解析几何大题部分-高考数学解题方法归纳总结专题训练
高考数学:解析几何常考题型及解题方法汇总(含详解),

相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。
在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。
但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。
今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。
高三数学总复习专题10 解析几何(答案及解析)

高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)

解法二:(1)依题意,A(-2,0),B(2,0).(1 分) 设 C(x1,y1),则x421+y321=1, 所以 kAC·kBC=x1y+1 2·x1y-1 2(2 分)
=x21y-21 4=3x121--x4421(3 分) =-34.(4 分) 即-34=kAP·kBQ=4+yP2·4-yQ2.故 yPyQ 的值为-9.(5 分)
y=kx+m, 方程(1+2k2)x2+4kmx+2m2-4=0 的判别式 Δ=32k2+16-8m2>0,
x1+x2=-1+4k2mk2, 则x1x2=21m+2-2k42 .
(7 分)
因为 kMA·kMB=1,所以x1y-1 2·x2y-2 2=1, 所以(k2-1)x1x2+(km+2)(x1+x2)+m2-4=0, 整理得(m+2k)(m+6k)=0.(9 分)
[解析] (1)由双曲线定义可知||MF1|-|MF2||=2a=2, ∴a=1,(1 分) 又由|F1F2|=4,∴c=2,(2 分) ∵a2+b2=c2,∴b= 3,(3 分) ∴双曲线 C 的方程为 x2-y32=1.(4 分)
(2)①证明:设 M(x0,y0),P(x1,y1),Q(x2,y2), 则 y1= 3x1①,y2=- 3x2②, 将①+②可得 y1+y2= 3(x1-x2), 将①-②可得 y1-y2= 3(x1+x2),(5 分) ∴ 3y1x+1+y2x2= 3y1x-1-y2x2, 即xy11++yx22=3yx11--yx22,(6 分)
由题可知|MP|=|MQ|, ∴x1+x2=2x0, y1+y2=2y0, ∴xy00=3yx11--yx22,即 kPQ=3yx00,(7 分) ∴直线 PQ 的方程为 y-y0=3yx00(x-x0), 即 3x0x-y0y=3x20-y20,
高考数学解析几何专题练习与答案解析版

高考数学解析几何专题练习解析版82页1.一个顶点的坐标2,0,焦距的一半为3的椭圆的标准方程是()A.19422yxB.14922yxC.113422yxD.141322yx2.已知双曲线的方程为22221(0,0)x y a b ab,过左焦点F 1作斜率为3的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( )A .3B .32C .31D .323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+ m 4的值为()A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为A .30oB.45oC.60oD.120o5.已知曲线C 的极坐标方程ρ=22cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上(B)P 、Q 都不在曲线C 上(C)P 不在曲线C 上,Q 在曲线C 上(D)P 、Q 都在曲线C 上6.点M 的直角坐标为)1,3(化为极坐标为()A .)65,2( B.)6,2( C .)611,2( D.)67,2(7.曲线的参数方程为12322tyt x (t 是参数),则曲线是()A 、线段B 、直线C 、圆D 、射线8.点(2,1)到直线3x-4y+2=0的距离是()A .54B .45C .254D .4259.圆06422y x yx的圆心坐标和半径分别为()A.)3,2(、13B.)3,2(、13 C.)3,2(、13 D.)3,2(、1310.椭圆12222by x的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN,则该椭圆离心率取得最小值时的椭圆方程为( )A.1222yxB.13222yxC.12222yxD.13222yx11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB 是直角三角形,则此双曲线的离心率e 的值为()A .32B .2C .2D .312.已知)0(12222baby ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021k k ,则21k k 的最小值为1,则椭圆的离心率为( ).(A)22 (B) 42 (C)23 (D)4313.设P 为双曲线11222yx上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21PF PF ,则△PF 1F 2的面积为()A .36B .12C .123D .2414.如果过点m P,2和4,m Q 的直线的斜率等于1,那么m 的值为( )A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516xy 上,若A 点坐标为(3,0),||1AM ,且0PM AM 则||PM 的最小值是()A .2 B.3 C.2 D.316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D、17.已知椭圆2222:1(0)x y C a b ab>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AFFB ,则k()(A )1(B )2(C )3(D )218.圆22(2)4x y与圆22(2)(1)9x y 的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是()(A)圆或椭圆或双曲线(B)两条射线或圆或抛物线(C)两条射线或圆或椭圆(D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是()A .[6,3) B.(6,2) C.(3,2) D.[6,2]21.直线l 与两直线1y 和70x y 分别交于,A B 两点,若线段AB 的中点为(1,1)M ,则直线l 的斜率为()A .23B .32 C .32D .2322.已知点0,0,1,1O A,若F 为双曲线221xy的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r的取值范围为()A .21,1 B.21,2 C.1,2 D .2,23.若b a,满足12b a ,则直线03b yax过定点().A 21,61B .61,21C .61,21.D 21,6124.双曲线1922yx 的实轴长为 ( )A.4 B. 3 C. 2 D. 125.已知F 1、F 2分别是双曲线1by ax 2222(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若9021PF F ,且21PF F 的三边长成等差数列,则双曲线的离心率是()A .2B.3C. 4D. 526.过A(1,1)、B(0,-1)两点的直线方程是()A.B.C. D.y=x 27.抛物线x y 122上与焦点的距离等于6的点横坐标是()A .1B.2C.3D.428.已知圆22:260C xyx y,则圆心P 及半径r 分别为()A 、圆心1,3P ,半径10r ;B 、圆心1,3P ,半径10r ;C 、圆心1,3P ,半径10r;D 、圆心1,3P ,半径10r。
