建筑工程结构振动控制技术
建筑管理工程师在施工现场噪音与震动控制规范要求

建筑管理工程师在施工现场噪音与震动控制规范要求随着城市化进程的加快,建筑工地的噪音和震动对周围居民和环境产生了严重的影响。
为了保护公众的利益和环境的可持续发展,建筑管理工程师在施工现场必须遵守一系列噪音和震动控制规范要求。
本文将详细探讨这些规范要求,以确保建筑施工过程中的噪音和震动处于可接受的范围内。
一、噪音控制规范要求噪音是指人们感受到的不愉快的声音,常常由建筑设备、机械设备和施工工艺等因素产生。
建筑管理工程师应该采取适当的措施来降低施工现场的噪音水平,以避免对周围居民和环境造成过大的干扰。
1. 设备选择和布置建筑管理工程师应根据施工需要选择噪音较低的设备,并合理布置施工现场,减少噪音传播。
例如,在选择混凝土搅拌机时,可以优先选用低噪音的电动混凝土搅拌机,避免使用高噪音的柴油机。
2. 噪音遮挡和隔离在施工现场周围设置噪音屏障或噪音隔离设施,以减少噪音传播的影响范围。
合理设置施工区域的布局,尽量使噪音源与居民区域之间隔离,并通过植物、绿化带或围挡对噪音进行遮挡和吸收。
3. 时段控制和控制措施合理安排施工时间,避免在夜间或敏感时间段进行噪音较大的施工作业。
对于无法避免的施工噪音,建筑管理工程师应采取有效的控制措施,如安装噪音屏蔽罩、降噪装置、施工噪音监测设备等,以保持噪音水平在可接受范围内。
二、震动控制规范要求震动是由于施工设备或其他地下工程施工引起的地面振动或结构震动。
过大的震动不仅会引起建筑物及设备设施的损坏,还会对周围的地质环境和居民产生不利影响。
建筑管理工程师需要遵守一系列相关规范要求,以保证施工现场的震动水平合理控制。
1. 施工技术控制建筑管理工程师应根据具体施工要求,合理选择施工技术和方法。
例如,在地下施工中,可以采用先进的爆破技术和振动衰减措施,减少对周围建筑物和土壤的震动影响。
2. 结构减振和隔振措施对于对周围环境和建筑物震动敏感的区域,建筑管理工程师应考虑采用结构减振和隔振措施。
建筑结构振动控制与减震技术

建筑结构振动控制与减震技术建筑结构振动是指建筑物在受到外力作用或自身受到激励时产生的动态响应。
振动会带来很多问题,比如噪音、不稳定性和疲劳等。
为了保证建筑物的安全性和舒适性,振动控制和减震技术成为了十分重要的领域。
本文将介绍建筑结构振动控制与减震技术的原理与应用。
1. 介绍建筑结构振动的原因和影响建筑结构振动的主要原因包括地震、风载、人员活动以及机械设备等因素。
振动会导致建筑物的不稳定性,并对建筑内部设备和居住者产生不良影响,如噪音、疲劳等。
因此,对建筑结构振动进行控制和减震十分重要。
2. 振动控制的方法振动控制可以通过几种方法来实现,包括被动控制、主动控制和半主动控制。
被动控制利用刚性连接件、阻尼器等 passibe 部件来吸收和分散振动能量。
主动控制则通过传感器和激励器对振动进行主动干预和抑制。
半主动控制则结合了主动控制和被动控制的优点。
3. 减震技术的原理与应用减震技术通过在建筑物底部安装减震装置,将地震或其他外力引起的振动吸收并分散,从而减小建筑内部的振动幅度。
常见的减震装置包括摆锤、液体阻尼器和弹簧等。
这些装置可以减轻振动对建筑物的影响,提高建筑的抗震能力。
4. 案例分析以某高层建筑为例,介绍减震技术在实际工程中的应用。
该高层建筑采用液体阻尼器作为减震装置,通过改变液体的流动来吸收和消散振动能量。
