大减弱了土壤的粘结性与粘 着性,改善土壤耕性;并且团粒间疏松多孔,利用根系 伸展,而团粒内部,孔隙小利于根系的固定和支撑。
总之团粒结构使土壤孔性良好,协调土壤水肥气热的能 力强,耕性优良。
高产田并非一定要有水稳性团粒,没有也可
土壤结构性的评价
容重 孔隙度= 1- 密度
土壤总孔度=孔隙容积/土壤容积*100% 旱地耕层土壤以50%~56%适宜大多数作物生长。一般砂土孔度30%-45%,壤 土40%-50%,粘土45%-60%。
孔隙比=孔隙容积/土粒容积=孔度/(1-孔度) 1,稍大
《土壤学》第三章 土壤的孔性、结构性与耕性

(三)宜耕期的长短 指在保证耕作质量和劳动效 率的前提下,宜于耕作时间的长短。
二、影响土壤耕性的因素
• 土壤物理机械性质是土壤在不同含水量 情况下所表现的物理性质,包括土壤的 粘结性、粘着性、可塑性、胀缩性以及 其它受外力作用(如农机具的切割、穿 透和压板等作用)而发生形变的性质。
(一)土壤粘结性和土壤粘着性
一、土壤孔隙的数量
(一)土壤比重 、 土粒密度 土粒密度:单位体积的固体干土粒(不包括粒间孔隙)
的重量(g/cm3) 。 土壤比重:土粒密度与水(4℃)的密度之比,无量纲。
• 土壤比重和颗粒密度大小相等,区别在于有无量纲 • 土壤比重是土壤相对稳定的性质
• 比重大小决定于矿物组成和有机质含量 • ①土壤矿物组成和含量有关,
三、影响土壤孔性的因素
(1)土壤质地 黏土、砂土、壤土-总孔隙度,通气孔隙、毛管孔隙 和无效孔隙、大小比例比较
粘质土孔隙度45—60%之间,以毛管孔和无效孔为主 ; 砂质土孔隙度33—45%,非毛管孔(通气孔)较多; 壤质土孔隙度45—52%,有适量通气孔又有较多毛管孔,
(2)土粒排列 疏松时高,紧密时低。
非活性孔隙度(%)=V非活性孔隙/V土×100 毛管孔隙度(%)=V毛管孔隙/V土×100 通气孔隙度(%)=V通气孔隙/V土×100 总孔度=非活性孔度+毛管孔度+通气孔度 •毛管孔隙度%=(田间持水量—凋萎含水量)×容重 •旱作土壤耕层总孔度为50%~56%;通气孔隙度不 低于10%;大小孔隙之比在1 :2~4较为合适
2)毛管孔隙 孔径在0.0002-0.02mm(也有0.002-0.02的 说法),土壤水吸力在15-0.15bar范围的孔隙,具有毛管 作用。保持植物利用的有效水分 。
3)无效孔隙 :土壤中孔径<0.0002mm(或0.002mm),土壤 水吸力>15bar的细微孔隙。其水分不能被吸收。
二、影响土壤耕性的因素
• 土壤物理机械性质是土壤在不同含水量 情况下所表现的物理性质,包括土壤的 粘结性、粘着性、可塑性、胀缩性以及 其它受外力作用(如农机具的切割、穿 透和压板等作用)而发生形变的性质。
(一)土壤粘结性和土壤粘着性
一、土壤孔隙的数量
(一)土壤比重 、 土粒密度 土粒密度:单位体积的固体干土粒(不包括粒间孔隙)
的重量(g/cm3) 。 土壤比重:土粒密度与水(4℃)的密度之比,无量纲。
• 土壤比重和颗粒密度大小相等,区别在于有无量纲 • 土壤比重是土壤相对稳定的性质
• 比重大小决定于矿物组成和有机质含量 • ①土壤矿物组成和含量有关,
三、影响土壤孔性的因素
(1)土壤质地 黏土、砂土、壤土-总孔隙度,通气孔隙、毛管孔隙 和无效孔隙、大小比例比较
粘质土孔隙度45—60%之间,以毛管孔和无效孔为主 ; 砂质土孔隙度33—45%,非毛管孔(通气孔)较多; 壤质土孔隙度45—52%,有适量通气孔又有较多毛管孔,
(2)土粒排列 疏松时高,紧密时低。
非活性孔隙度(%)=V非活性孔隙/V土×100 毛管孔隙度(%)=V毛管孔隙/V土×100 通气孔隙度(%)=V通气孔隙/V土×100 总孔度=非活性孔度+毛管孔度+通气孔度 •毛管孔隙度%=(田间持水量—凋萎含水量)×容重 •旱作土壤耕层总孔度为50%~56%;通气孔隙度不 低于10%;大小孔隙之比在1 :2~4较为合适
2)毛管孔隙 孔径在0.0002-0.02mm(也有0.002-0.02的 说法),土壤水吸力在15-0.15bar范围的孔隙,具有毛管 作用。保持植物利用的有效水分 。
3)无效孔隙 :土壤中孔径<0.0002mm(或0.002mm),土壤 水吸力>15bar的细微孔隙。其水分不能被吸收。
第三章 土壤的孔性、结构性与耕性.