高考解析几何题型归纳总结

高考解析几何题型归纳总结随着高考的逼近,几何题成为了考生备考中不可忽视的一部分。
几何题在高考中占据了相当大的比重,解析几何题更是考生普遍认为难度较高的题型之一。
为了帮助考生更好地备考解析几何题,本文将对高考解析几何题型进行归纳总结,从而帮助考生更好地应对高考几何题。
1. 二维几何题目二维几何题目主要涉及平面图形的性质、面积、周长以及平行线、垂直线的性质等。
在解答二维几何题目时,考生应注意以下几个方面:(1) 论证步骤的完整性:解答二维几何题目时,应充分体现论证的完整性,即从已知条件出发,一步一步进行推导,最终得出结论。
(2) 图形的准确画法:在画图时应确保图形的准确性,边长、角度等应与给定条件一致,以避免答案误差。
(3) 重点关注特殊性质:几何题中常涉及到平行线、垂直线以及等边等特殊性质,考生应注意识别和运用这些特殊性质来解答题目。
2. 三角形相关题目三角形相关的题目主要涉及三角形的面积、周长、角度等性质。
在解答三角形题目时,考生应注意以下几个方面:(1) 利用相似三角形性质:在解答三角形的题目时,经常会用到相似三角形的性质。
考生应注意观察题目中是否存在相似三角形,以便能够灵活地运用相似三角形性质来解题。
(2) 角度关系的应用:三角形中的角度关系常常是解题的关键,考生应深入理解角的概念,并能够巧妙利用角度关系解答题目。
(3) 三角形的分类:根据不同的三角形分类,可以利用其特定性质解答题目。
例如,等边三角形具有所有边相等的性质,而等腰三角形具有两边相等的性质。
考生应注意灵活运用不同种类三角形的性质。
3. 圆相关题目圆相关的题目主要涉及圆的性质、弧长、面积等。
在解答圆相关题目时,考生应注意以下几个方面:(1) 圆的性质的应用:圆的性质是解答圆相关题目的基础,考生应深刻理解圆的定义、圆心角、弧长等基本概念,并能够合理运用这些性质。
(2) 弧长和扇形面积的计算:在解答涉及弧长和扇形面积的题目时,考生应熟记相应的计算公式,并注意计算过程中的单位换算。
解析几何 高考数学大题热点50题训练学生版

2023 解几大题热点50 题训练一.解答题(共50 小题)1.(2023•五华区校级模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为F ,C 的两条渐近线分别与直线2a x c=交于A ,B 两点,且AB 的长度恰好等于点F (1)求双曲线的离心率;(2)已知过点F 且斜率为1的直线l 与双曲线交于M ,N 两点,O 为坐标原点,若对于双曲线上任意一点P ,均存在实数λ,μ,使得OP OM ON λμ=+,试确定λ,μ的等量关系式.2.(2023•江西模拟)已知点F 为抛物线2:2(0)C y px p =>的焦点,点(4,)M a 在抛物线上,且||6FM =.(1)求抛物线C 的方程;(2)过点F 分别作两条互相垂直的直线与抛物线C 分别交于A ,B 与P ,Q ,记AFP ∆,BFQ ∆的面积分别为1S ,2S ,求12S S +的最小值.3.(2023•潍坊模拟)已知动点P 与两定点1(2,0)A -,2(2,0)A ,直线1PA 与2PA 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(D a ,0)(12)a <<,E 为直线2x a =上一动点,直线DE 交曲线C 于G ,H 两点,若||GD 、||HE 、||GE 、||HD 依次为等比数列{}n b 的第m 、n 、p 、q 项,且m n p q +=+,求实数a 的值.4.(2023•西安模拟)已知椭圆2222:1(0)x y C a b a b +=>>的焦点为1F 、2F ,离心率为22,直线:0l x y m ++=,1F 、2F 在直线l 上的射影分别为M 、N ,且||MN =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,(2,0)P -.求ABP ∆的面积的最大值.5.(2023•聊城一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,一条渐近线的倾斜角为60︒,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点(0,0)O ,(0,2)M ,动直线:l y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.6.(2023•周至县二模)如图,已知椭圆2222:1(0)y x E a b a b +=>>的一个焦点为1(0,1)F ,离心率为22.(1)求椭圆E 的方程;(2)过点I F 作斜率为k 的直线交椭圆E 于A ,B 两点,AB 的中点为M .设O 为原点,射线OM 交椭圆E 于点C .当四边形OACB 为平行四边形时,求k的值.7.(2023•太原模拟)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点为A ,上顶点为B ,其离心率12e =,直线AB 与圆22127x y +=相切.(1)求椭圆C 的方程;(2)过点M 的直线与椭圆C 相交于P ,Q 两个不同点,过点P 作x 轴的垂线分别与AB ,AQ 相交于点D 和N ,证明:D 是PN 中点.8.(2023•江苏模拟)已知直线l 与抛物线21:2C y x =交于两点1(A x ,1)y ,2(B x ,2)y ,与抛物线22:4C y x =交于两点3(C x ,3)y ,4(D x ,4)y ,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点(1,0)M,且11||||BM AM -=l 的方程;(2)①证明:12341111y y y y +=+;②设AOB ∆,COD ∆的面积分别为1S ,2(S O 为坐标原点),若||2||AC BD =,求12S S .9.(2022秋•滨江区校级期末)已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点.