该减震系统有效地提高了建筑物的稳定性和舒适性,并在地震发生时发挥了重要作用。
5. 进一步展望建筑结构振动控制与减震技术是一个不断发展和改进的领域,目前已经取得了很多成果。
未来的研究可以集中在材料和设计方面,开发更高效和经济的减震装置,提高建筑物的抗震和抗振能力。
总结:建筑结构振动对建筑物的安全性和舒适性产生重要影响。
振动控制和减震技术通过各种方法和装置来减小建筑物的振动幅度,提高其抗震能力。
这些技术在实际工程中已经取得了一些成功,并且仍在不断发展和改进。
未来的研究应该致力于提高减震装置的效率和经济性,进一步提升建筑物的抗振性能。
建筑结构抗震设计振动控制

通过合理的布置方式,使隔震支座充分发挥作用,提高整个结构的抗震性能。
04 消能减震设计策略及实施方法
金属阻尼器消能减震原理
塑性变形耗能
金属阻尼器利用金属材料的塑性变形能力,在地震作用下发生塑性变形,吸收并耗散地震能量,从而减小结构的 地震响应。
滞回耗能
金属阻尼器通过合理设计,使阻尼器在地震作用下产生滞回变形,滞回变形过程中吸收地震能量,并通过阻尼器 的热耗散将能量释放,降低结构的地震反应。
建筑结构抗震设计振 动控制
汇报人:戴老师 2023-12-02
目录
• 抗震设计基本原则 • 振动控制技术与方法 • 建筑结构隔震设计策略 • 消能减震设计策略及实施方法
目录
• 结构振动台试验与数值模拟分析 • 工程案例分析与经验总结
01 抗震设计基本原则
地震力与作用
地震力
地震时地面运动对建筑物产生的 惯性力,其大小与建筑物的质量 、地震加速度及建筑物与地面的 连接方式有关。
利用智能材料(如压电材料、磁 流变材料等)实现结构振动的主 动与被动控制。
03
优化设计与控制策 略
通过优化设计和控制策略,实现 混合控制系统在宽频带范围内的 有效减震。
03 建筑结构隔震设计策略
基础隔震系统原理及应用
原理
通过在建筑物基础与上部结构之间设置隔震层,使上部结构 与基础隔离,从而减少地震能量向上部结构的传递,达到减 震的目的。
上部结构的传递。
消能减震技术
02 在结构中设置阻尼器、耗能支撑等消能构件,吸收和
耗散地震能量。
被动调谐质量阻尼器(TMD)
03
利用附加质量与结构振动的相对运动,产生阻尼力减
小结构振动。
建筑结构振动分析与控制研究

建筑结构振动分析与控制研究1. 引言建筑结构的振动是指结构在受到外界力的作用下发生的运动。
振动问题一直以来都是建筑工程中的一个重要课题,对于保证建筑结构的安全性、舒适性和耐久性至关重要。
本文将探讨建筑结构振动的分析和控制方法,以及相关研究进展。
2. 建筑结构振动分析2.1 建筑结构振动的分类建筑结构的振动可分为自由振动和强迫振动。
自由振动是指建筑结构在没有外界力作用下的自身振动,如地震、风荷载等;而强迫振动是指建筑结构受到外界力作用的振动,如机械设备运转等。
2.2 振动模态分析振动模态分析是一种常用的建筑结构振动分析方法。
它通过求解结构的固有振动频率和模态形状,得到结构的振动特性。
通常采用有限元法作为振动模态分析的数值计算方法,这种方法具有计算精度高、适用范围广等优点。
3. 建筑结构振动控制3.1 主动控制方法主动控制方法是指通过引入外界控制力来改变建筑结构的振动特性。
常见的主动控制方法包括质量和刚度变化法、控制杆法以及智能材料控制等。