本节重点难点:
重点:掌握土壤孔隙的概念、类型 及调控。 难点:土壤比重和容重的区别。
第二节
土壤结构
土壤结构和土壤质地是土壤的两项基本物理性质, 两者密切相关,并有互补性。土壤结构是指土粒(单粒 和复粒)的排列、组合形式,包含两重意义:结构体和 结构性。通常所说的土壤结构多指其结构性。
一、土壤结构体的类型及其特性
(2)毛管孔隙 当量孔径为0.02-0.002mm,土 壤水吸力为150-1500KPa。植物的细根、原生动物和真 菌等很难进入毛管孔隙中,但植物根毛和一些细菌可 在其中活动,有利于养分的吸收与转化,毛管孔隙保 存的水分可被植物吸收利用。为有效孔隙。 ( 3 )通气孔隙 当量孔径大于 0.02mm ,相应的 土壤水吸力小于 150KPa 。通气孔隙的水分主要受重力 支配而排出,因而成为空气流动的通道,不具有毛管 作用,所以叫通气孔或非毛管孔。
土壤结构体或结构单元,它是土粒互相排列和团聚 成为一定形状和大小的土块和土团。他们具有不同程度 的稳定性,以抵抗机械破坏(力稳性)或泡水时不致分 散(水稳性)。 土壤结构性是由土壤结构体的种类、数量(尤其是 团粒结构的数量)及结构体内外的孔隙状况等产生的综 合性质。
土壤结构体的分类
1.块状结构 2.核状结构 3. 柱状结构 4.片状结构 5. 团粒结构
有团粒结构的土壤水肥气热比较相互协调故团粒结构被称为土壤肥力调节三土壤团粒结构的形成一土壤团粒结构的形成过程目前主要有多级团聚说和粘团说两种观点但无论哪种观点团粒结构的形成都包括以下两个阶段
第三章 土壤的孔性、结构性与耕性
土壤孔性、结构性是土壤重要的物理性质。通过 本章学习,让学生掌握土壤中孔隙、结构的概念、类型 及对土壤肥力和生产性能的影响;重点介绍团粒结构的 肥力特征及创造机理;物理机械性的概念及与耕性的关 系,从而了解土壤物理性状对土壤肥力的影响。
第三章 土壤的孔性、结构性和耕性分析

二、土壤结构体的类型及其特征
(1)块状结构体 (2)核状结构体 (3)片状结构体
(4)柱状结构体 (5)团粒状结构体
三、土壤结构性的评价
评价土壤结构性,从两个方面来考虑:
一是土壤结构体的类型、数量和总孔隙度;
二是团粒和微团粒的数量、稳定性及孔性。
四、土壤团粒结构体的形成
(一)、土壤团粒结构体形成的机制
第三节 土壤的物理机械性与耕性
一、土壤物理机械性
土壤物理机械性是指土壤的结持性(粘 结性、粘着性、可塑性)、胀缩性、松紧性 以及受其它外力作用(农机具的剪切、穿透 压板等作用)而发生形态变化的性质。
1. 土壤结持性:
不同含水量下土壤粘结性、粘着性和可塑性的综合表 现称为土壤结持性。
(1)、土壤粘结性:
练习:某土壤比重为2.7,容重为1.55 g/cm3,若土壤含水 量为25%,问此土壤含有空气容积是否适合于一般作物生长的 需要?