点M 为椭圆上一点,当12F MF ∠取最大值3π时,121()6MF MF MF +⋅= .(1)求椭圆C 的方程;(2)点P 为直线4x =上一点(且P 不在x 轴上),过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,点B 关于x 轴的对称点为B ',连接AB '交x 轴于点G .设△2AF G ,△2BF G 的面积分别为1S ,2S ,求12||S S -的最大值.10.(2023春•广东月考)已知点(1,0)F ,点P 为平面上的动点,过点P 作直线:1l x =-的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅ .(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设点P 的轨迹C 与x 轴交于点M ,点A ,B 是轨迹C 上异于点M 的不同的两点,且满足0MA AB ⋅=,求||MB的最小值.11.(2023春•商丘月考)已知动点P 到直线8y =-的距离比到点(0,1)的距离大7.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)记动点P 的轨迹为曲线C ,点M 在直线1:1l y =-上运动,过点M 作曲线C 的两条切线,切点分别为A ,B ,点N 是平面内一定点,线段MA ,NA ,NB ,MB 的中点依次为E ,F ,G ,H ,若当M 点运动时,四边形EFGH 总为矩形,求定点N 的坐标.12.(2023•铜仁市模拟)已知双曲线2222:13x y C a a -=-的一条渐近线方程为20x y -=,若过点(0,3)E -的直线l 交C 于A ,B 两点.(1)求直线l 的斜率范围;(2)若l 交C 的两条渐近线于C ,D 两点且满足CA AB BD ==,求直线l 的斜率的大小.13.(2023•抚顺模拟)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点坐标为(1,0)-,A ,B 分别是椭圆的左、右顶点,点(,)D x y 在椭圆C 上,且直线AD 与BD 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)设直线230x ty +-=与椭圆分别相交于M ,N 两点,直线(MO O 为坐标原点)与椭圆的另一个交点为E ,求MNE ∆的面积S 的最大值.14.(2023•湛江一模)已知1F ,2F 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,△1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.15.(2023•辽宁一模)如图,A ,B ,C ,D 是抛物线2:4E y x =上的四个点(A ,B 在x 轴上方,C ,D 在x 轴下方),已知直线AC 与BD 的斜率分别为63-和2,且直线AC 与BD 相交于点P .(1)若点A 的横坐标为6,则当ADC ∆的面积取得最大值时,求点D 的坐标.(2)试问||||||||PA PC PB PD ⋅⋅是否为定值?若是,求出该定值;若不是,请说明理由.16.(2023•咸阳二模)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,且椭圆C 过点(2,0)-,离心率为12.(1)求椭圆C 的方程;(2)若点1(M x ,1)y 是椭圆22221(0)x y m n m n+=>>上任一点,那么椭圆在点M 处的切线方程为11221x x y y m n +=.已知0(N x ,0)y 是(1)中椭圆C 上除顶点之外的任一点,椭圆C 在N 点处的切线和过N 点垂直于切线的直线分别与y 轴交于点P 、Q .求证:点P 、N 、Q 、1F 、2F 在同一圆上.17.(2023•赤峰三模)法国数学家加斯帕尔⋅蒙日是19世纪著名的几何学家,他创立了画法几何学,推动了空间解析几何学的独立发展,奠定了空间微分几何学的宽厚基础,根据他的研究成果,我们定义:给定椭圆2222:1(0)x y C a b a b +=>>,则称圆心在原点O 的圆为“椭圆C 的伴随圆”,已知椭圆22221(0)x y a b a b +=>>的一个焦点为F ,其短轴的一个端点到焦点F (1)若点A 为椭圆C 的“伴随圆”与x 轴正半轴的交点,B ,D 是椭圆C 的两相异点,且BD x ⊥轴,求AB AD ⋅的取值范围.(2)在椭圆C 的“伴随圆”上任取一点P ,过点P 作直线1l ,2l ,使得1l ,2l 与椭圆C 都只有一个交点,试判断1l ,2l 是否垂直?并说明理由.18.(2023•开封二模)如图,过抛物线2:2(0)E x py p =>的焦点F 作直线l 交E 于A ,B 两点,点A ,B 在x 轴上的射影分别为D ,C .当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率为12时直线l 的斜率.19.(2023•吉州区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点3(1,2A ,且12|||4AF AF +=.(1)求C 的方程;(2)过点2F 且斜率为l 的直线与C 交于点M 、N ,求OMN ∆的面积.20.(2023•毕节市模拟)在圆22:1O x y +=上任取一点P ,过点P 作y 轴的垂线,垂足为D ,点Q 满足2DQ PQ =.当点P 在圆O 上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与y 轴正半轴交点为A ,不过点A 的直线l 与曲线C 交于M ,N 两点,若0AM AN ⋅=,试探究直线l 是否过定点.若过定点,求出该点的坐标;若不过定点,请说明理由.21.(2023•大庆模拟)已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,短轴长为.(1)求椭圆C 的方程;(2)已知经过定点(1,1)P 的直线l 与椭圆相交于A ,B 两点,且与直线34y x =-相交于点Q ,如果AQ AP λ= ,QB PB μ=,那么λμ+是否为定值?若是,请求出具体数值;若不是,请说明理由.22.(2023•成都模拟)已知中心为坐标原点O ,对称轴为坐标轴的椭圆C 经过P ,3,Q ,3两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(0,1)的直线l 与椭圆C 相交于A ,B 两点,23OD OB = ,OE OD OA =+,且点E 在椭圆C 上,求直线l 的方程.23.