这些方法能够实时调节建筑结构的振动特性,从而减小结构的振动响应。
3.2 被动控制方法被动控制方法是指通过在结构上添加附加物用以吸收或耗散振动能量,从而减小结构的振动响应。
常见的被动控制方法包括隔震、摆锤、液体阻尼器等。
这些方法通过改变结构的动力特性,降低结构与外界激励的耦合效应,从而减小结构的振动响应。
4. 建筑结构振动控制研究进展4.1 结构振动控制理论研究近年来,随着计算机技术和控制理论的不断发展,建筑结构振动控制研究取得了重要进展。
研究人员通过建立结构动力模型和振动控制模型,提出了一系列高效的振动控制算法和方法。
4.2 智能材料在振动控制中的应用智能材料在振动控制中具有重要的应用潜力。
形状记忆合金和压电材料等智能材料可以根据外界激励的变化自动调节其力学性能,从而减小建筑结构的振动响应。
研究人员通过开展智能材料在建筑结构振动控制中的应用研究,为解决建筑结构振动问题提供了新的思路和方法。
土建结构工程中的振动与噪声控制规范要求

土建结构工程中的振动与噪声控制规范要求振动与噪声是土建结构工程中常见的问题之一,对于建筑物的稳定性和使用功能都有着重要影响。
为了确保建筑物在使用过程中的舒适性和安全性,国家对土建结构工程中的振动与噪声控制提出了一系列的规范要求。
本文将对这些规范要求进行探讨,希望能为相关项目的设计和施工提供参考。
1. 振动控制规范要求1.1 振动限值要求根据国家标准,土建结构工程中的振动限值主要包括以下几个方面:(1)建筑物内振动限值:针对建筑物内的振动,标准要求要控制在一定的范围内,以保证建筑物内部的舒适性和使用功能不受振动影响。
(2)周围环境振动限值:针对附近环境可能产生的振动,标准要求要保证周围环境的稳定性和安全性,以免对周围建筑物和设备造成不必要的影响。
1.2 振动源控制要求除了振动限值的要求,国家标准还对振动源的控制提出了一系列的要求:(1)振动源选型:在土建结构工程设计和施工过程中,应优先选择符合振动限值要求的振动源,减少不必要的振动产生,避免对建筑物和周围环境的不良影响。
(2)振动源隔离:采取隔离措施,如减振器、弹性支撑等,来减少振动源传递给建筑结构和周围环境的振动能量,达到控制振动的目的。
2. 噪声控制规范要求噪声是土建结构工程中另一个重要的问题,它会直接影响建筑物内部的舒适性和使用功能,给居民和工作人员带来不便。
为了控制噪声对人体健康的影响,国家对土建结构工程中的噪声控制也作出了相关的规范要求。
2.1 噪声限值要求国家标准中对土建结构工程中的噪声限值提出了一系列要求,主要包括以下几个方面:(1)建筑物内噪声限值:标准要求建筑物内的噪声要控制在一定的范围内,以保证房屋内的舒适性和居住质量。
(2)周围环境噪声限值:标准要求在建筑物周围环境中的噪声要控制在一定的范围内,以保证周围环境的安静和稳定性。
2.2 噪声源控制要求除了噪声限值的要求,国家标准还对噪声源的控制提出了一系列的要求:(1)噪声源选择:在土建结构工程设计和施工过程中,应优先选择符合噪声限值要求的设备和工艺,减少噪声的产生。
建筑结构的隔震、减振和振动控制

建筑结构的隔震、减振和振动控制一、本文概述随着社会的快速发展和科技的进步,建筑结构的隔震、减振和振动控制成为了土木工程领域的重要研究方向。
地震、风振、机械振动等外部因素都可能对建筑结构产生破坏,严重时甚至威胁到人们的生命安全。
因此,如何有效地隔绝、减少和控制这些振动带来的影响,成为了建筑设计和施工中不可忽视的问题。