三、土壤孔隙状况与土壤肥力和作物生长的关系 (一)土壤孔隙状况与土壤肥力的关系
土壤疏松时保水通气能力强,紧实的土壤保水通气能力 差。不同孔隙状况,养分有效化和保肥供肥性能有较大差异。
比值。其值为1或稍大于)
(三)土壤孔隙分级
根据孔隙中的土壤水吸力大小或当量孔径 大小可将孔隙划分为三种类型:非活性孔隙、 毛管孔隙、通气孔隙。
1.非活性孔隙 土壤中最细的孔隙,当量 孔径小于0.002mm,常被束缚水充满。
非活性孔隙度=非活性孔容积/土壤总容积×100%
腐殖质含量:腐殖质的粘结性比砂土
强而比粘土弱。
代换性阳离子的组成:钾钠等一价阳
离子含量越高,粘结性越强。
(2)、土壤粘着性:
指土壤颗粒粘附在外物上的性能。土
土壤学孔性、结构性、耕性

农业生产中,常采用排水晒田、晒垄、冻 垄等措施,提高土壤溶液电解质的浓度,促进
土壤胶粒凝聚。
(2) 水膜(water film)的粘结作用
土粒在水膜的作用下,在土粒接触处形成 弯月面,由于弯月面内侧的负压,把相邻的土 粒团聚在一起,形成土团。
(3) 胶结作用(cementation)
a、简单的无机胶体
径来计算,用当量孔径表示大小
当量孔径: 是指与一定的土壤水吸力相当的孔 径。它与孔隙的形状及其均匀性无关。土壤水 吸力与当量孔径的关系式为: d = 3/S d为孔隙的当量孔径(mm),S为土壤水吸力 (KPa) 当量孔径与土壤水吸力成反比
根据土壤孔隙的通透性和持水能力,分为三种类型:
①非活性孔:又称无效孔、束缚水孔。 这是土壤中 最细微的孔隙,当量孔径一般<0.002mm, 土壤水 吸力>1.5×105Pa。 ②毛管孔隙:当量孔径约为0.02-0.002mm, 土壤水 吸力1.5×104Pa-1.5×105Pa,具有毛管作用。 ③通气孔隙:当量孔径>0.02mm,相应的土壤水吸力 <1.5×104Pa,毛管作用明显减弱。
3.土壤三相比的计算
(1)土壤固相容积(%) =(1-土壤总孔隙度)×100% (2)土壤液相容积(%) =土壤含水量×土壤容重
(3)土壤气相容积(%) =土壤总孔隙度-土壤液相容积
土壤三相组成的适宜范围(comfort zone)
土壤三相比=固相:液相:气相
多数旱地作物(upland field crop)适宜的 土壤固、液、气三相比为:
二土壤力学性质是土壤颗粒之间以及土壤与外物之间的相互作用又称土壤物理机械性包括土壤黏结性黏着性可塑性胀缩性等土壤耕性的好坏主要是由土壤物理机械性质引起的
土壤结构性

第20页/共30页
影响土壤粘结性的因素:
(1)土壤比表面及其影响因素 土壤质地、粘粒矿物组成、阳离子种类等。
土壤含水量
(g·kg-1)
35 15
表54 土壤结构性对粘结力(g/cm2)的影响
土壤团粒大小
无结构土壤
1~2mm
0.5~1mm
自然状态 压紧状态
670
1115
700
1880
2400 2450
251
含有机质70g·kg-1
522
630
去掉有机质
277
368
塑性值 50 53 108 91
第24页/共30页
二、土壤耕性
土壤耕性:指在耕作过程中土壤各种土壤物理性质的综合反映及在耕作后的 土壤外在表现。包括耕作阻力的大小,耕作质量的好坏,适耕期 的长短。
1、土壤耕性与土壤结持状态
表58 土壤结持性与土壤水分状况
主要有:腐殖质、木质素、蛋白质、菌丝体、多糖