(2023•湖南模拟)在平面直角坐标系xOy 中,双曲线2222:1(0,0)y x C a b a b-=>>的焦点到渐近线的距离(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,点P 在y 轴上(位于原点与上顶点之间),过P 作x 轴的平行线l ,过P 的另一条直线交双曲线于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若ANM AOM π∠+∠=,求点P 的坐标.24.(2023•贵州模拟)已知抛物线2:2(0)C x py p =>上的点0(2,)y 到其焦点F 的距离为2.(1)求抛物线C 的方程;(2)已知点D 在直线:3l y =-上,过点D 作抛物线C 的两条切线,切点分别为A ,B ,直线AB 与直线l 交于点M ,过抛物线C 的焦点F 作直线AB 的垂线交直线l 于点N ,当||MN 最小时,求||||AB MN 的值.25.(2023•广西模拟)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)若P 为直线:2l x =-上的一动点,过P 作抛物线C 的切线PA ,PB ,A ,B 为切点,直线AB 与l 交于点M ,过F 作AB 的垂线交l 于点N ,当||MN 最小时.求||AB .26.(2023•昆明一模)已知过点(1,)e 的椭圆2222:1(0)x y E a b a b+=>>的焦距为2,其中e 为椭圆E 的离心率.(1)求E 的标准方程;(2)设O 为坐标原点,直线l 与E 交于A ,C 两点,以OA ,OC 为邻边作平行四边形OABC ,且点B 恰好在E 上,试问:平行四边形OABC 的面积是否为定值?若是定值,求出此定值;若不是,说明理由.27.(2023•全国一模)已知双曲线2222:1(0,0)x y C a b a b-=>>过点(3,A ,且渐近线方程为0x ±=.(1)求双曲线C 的方程;(2)如图,过点(1,0)B 的直线l 交双曲线C 于点M 、N .直线MA 、NA 分别交直线1x =于点P 、Q ,求||||PB BQ 的值.28.(2023•邯郸一模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率与双曲线221x y -=的离心率互为倒数,点(2,2)A 在椭圆C 上,不过点A 的直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆C 的标准方程;(2)若直线AP ,AQ 的斜率之和为1,试问直线l 是否过定点?若过定点,求出此定点;若不过定点,请说明理由.29.(2023•成都模拟)已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,与椭圆C 有相同焦点的双曲线2214x y -=在第一象限与椭圆C 相交于点P ,且2||1PF =.(1)求椭圆C 的方程;(2)设直线1y kx =+与椭圆C 相交于A ,B 两点,O 为坐标原点,且(0)OD mOB m =>.若椭圆C 上存在点E ,使得四边形OAED 为平行四边形,求m 的取值范围.30.(2023•商洛一模)已知1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,Q 是椭圆E 的右顶点,2||1F Q =,且椭圆E 的离心率为12.(1)求椭圆E 的方程.(2)过1F 的直线交椭圆E 于A ,B 两点,在x 轴上是否存在一定点P ,使得1()||||PA PBPF PA PB λ=+,λ为正实数.如果存在,求出点P 的坐标;如果不存在,说明理由.31.(2023•石景山区一模)已知椭圆2222:1(0)x y C a b a b+=>>过点,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,1)P -且互相垂直的直线1l ,2l 分别交椭圆C 于M ,N 两点及S ,T 两点.求||||||||PM PN PS PT 的取值范围.32.(2023•西城区校级模拟)已知点A ,B 是椭圆2222:1(0)x y E a b a b+=>>的左,右顶点,椭圆E 的短轴长为2,离心率为32.(1)求椭圆E 的方程;(2)点O 是坐标原点,直线l 经过点(2,2)P -,并且与椭圆E 交于点M ,N ,直线BM 与直线OP 交于点T ,设直线AT ,AN 的斜率分别为1k ,2k ,求证:12k k 为定值.33.(2023•江西模拟)设椭圆E 的方程为2221(1)x y a a+=>,点O 为坐标原点,点A ,B 的坐标分别为(,0)a ,(0,1),点M 在线段AB 上,满足||2||BM MA =,直线OM 的斜率为14.(1)求椭圆的方程;(2)若动直线l 与椭圆E 交于P ,Q 两点,且恒有OP OQ ⊥,是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由.34.(2023•天津模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,直线:1l x =与C 交于M ,N 两点,且||MN =(1)求C 的方程;(2)若C 的左、右顶点分别为A ,B ,点D (不同于M ,)N 为直线l 上一动点,直线AD ,BD 分别与C 交于点P ,Q ,证明:直线PQ 恒过定点,并求出该定点的坐标.35.(2023•江西模拟)已知椭圆2222:1(,02)x y C a b b a b+=><<的左、右焦点分别为1F ,2F ,点M 在椭圆上,212MF F F ⊥,若△12MF F 的周长为6,面积为32.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 交椭圆于A ,B 两点,交y 轴于P 点,设1222,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由.36.(2023•兴庆区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,经过点3(1,2,若点P 是椭圆C上一个动点(异于椭圆C 的左右顶点),点(3,0)N -,(2,0)E -,(2,0)F ,直线PN 与曲线C 的另一个公共点为Q ,直线EP 与FQ 交于点M .(1)求椭圆C 的标准方程;(2)求证:当点P 变化时,点M 恒在一条定直线上.37.(2023•渝中区校级模拟)已知椭圆2222:1x y C a b+=的焦点在x 轴上,它的离心率为12,且经过点23(3P .(1)求椭圆C 的方程;(2)若椭圆C 的左焦点为F ,过点F 的直线l 与椭圆C 交于A ,B 两点,且过点A ,B 和点2Q 的圆的圆心在x 轴上,求直线l 的方程及此圆的圆心坐标.38.(2023•兴庆区校级一模)如图所示,由半椭圆2212:1(0)4x y C y b += 和两个半圆222:(1)1(0)C x y y ++= 、223:(1)1(0)C x y y -+= 组成曲线:(,)0C F x y =,其中点1A ,2A 依次为1C 的左、右顶点,点B 为1C 的下顶点,点1F ,2F 依次为1C 的左、右焦点.