本文旨在全面介绍建筑结构的隔震、减振和振动控制的基本原理、技术方法和实际应用。
我们将首先概述隔震、减振和振动控制的基本概念和重要性,然后详细分析各类振动控制技术的原理、特点和应用范围。
在此基础上,我们将深入探讨建筑结构隔震、减振和振动控制的设计方法、施工技术和评价标准。
通过具体案例分析,展示这些技术在实际工程中的应用效果和经济效益。
通过阅读本文,读者可以深入了解建筑结构隔震、减振和振动控制的基本理论和实践方法,为未来的建筑设计和施工提供有益的参考和借鉴。
我们也期望通过本文的探讨,能够推动建筑结构振动控制技术的进一步发展,为社会的繁荣和进步贡献力量。
二、隔震技术建筑物与基础之间设置隔震层,以隔离地震波对建筑物的直接作用,从而减小建筑物的地震响应。
隔震技术的基本原理是利用隔震层的柔性和阻尼特性,延长建筑物的自振周期,避开地震能量集中的频段,同时消耗地震能量,达到减小地震对建筑物破坏的目的。
隔震层通常由橡胶隔震支座、阻尼器、滑移隔震支座等构成。
其中,橡胶隔震支座以其良好的弹性和耐久性,在隔震技术中得到了广泛应用。
阻尼器则通过吸收和消耗地震能量,进一步减小建筑物的振动幅度。
滑移隔震支座则利用滑移面的摩擦力来消耗地震能量,实现建筑物的隔震。
隔震技术的应用范围广泛,包括住宅、学校、医院等各类建筑。
在实际工程中,需要根据建筑的结构特点、地震烈度、场地条件等因素,选择合适的隔震技术和隔震层设计方案。
同时,隔震技术的实施需要严格遵守相关规范和标准,确保隔震层的质量和性能。
隔震技术的优点在于其能够有效地减小建筑物的地震响应,保护建筑物免受地震破坏。
工程结构振动控制与减振设计

工程结构振动控制与减振设计摘要:在工程实践中,结构振动是一个很重要的问题。
结构振动可能会导致许多不利影响,如降低结构的工作效率、损坏结构件、影响人员的安全等。
因此,减振设计是非常重要的。
本文将介绍工程结构振动控制与减振设计的基本原理和方法,并讨论几种常见的减振设计方法。
关键词:结构振动、减振设计、振动控制、阻尼、质量1.引言结构振动是指结构体在受到外力作用或自身因素导致的扰动下发生的运动。
结构振动的产生不仅会影响结构的正常工作,还可能导致结构的破坏和人员的伤害。
因此,减振设计是非常重要的。
2.结构振动的原因结构振动的原因可以分为内源性和外源性两种。
内源性振动是由结构本身的特性引起的振动。
常见的内源性振动包括结构的固有频率振动和共振振动。
固有频率振动是指结构在受到外力作用时,具有特定的固有频率进行振动。
共振振动是指结构在受到外力作用时,与外力频率相同或接近,导致振动幅值增大的现象。
外源性振动是由外部因素引起的振动,如地震、风力、机械震动等。
外源性振动通过结构的共振和传递导致结构振动。
3.结构振动的影响结构振动的影响很广泛,包括结构的疲劳破坏、工作效率下降、降低结构的稳定性、影响人员的安全等。
例如,飞机的振动会影响乘客的乘坐舒适度和安全性;建筑物的振动会影响房间内的人员的舒适度和设备的正常工作。
4.减振设计的基本原理和方法减振设计的基本原理是通过改变结构的固有特性,使其与外界激励源不同步,从而降低结构的振动响应。
常见的减振设计方法包括:(1)增加结构的阻尼:阻尼能够吸收结构振动的能量,减少振动响应。
常见的阻尼方式包括材料阻尼、液体阻尼和摩擦阻尼等。