例如腐殖质可通过多价阳离子的桥梁作用与 粘粒结合成有机无机复合体。丘林称之为胶散复合 体,因为作为阳离子桥的阳离子的种类不同,其稳 定性也有很大差异。丘林把在中性盐(NaCl)作用 下分散开来的复合体称之为钠分散复合体用G1来表 示,把钠分散复合体分离后加研磨处理得到的复合 体称之为研磨分散复合体用G2来表示。并认为G1是 Ca++结合的复合体,G2是Fe3+、Al3+结合的复合体。 后来我国学者又把G1中的能在水中分散的复合体分 为G0组。
r)的平方和介质的介电常数D成反比,而与正、负两个质点带电量ea 、ec 的乘 积成正比:
F
eaec Dr 2
土壤颗粒间的范德华力 包括:极性力、诱导力 、色散力
3-1 土壤孔性、结构性和耕性

1、土壤结构的类型(soil configuration type)
主要根据结构体的大小、外形及与土壤肥力的关系划分的。
① 块状结构(blocky structure)
形状:立方体型,纵轴和横轴大体相等,边面不明显,
内部紧实。
产生条件:熟化度较低的表层土壤或缺乏有机质而粘 重的底土多为块状结构。
大小划分:大块状结构,直径>10cm;
2、土壤孔隙类型
通气孔隙(aeration pore):孔径>0.02(0.06)mm,透水通气,
通常有空气存在其中,同时植物根毛、根系和微生物均可在通气孔 隙中活动。
毛管孔隙 (capillary pore):孔径:0.02(0.06)-0.002(0.0002)mm。
对植物是有效的,而且植物的根系和微生物都可在其中生长和 活动。
正长石 斜长石 白云母 黑云母
角闪石 辉 石
2.85~3.57 3.15~3.90
3.60~4.10
伊利石 腐殖质
2.60~2.90 1.40~1.80
纤铁矿
紧密排列
疏松排列
孔 隙 度 24.51 %
理想土壤的最松排列(左)和最紧排列(右)
47.46 %
(4)影响土壤容重的因素 通过影响孔隙
土壤质地 土壤结构 自然因素(动物孔穴等) 人为因素(耕作,压实,结构改良剂等) 土壤有机质含量
形状:横轴远大于纵轴,呈扁平状结构体。
产生条件:雨后土壤表面结壳或老耕作土壤犁底层。 大小划分: >3mm者为板状,
<3mm者为片状。
⑦ 团粒结构(spheroidal structure)
形状:近似于球形,疏松多孔的小土 团称团粒结构,是含有机质丰富肥沃土壤 的标志特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合理耕作并结合有机肥料的施用可促进团粒结构的形 成。否则会破坏土壤结构。
3、生物作用
土壤动物的掘土作用; 蚯蚓粪便的排泄,及分泌物的胶结作用等; 植物根系的穿插挤压作用;
四、团粒结构在土壤肥力上的意义
1、团粒结构占优势的土壤大小孔隙兼备,水气协调;
各异的粒状或团粒状结构体。
涉及到的形成机制: 1、胶体的凝聚作用; 2、水膜的粘结作用; 3、胶结作用; 4、干湿交替,冻融交替; 5体的凝聚作用
正点胶体和负电胶体 通过电荷引力凝聚沉 淀。是土壤结构体形 成的重要途径。土壤 中的阳离子含量及价 数是影响胶体凝聚的 重要因素。
第2章 土壤的基本性质
第二节 土壤结构性
一、土壤结构的概念
土壤结构:一般土粒团聚形成大小、形状不同的团聚体。 土壤结构性:是指土壤中结构体的 大小、形状、排列及其相应的孔 隙状况等综合性状。
二、土壤结构的类型及特点
1、土壤结构体的类型
似块状结构 团粒结构 似板状结构(也称片状结构) 似柱状结构
图5-4主要结构体类型
球状—多面体状。结 构体表面平滑或弯曲 ,与周围结构体界面 不能吻合
无圆头
棱柱状
有圆头
柱状
平界面, 棱角明显
块状
平界面夹 圆界面, 有许多圆 角棱
结构体孔 隙较少
亚角块状 团粒
结构体 孔隙多
团块