若点1F ,2F 分别为曲线2C ,3C 的圆心.(1)求1C 的方程;(2)若过点1F ,2F 作两条平行线1l ,2l 分别与1C ,2C 和1C ,3C 交与M ,N 和P ,Q ,求||||MN PQ +的最小值.39.(2023•浙江模拟)已知双曲线E 的顶点为(1,0)A -,(1,0)B ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且4OFG S ∆=.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP OH ⋅为定值.40.(2023•呼和浩特模拟)已知椭圆22221(0)x y a b a b +=>>的一个焦点为(2,0)F ,且离心率e =.(1)求椭圆的标准方程;(2)设点A 、B 是x 轴上的两个动点,1)M -且||||AM BM =,直线AM 、BM 分别交椭圆于点P 、Q (均异于)M ,证明:直线PQ 的斜率为定值.41.(2023•龙岩模拟)已知椭圆2222:1(0)x y K a b a b+=>>的左、右焦点分别为1(2,0)F -,2(2,0)F ,过右焦点2F 的直线l 交椭圆K 于M ,N 两点,以线段2||MF 为直径的圆C 与圆221:8C x y +=内切.(1)求椭圆K 的方程;(2)过点M 作ME x ⊥轴于点E ,过点N 作NQ x ⊥轴于点Q ,OM 与NE 交于点P ,是否存在直线l 截得PMN ∆的面积等于62若存在,求出直线l 的方程;若不存在,请说明理由.42.(2023•济宁一模)已知直线10x y ++=与抛物线2:2(0)C x py p =>相切于点A ,动直线l 与抛物线C 交于不同两点M ,(N M ,N 异于点)A ,且以MN 为直径的圆过点A .(1)求抛物线C 的方程及点A 的坐标;(2)当点A 到直线l 的距离最大时,求直线l 的方程.43.(2023•宁波模拟)已知双曲线2222:1(,0)x y C a b a b-=>的渐近线与曲线21:22E y x =+相切.横坐标为t 的点P 在曲线E 上,过点P 作曲线E 的切线l 交双曲线C 于不同的两点A ,B .(1)求双曲线C 的离心率;(2)记AB 的中垂线交x 轴于点M .是否存在实数t ,使得30APM ∠=︒?若存在,请求出t 的值;若不存在,请说明理由.44.(2023•沙坪坝区校级模拟)已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为F 到双曲线C 的渐近线距离为1.(1)求双曲线C 的方程;(2)点P 在第一象限,P ,Q 在直线12y x =上,点P ,A ,B 均在双曲线C 上,且AQ x ⊥轴,M 在直线AQ 上,P ,M ,B 三点共线.从下面①②中选取一个作为条件,证明另外一个成立:①Q 是AM 的中点;②直线AB 过定点(0,1)T .45.(2023•石家庄模拟)已知点(4,3)P 在双曲线2222:1(0,0)x y C a b a b-=>>上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,||||4PM PN ⋅=.(Ⅰ)求双曲线C 的方程;(Ⅱ)若直线:l y kx m =+与双曲线C 交于不同的两点A ,B ,设直线PA ,PB 的斜率分别为1k ,2k ,从下面两个条件中选一个(多选只按先做给分),证明:直线l 过定点.①121k k +=;②121k k =.46.(2023•广州模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线:(1)(0)l y k x k =- 与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,直线OP 的斜率为(k O '为坐标原点),APQ ∆的面积为1.S BPQ ∆的面积为2S ,若21||||AP S BP S ⋅=⋅,判断k k '⋅是否为定值?并说明理由.47.(2023•南充模拟)如图,已知A ,B 分别为椭圆2222:1(0)x y M a b a b+=>>的左,右顶点,0(P x ,0)y 为椭圆M 上异于点A ,B 的动点,若4AB =,且ABP ∆面积的最大值为2.(1)求椭圆M 的标准方程;(2)已知直线l 与椭圆M 相切于点0(P x ,0)y ,且l 与直线x a =和x a =-分别相交于C ,D 两点,记四边形ABCD 的对角线AC ,BD 相交于点N .问:是否存在两个定点1F ,2F ,使得12||||NF NF +为定值?若存在,求1F ,2F 的坐标;若不存在,说明理由.48.(2023•赣州模拟)已知抛物线2:2(0)C y px p =>,F 为其焦点,点0(2,)M y 在C 上,且4(OFM S O ∆=为坐标原点).(1)求抛物线C 的方程;(2)若A ,B 是C 上异于点O 的两个动点,当90AOB ∠=︒时,过点O 作ON AB ⊥于,问平面内是否存在一个定点Q ,使得||NQ 为定值?若存在,请求出定点Q 及该定值;若不存在,请说明理由.49.(2023•杭州模拟)已知双曲线2222:1(0,0)x y E a b a b-=>>,并且经过点,2).(1)求双曲线E 的方程.(2)若直线l 经过点(2,0),与双曲线右支交于P 、Q 两点(其中P 点在第一象限),点Q 关于原点的对称点为A ,点Q 关于y 轴的对称点为B ,且直线AP 与BQ 交于点M ,直线AB 与PQ 交于点N ,证明:双曲线在点P 处的切线平分线段MN .50.(2023•浦东新区模拟)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且点(-在椭圆1C 上.(1)求椭圆1C 的方程;(2)过点(0,1)Q 的直线l 与椭圆1C 交于D ,E 两点,已知2DQ QE = ,求直线l 的方程;(3)点P 为椭圆1C 上任意一点,过点P 作1C 的切线与圆222:12C x y +=交于A ,B 两点,设直线OA ,OB 的斜率分别为1k ,2k .证明:12k k ⋅为定值,并求该定值.。
高考数学压轴专题新备战高考《平面解析几何》技巧及练习题