(2)改变结构的质量分布:通过改变结构的质量分布,可以调整结构的固有频率,从而降低共振现象的发生。
常见的方法包括增加质量或减小质量。
(3)安装振动吸收器:振动吸收器是一种能够吸收结构振动能量的装置,可以有效地降低结构的振动响应。
常见的振动吸收器包括质量阻尼器、液体阻尼器和摩擦阻尼器等。
建设工程中的建筑振动控制

建设工程中的建筑振动控制随着建筑工程的不断发展,建筑振动控制成为了一个备受关注的问题。
建筑振动是指建筑物在受到外界力的作用下,产生的结构振动现象。
这样的振动不仅会给建筑本身带来潜在的安全隐患,还会对周围环境和人们的生活造成负面影响。
因此,建筑振动控制成为了建设工程中一项重要的任务。
为了有效控制建筑振动,工程师们采取了多种方法和措施。
首先,建筑结构设计时需要充分考虑振动控制的问题。
在结构设计中,可以通过选择合适的材料、合理的结构形式和适当的布局方式来降低结构的振动频率和振幅。
此外,还可以采用柔性结构和减震系统等先进技术,将振动吸收和减小到最低程度。
其次,振动控制还可通过施工过程中的合理措施来实现。
在建筑施工过程中,机械设备的使用是不可避免的,然而机械设备的震动往往会对建筑物产生不利影响。
为了减小振动的传递,工程师们通常会选择低振动设备,合理安排设备的摆放位置,并采取隔振措施来降低振动传递的程度。
另外,地下挖掘和地铁施工等特殊建筑工程往往会引发较为严重的振动问题。
为了控制振动的影响范围,在这些工程中,工程师通常会采取隔离带的措施。
隔离带可以通过在振动源周围设置特殊结构来减小振动波的传递,以实现振动的有效控制。
此外,人们的日常生活也会受到建筑振动的影响。
例如,住宅区邻近正在施工的高楼大厦,施工所产生的振动会影响到周围居民的正常生活。
为了保护居民的权益和提高居民的生活质量,建筑振动控制成为社会关注的焦点。
在这方面,政府和相关部门可以通过制定施工管理规范,明确振动限值和控制要求,并加强对施工过程的监督,以确保建筑振动控制的有效实施。
综上所述,建设工程中的建筑振动控制是一个重要课题。
通过结构设计、施工措施、振动隔离和相关政策法规的制定,可以有效控制建筑振动对建筑物结构和周围环境的影响。
这不仅有助于提高建筑物的安全性和稳定性,也能提升人们生活的舒适度和质量。
因此,在建设工程中,建筑振动控制应被充分考虑和重视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地震的破坏作用
震源
产 生
地震波
传 递
建筑物所在场地
引 起
结构的地震反应
地震的破坏作用
钢结构 (扭转) Torsion by eccentric stiffness in plan
地震的破坏作用
多高层钢筋混凝土结构 Taiwan Earthquake 1999.9.21 1:47 2,300
底层大空间 Lessons from Earthquakes:
地震中破坏的桥梁
风的作用
风作用下结构可能发生颤振、驰振、涡振以及静风失稳
1897年 英 国 泰 湾 桥 风 毁
风灾破坏事例
1948年美国塔可玛桥(Tacoma Narrow)风毁
风的破坏作用
Tacoma桥风毁视频
风的破坏作用
从 1918年起 ,至少有11座桥梁毁于强风
风灾破坏事例-静风失稳
结构振动控制技术
第一章 绪论
结构的动力反应
结构在动荷载作用下引起的响应
A xst
1
1 2 2 2 2
常
地震
见
风
激
车辆
励
...