1. 很细或很薄 2. 细或薄 3. 中等 4. 粗或厚 5. 很粗或很厚
<1 mm 1~2 mm 2~5 mm 5~10 mm >10 mm
从结构体内部和结构体间的孔隙情况考察: 块状、片状、柱状、棱柱状、板状结构体内部致密,为非活性孔隙,根系
很难穿扎,有效水分少,空气难于流通。而结构体间的裂隙多为大孔隙,成为 漏水漏肥的通道。所以,这些结构体的孔性不良。
团粒结构体的内部有大量小孔隙,可蓄水,团粒间的接触面积小,排列疏 松,多为大孔隙,空气流通快,具有理想的孔性。
3:强 结构体发育好,稳定,界面清,彼此间联结弱,破碎后几乎是完整的小结构体
自然土壤中的结构体类型
Granular 粒状
Blocky 块状
Prismatic 棱柱状
Columnar 柱状
Platy 片状
Single grained
单粒状
Massive
大块
2、土壤结构的评价 (1)土壤结构体与孔性
(1)无机胶体 粘粒:有较大的比表面和表面能,脱水时颗粒相 互接触紧密,通过范德华力粘结在一起。也可通过: “粘粒—定向排列的水分子—阳离子—定向排列的水 分子—粘粒”的形式联结起来。 简单无机胶体:无定形铁、铝、硅氧化物,碳酸 钙,在湿润时起粘结作用,把土粒粘结在一起,脱水 后,形成不同形状的结构体。
单个土粒
形
成
团聚体
阶 段
与
微团粒
步
骤
2、水膜的粘结作用
湿润土壤中,水分子 可在土壤颗粒表面定向 排列形成水膜,把相邻 的土壤颗粒粘结在一起。
水分进一步增加时, 可形成弯月面,在弯月 面内侧形成负压,把颗 粒粘结在一起。
3、胶结作用
土壤颗粒或团聚体间因胶结物质物理状态和化学 组成的变化而相互团聚在一起。土壤中的胶结物质主 要有两大类:
干土变湿时,各部位的吸水速率不同,不同位点的 膨胀度不同,土块会发生不均衡的挤压和破裂,形成 小的结构体。
影响因素:土壤质地、有机质含量、阳离子组成、 土壤含水量;由干变湿的速率。
冻融交替:孔隙结冰,体积增大,产生挤压力,使土
块崩裂。(生产实践) 影响因素:土壤含水量;温度变化的快慢。
2、耕作措施
多糖类物质主要是通过氢键与矿质颗粒结合成复合体。
G1组复合体 G2组复合体
Ca2+ 土粒
土粒 土粒
腐 殖 质
G1组复合体
Fe2+ 土粒
Al3+
土粒 腐 殖 质
土粒 Fe3+
G2组复合体
腐殖质
粉
砂粒
粒
粘粒
粉粒
砂粒
(二)机械破碎途径
1、干湿交替,冻融交替
干湿交替:土壤胶体具有湿胀干缩的性质。湿土变 干时,脱水速率不同,不同位点的胶结力不同,土块 会发生破裂,形成小的的结构体。
<10 mm 10~20 mm 20~50 mm 50~100 mm >100 mm
<10 mm 10~20 mm 20~50 mm 50~100 mm >100 mm
<5 mm 5~10 mm 10~20 mm 20~50 mm >50 mm
<5 mm 5~10 mm 10~20 mm 20~50 mm >50 mm
(2)有机胶体
主要有:腐殖质、木质素、蛋白质、菌丝体、多糖
例如腐殖质可通过多价阳离子的桥梁作用与粘粒 结合成有机无机复合体。丘林称之为胶散复合体,因 为作为阳离子桥的阳离子的种类不同,其稳定性也有 很大差异。丘林把在中性盐(NaCl)作用下分散开来 的复合体称之为钠分散复合体用G1来表示,把钠分散 复合体分离后加研磨处理得到的复合体称之为研磨分 散复合体用G2来表示。并认为G1是Ca++结合的复合体, G2是Fe3+、Al3+结合的复合体。后来我国学者又把G1 中的能在水中分散的复合体分为G0组。
(2)结构体的稳定性