新高考数学《平面解析几何》练习题一、选择题1.如图所示,点F 是抛物线24y x =的焦点,点,A B 分别在抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,则FAB ∆的周长的取值范围( )A .(4,6)B .[4,6]C .(2,4)D .[2,4]【答案】A 【解析】由题意知抛物线24y x =的准线为1x =-,设A B 、两点的坐标分别为1,0()A x y ,2,0()B x y ,则1||1AF x =+.由()222414y x x y ⎧=⎪⎨-+=⎪⎩ 消去y 整理得2230x x +-=,解得1x =, ∵B 在图中圆()2214x y -+=的实线部分上运动, ∴213x <<.∴FAB ∆的周长为1212(1)2()3(4,6)AF FB BA x x x x ++=+++-=+∈. 选A .点睛:解决与抛物线有关的问题时,要注意抛物线定义的运用.特别是对于焦点弦的问题更是这样,利用定义可将抛物线上的点到焦点的距离(两点间的距离)转化成该点到准线的距离(点到直线的距离),然后再借助几何图形的性质可使问题的解决变得简单.2.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是( )A 2B 3C .32D .62【答案】D 【解析】 【分析】 【详解】试题分析:由椭圆与双曲线的定义可知,|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a(其中2a 为双曲线的长轴长),∴|AF 2|=a +2,|AF 1|=2-a ,又四边形AF 1BF 2是矩形,∴|AF 1|2+|AF 2|2=|F 1F 2|2=32,∴a 2,∴e 326考点:椭圆的几何性质.3.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩,Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.4.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-.所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.5.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±【答案】C 【解析】 【分析】由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =, 再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF , 从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c aMOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos aMOF c∠=. ——②由①②,解得225 ca=,即2ba=,则渐近线方程为2y x=±.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题. 6.已知双曲线2222:1(0,0)x yC a ba b-=>>)的左,右焦点分别为12,F F,其右支上存在一点M,使得21MF MF⋅=u u u u r u u u r,直线:0l bx ay+=,若直线2//MF l则双曲线C的离心率为()A.2B.2 C.5D.5【答案】C【解析】【分析】易得且1MF l⊥,从而l是线段1MF的垂直平分线求出直线1MF的方程与渐近线方程联立求出交点坐标,进而求得M坐标,根据勾股定理即可求解离心率.【详解】由12MF MF⋅=u u u u v u u u u v可得12MF MF⊥易知直线:0l bx ay+=为双曲线的一条渐近线,可知l的方程为by xa=-,且1MF l⊥,从而l是线段1MF的垂直平分线,且直线1MF的方程为()ay x cb=+设1MF,与l相交于点(),N x y.由()ay x cbby xa⎧=+⎪⎪⎨⎪=-⎪⎩得2axcabyc⎧=-⎪⎪⎨⎪=⎪⎩即2,a abNc c⎛⎫- ⎪⎝⎭,又()1,0F c-,由中点坐标公式,得222,.a abM cc c⎛⎫-⎪⎝⎭由双曲线性质可得122MF MF a-=①,由12MF MF⊥得222124MF MF c+=②,①②联立,可得2122MF MF b⋅=所以点M的纵坐标为2b c ,所以22b ab c c =即2b a =所以21 5.b e a ⎛⎫=+= ⎪⎝⎭故选:C 【点睛】本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.7.在矩形ABCD 中,已知3AB =,4=AD ,E 是边BC 上的点,1EC =,EF CD ∥,将平面EFDC 绕EF 旋转90︒后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是( )A .圆B .双曲线C .椭圆D .抛物线【答案】D 【解析】 【分析】利用圆锥被平面截的轨迹特点求解 【详解】由题将平面EFDC 绕EF 旋转90︒后记为平面α,则平面α⊥平面ABEF ,,又直线AB 绕AE 旋转一周,则AB 直线轨迹为以AE 为轴的圆锥,且轴截面为等腰直角三角形,且面AEF 始终与面EFDC 垂直,即圆锥母线AF ⊥平面EFDC 则 则与平面α相交形成的点的轨迹是抛物线 故选:D【点睛】本题考查立体轨迹,考查圆锥的几何特征,考查空间想象能力,是难题8.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ∆是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( ) A .2 B .3 C .4 D .5【答案】A 【解析】 【分析】设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值. 【详解】如图,易知该直角三角形三边可设为3,4,5x x x .①若23c x =,则254a x x x =-=,得232ce a ==; ②若24c x =,则2532a x x x =-=,得222ce a==; ③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.9.已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( ) A .8 B .11 C .13 D .16【答案】C 【解析】 【分析】设点A 、B 的坐标,利用线段AB 中点纵坐标公式和抛物线的定义,求得12y y +的值,即可得结果; 【详解】抛物线2:6C x y =中p =3,设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3,又线段AB 中点M 的横坐标为122y y +=5, ∴12y y +=10, ∴|AF |+|BF |=13; 故选:C . 【点睛】本题考查了抛物线的定义的应用及中点坐标公式,是中档题.10.已知椭圆1C :22113x y +=,双曲线2C :22221(,0)x y a b a b-=>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于A 、B 两点,且椭圆1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率是( ) AB .3CD .5【答案】A 【解析】由已知得OA =OA 的方程为()00,0y kx k x =>>,∴可设()00,A x kx ,进一步0=,A AB ∴的一个三分点坐标为⎛⎫,该点在椭圆上,21⎛⎫+=,即()2211391k k+=+,解得22k =,从而有,222222b b a a==,解得c e a ===,故选A. 