地震作用(中国发生的14次地震)
1556年中国陕西华县8级地震,死亡人数高达83万人。 1668年山东郯(tan)城8.5级,波及8省161县,史称“旷古奇灾” 。 1920年宁夏海原县8.5级,死亡24万人。 1927年甘肃古浪8级地震,死亡4万余人。 1932年甘肃昌马堡7.6级地震,死亡7万人。 1933年四川茂县7.5级地震。 1950年西藏察隅县8.6级地震。 1966年邢台6.8级、7.2级地震,共死亡8064人。 1970年云南省通海县7.7级地震。死亡15621人。 1975年辽宁省海城县7.3级地震。地震被成功预测预报预防。 1976年唐山7.8级地震,死亡24.2万人。 1988年云南省澜沧7.6级(澜沧)、7.2级(耿马)的两次大地震。 2008年汶川8.0级地震,6.9万人遇难。 2010年青海省玉树7.1级地震
屈 阻性液质液
服 尼阻体量体
阻 器尼阻阻阻
尼
器尼尼尼
器
器器器
质量阻尼器
主
主
混
动
动
合
斜
质
质
撑
量
量
和
阻
阻
锚
尼
尼
索
器
器
半主动控制 可控流体 磁电主 主 流流动 动 变变变 变 阻阻阻 刚 尼尼尼 度 器器控 控
制制被动控制形式Passi源自e Control Systems
Excitation
PED Structure
地震的破坏作用
平面不规则 单层Lessons from Earthquakes: Low rise buildings also are were severely damaged
地震的破坏作用
房屋内部设备仪器倒塌破坏Lessons from Earthquakes:
Facilities inside the buildings were severely damaged
地震作用(国外发生的16次地震)
2003年12月 伊朗6.6级强震,5万人死亡。 2004年2月 摩洛哥6.5级地震, 564人死亡。 2005年3月 苏门答腊8.7级地震, 1300人死亡。 2005年3月 日本南部7级地震, 1人死亡,672人受伤。 2005年2月 伊朗南部6.4级地震, 602人死亡。 2006年5月 印尼爪哇6.2级地震, 5782人死亡。 2007年7月 日本新潟6.8级地震,地震造成11人死亡。 2006年7月 印尼7.7级强震, 668人死亡。 2007年9月 印尼7.9级海底地震,10人死亡数百人受伤。 2007年8月 秘鲁8级强震, 510人死亡。 2009年9月 印尼7.9级地震, 5000人死亡。 2010年1月 海地7.3级地震,十余万人死亡。 2010年2月 智利8.8级地震, 799人死亡。 2011年2月 新西兰6.3级地震,200人遇难。 2011年3月 日本9.0级强震 2011年3月日本东北部海岸发生9.0级地震。 2011年3月缅甸7.2级地震。
绪论
(3)结构半主动控制 近几十年来,半主动控制发展迅速。半主动变刚度
,半主动变阻尼:电流变、磁流变。 半主动控制特点:输入能量很小,控制效果接近主
动控制。
3、讲授内容 隔震、TMD控制原理、TLD/TLCD减振、阻尼器减振,
damage by weak first story (only columns)
地震的破坏作用
低层剪断滑移 Lessons from Earthquakes: damage by weak first story (only columns)
地震的破坏作用
中间层刚度突变,剪断 Lessons from Earthquakes: damage by weak story in middle height
冷却塔风毁
输电塔风毁
台风毁坏的房屋和桥梁
风的作用
风 灾 使 广 告 牌 毁 坏
风的作用 斜拉桥拉索风雨振(日本)
风的作用 斜拉桥拉索风雨振(洞庭湖大桥)
风的作用 Tokyo bay Bridge
振动控制技术的发展现状
结构振动控制
被动控制
主动控制
混合控制
基础 隔震
耗能减震
金 摩粘粘调调
属 擦弹性谐谐
绪论
b、耗能减振 1970年开始,Kelly提出在结构中设置非结构构件的耗能
元件—金属软钢屈服耗能器,包括:扭转梁,弯曲梁、U型 钢器件等,这一思想是对结构抗震延性设计的一个重要发展 。阻尼器被动减振应用。80年代开始TMD,TLD,TLCD的应用。 (2)主动控制
20世纪50年代,日本Kobori提出结构变刚度减震概念。 1972年,Yao应用现代控制理论,提出了土木工程结构振 动控制的概念,开创了结构主动控制的新里程。 结构主动控制特点:能取得很好的效果,需要很大外部 能量的输入。
Response
M
M
M
m
M
Passive Damper
Base Isolation
Tuned Mass Damper
绪论
研究结构振动控制技术目的 控制结构的振动响应 保证结构安全; 提高结构的舒适性 ; 避免因结构振动引起的公众恐慌。
振动控制技术简介及发展历史 (1)被动控制 a、隔震 1881年,日本河合浩藏提出了结构基础隔震的概念。 1924年,日本鬼头健三郎,提出了基础轴承隔震方案。 1978年,美国Kelly等,提出叠层橡胶支座隔震方案及 技术。