机械稳定性:结构体抵御机械破碎的能力。 生物稳定性:结构体抵御生物分解的能力。 水 稳 定性:结构体抵御水分散的能力。
三、土壤结构体的形成
形成途径主要有两个: 1、多级团聚途径:由单粒凝聚成复粒,由复粒相互粘
结形成微团粒、团粒。 2、在机械力的作用下,大块土垡破碎成各种大小、形状
表52美国农田土壤调查局的土壤结构分类表(1951)
B—级: 结构体大小
似板状 ,水平 轴比垂 直轴长 ,沿水 平面排 列
板状
A—类型:结构体的形状和排列
似棱状,水平轴比垂 直轴短,沿垂线排列 ,有棱角。
似快状—多面体—球状,沿一点的三轴大致相等
似块状—多面体状,结 构体表面平滑或弯曲, 与周围结构体界面可吻 合
<1 mm 1~2 mm 2~5 mm 5~10 mm >10 mm
1 mm 1~2 mm 2~5 mm
C—度:结构 体的稳定度
0:无结构 无结构性或无定向的排列。 1:弱 结构体发育差,不稳定,界面不清,破碎后只有少量完整的小结构体,大都为
破碎的小结构 体和非团聚的物质。
2:中等 结构体发育好,中等稳定,原状土界面不显,破碎后多为完整的结构体和一 些破碎的结构体, 非团聚的物质少。
3、生物作用
土壤动物的掘土作用; 蚯蚓粪便的排泄,及分泌物的胶结作用等; 植物根系的穿插挤压作用;
四、团粒结构在土壤肥力上的意义
1、团粒结构占优势的土壤大小孔隙兼备,水气协调;
各异的粒状或团粒状结构体。
涉及到的形成机制: 1、胶体的凝聚作用; 2、水膜的粘结作用; 3、胶结作用; 4、干湿交替,冻融交替; 5体的凝聚作用
正点胶体和负电胶体 通过电荷引力凝聚沉 淀。是土壤结构体形 成的重要途径。土壤 中的阳离子含量及价 数是影响胶体凝聚的 重要因素。
第2章 土壤的基本性质
第二节 土壤结构性
一、土壤结构的概念
土壤结构:一般土粒团聚形成大小、形状不同的团聚体。 土壤结构性:是指土壤中结构体的 大小、形状、排列及其相应的孔 隙状况等综合性状。
二、土壤结构的类型及特点
1、土壤结构体的类型
似块状结构 团粒结构 似板状结构(也称片状结构) 似柱状结构
图5-4主要结构体类型
球状—多面体状。结 构体表面平滑或弯曲 ,与周围结构体界面 不能吻合
无圆头
棱柱状
有圆头
柱状
平界面, 棱角明显
块状
平界面夹 圆界面, 有许多圆 角棱
结构体孔 隙较少
亚角块状 团粒
结构体 孔隙多
团块
1. 很细或很薄 2. 细或薄 3. 中等 4. 粗或厚 5. 很粗或很厚
<1 mm 1~2 mm 2~5 mm 5~10 mm >10 mm
从结构体内部和结构体间的孔隙情况考察: 块状、片状、柱状、棱柱状、板状结构体内部致密,为非活性孔隙,根系
很难穿扎,有效水分少,空气难于流通。而结构体间的裂隙多为大孔隙,成为 漏水漏肥的通道。所以,这些结构体的孔性不良。
团粒结构体的内部有大量小孔隙,可蓄水,团粒间的接触面积小,排列疏 松,多为大孔隙,空气流通快,具有理想的孔性。
3:强 结构体发育好,稳定,界面清,彼此间联结弱,破碎后几乎是完整的小结构体
自然土壤中的结构体类型
Granular 粒状
Blocky 块状
Prismatic 棱柱状
Columnar 柱状
Platy 片状
Single grained
单粒状
Massive
大块
2、土壤结构的评价 (1)土壤结构体与孔性
(1)无机胶体 粘粒:有较大的比表面和表面能,脱水时颗粒相 互接触紧密,通过范德华力粘结在一起。也可通过: “粘粒—定向排列的水分子—阳离子—定向排列的水 分子—粘粒”的形式联结起来。 简单无机胶体:无定形铁、铝、硅氧化物,碳酸 钙,在湿润时起粘结作用,把土粒粘结在一起,脱水 后,形成不同形状的结构体。