【 方法点睛】本题主要考查双曲线的渐近线及椭圆的离心率,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系;离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.11.已知抛物线2:4C y x =,过其焦点F 的直线l 交抛物线C 于,A B 两点,若3AF FB =uu u r uu r,则AOF V 的面积(O 为坐标原点)为( )A .33B .3C .433D .23【答案】B 【解析】 【分析】首先过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥,易得30ABM ∠=o ,60AFH ∠=o .根据直线AF :3(1)y x =-与抛物线联立得到12103x x +=,根据焦点弦性质得到163AB =,结合已知即可得到sin 6023AH AF ==o ,再计算AOF S V 即可.【详解】 如图所示:过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥.因为3AF BF =uuu r uu u r,设BF k =,则3AF k =,11BB A M k ==.所以2AM k =. 在RT ABM V 中,12AM AB =,所以30ABM ∠=o . 则60AFH ∠=o .(1,0)F ,直线AF 为3(1)y x =-.223(1)310304y x x x y x⎧=-⎪⇒-+=⎨=⎪⎩,12103x x +=. 所以121016233AB x x p =++=+=,344AF AB ==. 在RT AFH V 中,sin 6023AH AF ==o所以112AOF S =⨯⨯=V 故选:B 【点睛】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.12.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点, 则直线bx ay 4a 0-+=与直线bx ay 0-=的距离4a d c==, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.13.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.14.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( ) A .3y x = B .3y x = C .y x =± D .2y x =±【答案】A 【解析】 【分析】因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案. 【详解】Q 双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅ 化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-= 可得:b =Q 双曲线渐近线方程为:b y x a=±则双曲线渐近线方程为: y = 故选:A. 【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.15.已知双曲线2219x y m-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .34y x =? B .43y x =±C.3y x =±D.4y x =±【答案】B 【解析】根据题意,双曲线的方程为2219x y m-=,则其焦点在x 轴上,直线5x y +=与x 轴交点的坐标为()5,0, 则双曲线的焦点坐标为()5,0, 则有925m +=, 解可得,16m =,则双曲线的方程为:221916x y -=,其渐近线方程为:43y x =±, 故选B.16.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为 )A .y =B .y =C .2y x =±D .3y x =±【答案】B 【解析】 【分析】先求出c 的值,再求出点P 的坐标,可得22bPF a=,再由已知求得1PF ,然后根据双曲线的定义可得ba的值,则答案可求. 【详解】解:由题意,2c =解得c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±,∴22b PF a=,∵1230PF F ∠=︒,∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==,则222a b =,即ba=∴双曲线的渐近线方程为y =. 故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.17.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D .(45,162±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135,77P ⎛⎫± ⎪ ⎪⎝⎭ 故选:B 【点睛】本题主要考查了双曲线的应用,属于中档题.18.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.过双曲线()222210,0x y a b a b-=>>的右焦点F ,作渐近线b y x a =的垂线与双曲线左右两支都相交,则双曲线离心率e 的取值范围为( ) A .()1,2 B .()1,2C .()2,+∞D .()2,+∞【答案】C 【解析】 【分析】设过双曲线的右焦点F 与渐近线by x a=垂直的直线为AF ,根据垂线与双曲线左右两支都相交,得AF 的斜率要小于双曲线另一条渐近线的斜率 ,由此建立关于,a b 的不等式,解之可得22b a >,从而可得双曲线的离心率e 的取值范围 . 【详解】过双曲线的右焦点F 作渐近线by x a=垂线,设垂足为A , Q 直线为AF 与双曲线左右两支都相交,∴直线AF 与渐近线by x a=-必定有交点B , 因此,直线by x a=-的斜率要小于直线AF 的斜率, Q 渐近线b y x a =的斜率为b a, ∴直线AF 的斜率a k b =-,可得b aa b-<-, 即22,b a b a a b>>,可得222c a >, 两边都除以2a ,得22e >,解得2e >双曲线离心率e 的取值范围为)2,+∞,故选C.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围.20.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
.