单个土粒
形
成
团聚体
阶 段
与
微团粒
步
骤
2、水膜的粘结作用
湿润土壤中,水分子 可在土壤颗粒表面定向 排列形成水膜,把相邻 的土壤颗粒粘结在一起。
水分进一步增加时, 可形成弯月面,在弯月 面内侧形成负压,把颗 粒粘结在一起。
3、胶结作用
土壤颗粒或团聚体间因胶结物质物理状态和化学 组成的变化而相互团聚在一起。土壤中的胶结物质主 要有两大类:
干土变湿时,各部位的吸水速率不同,不同位点的 膨胀度不同,土块会发生不均衡的挤压和破裂,形成 小的结构体。
影响因素:土壤质地、有机质含量、阳离子组成、 土壤含水量;由干变湿的速率。
冻融交替:孔隙结冰,体积增大,产生挤压力,使土
块崩裂。(生产实践) 影响因素:土壤含水量;温度变化的快慢。
2、耕作措施
多糖类物质主要是通过氢键与矿质颗粒结合成复合体。
G1组复合体 G2组复合体
Ca2+ 土粒
土粒 土粒
腐 殖 质
G1组复合体
Fe2+ 土粒
Al3+
土粒 腐 殖 质
土粒 Fe3+
G2组复合体
腐殖质
粉
砂粒
粒
粘粒
粉粒
砂粒
(二)机械破碎途径
1、干湿交替,冻融交替
干湿交替:土壤胶体具有湿胀干缩的性质。湿土变 干时,脱水速率不同,不同位点的胶结力不同,土块 会发生破裂,形成小的的结构体。
<10 mm 10~20 mm 20~50 mm 50~100 mm >100 mm
<10 mm 10~20 mm 20~50 mm 50~100 mm >100 mm
<5 mm 5~10 mm 10~20 mm 20~50 mm >50 mm
<5 mm 5~10 mm 10~20 mm 20~50 mm >50 mm
(2)有机胶体
主要有:腐殖质、木质素、蛋白质、菌丝体、多糖
例如腐殖质可通过多价阳离子的桥梁作用与粘粒 结合成有机无机复合体。丘林称之为胶散复合体,因 为作为阳离子桥的阳离子的种类不同,其稳定性也有 很大差异。丘林把在中性盐(NaCl)作用下分散开来 的复合体称之为钠分散复合体用G1来表示,把钠分散 复合体分离后加研磨处理得到的复合体称之为研磨分 散复合体用G2来表示。并认为G1是Ca++结合的复合体, G2是Fe3+、Al3+结合的复合体。后来我国学者又把G1 中的能在水中分散的复合体分为G0组。
(2)结构体的稳定性
机械稳定性:结构体抵御机械破碎的能力。 生物稳定性:结构体抵御生物分解的能力。 水 稳 定性:结构体抵御水分散的能力。
三、土壤结构体的形成
形成途径主要有两个: 1、多级团聚途径:由单粒凝聚成复粒,由复粒相互粘
结形成微团粒、团粒。 2、在机械力的作用下,大块土垡破碎成各种大小、形状
表52美国农田土壤调查局的土壤结构分类表(1951)
B—级: 结构体大小
似板状 ,水平 轴比垂 直轴长 ,沿水 平面排 列
板状
A—类型:结构体的形状和排列
似棱状,水平轴比垂 直轴短,沿垂线排列 ,有棱角。
似快状—多面体—球状,沿一点的三轴大致相等
似块状—多面体状,结 构体表面平滑或弯曲, 与周围结构体界面可吻 合
<1 mm 1~2 mm 2~5 mm 5~10 mm >10 mm
1 mm 1~2 mm 2~5 mm
C—度:结构 体的稳定度
0:无结构 无结构性或无定向的排列。 1:弱 结构体发育差,不稳定,界面不清,破碎后只有少量完整的小结构体,大都为
破碎的小结构 体和非团聚的物质。
2:中等 结构体发育好,中等稳定,原状土界面不显,破碎后多为完整的结构体和一 些破碎的结构体, 非团聚的物质少。