所以
,于是 2 m 2 .
uuuv uuuv AOB 为钝角等价于 OA OB 0,且 m 0 ,则
,
即 m2 2 ,又 m 0 ,所以 m 的取值范围为
.
9、椭圆 C : x2 a2
y2 b2
1( a
b
0 )的离心率为
1
, 其左焦点到点
P 2,1 的距离为
2
10 . 不过原点 O 的
直线 l 与椭圆 C 相交于 A 、 B 两点 , 且线段 AB 被直线 OP 平分 . ( 1) 求椭圆 C 的方程;
联立方程组
y= 3x- 4 y2= x,
3+ 2, 得
3y2- y- 4
3+2 =0,
3
3-6
13- 4 3
∵ yE+ 2= ,∴ yE=
, xE=
.
3
3
3
- 3-6
13+ 4 3
1
同理可得 yF=
3
, xF=
3
,∴ kEF=- 4.
( 2)法一:
设点 H( m2, m)( m≥1), HM2= m4- 7m2+ 16,HA2= m4- 7m2+15.
直线 l 在 y轴上的截距 m 的取值范围.
【答案】
AOB 为钝角,求
x2 y2
( 1)
1 ( 2)
82
( 2)由直线 l 平行于 OM 得直线 l 的斜率为
故 l 的方程为 y
1 x
m.
2
,又 l 在 y 轴上的截距 m ,
由
得
,又线与椭圆 C 交于 A , B 两个不同的点,
设 A x1, y1 , B x2, y2 ,则
【答案】
P 的坐标。
(1) y 0或
(2) (
3
,
13 )
或
(
5
,
1)
22 2 2
【解析】
( 1)设直线 l 的方程为: y k( x 4) ,即
由垂径定理,得:圆心 C1 到直线 l 的距离
,
点到直线距离公式,得:
求直线 l 的方程为: y 0或
,即 y 0或
;
故有:
,
化简得:
关于 k 的方程有无穷多解,有:
所以抛物线 C 的方程为 y2 4 x .
故直线 PQ 的斜率
.
故直线 PQ 的方程为
,即
.①
又抛物线 C 的方程 y2 4 x ,②
联立消去 x 得
,故 y
y0 ,且 x
y02 . 4
故直线 PQ 与抛物线 C 只有一个交点.
11、已知圆 C1 与 y 轴相切于点( 0, 3),圆心在经过点( 2, 1)与点(﹣ 2,﹣ 3)的直线 l 上. ( 1)求圆 C1 的方程;
( 2)若过定点 M (0,2) 的直线 l 与椭圆 C 交于 G , H 两点( G 在 M , H 之间) 设直线 l 的斜率 k 0 ,在 x 轴
上是否存在点 P(m,0) ,使得以 PG , PH 为邻边的平行四边形为菱形?如果存在,求出
果不存在,请说明理由. 【答案】
x2 (1) 4
y2
15 令 x= 0,可 得 t = 4y0- y0 ( y0≥ 1), ∵ t 关于 y0 的函数在 [1 ,+∞)单调递增,∴ t min=- 11.
8、已知椭圆
的一个焦点 F ( 6,0) ,点 M 2,1 在椭圆 C 上.
( 1)求椭圆 C 的方程; ( 2)直线 l 平行于直线 OM ( O 坐标原点),且与椭圆 C 交于 A , B 两个不同的点,若
∵ t 关于 m的函数在 [1 ,+∞)单调递增,∴ t min=- 11.
y1
4- x1
法二:设 A( x1, y1), B( x2, y2),∵ kMA= x1- 4,∴ kHA= y1 ,
可得,直线 HA的方程为( 4- x1) x- y1y+ 4x1- 15=0,
同理,直线 HB的方程为( 4- x2) x- y2y+ 4x2- 15=0, ∴( 4- x1) y20- y1y0+ 4x1-15= 0,( 4- x2) y20- y2y0+4x2- 15= 0, ∴直线 AB的方程为( 4- y20)x- y0y+ 4y20- 15= 0,
F 的坐标为(
a, 0),
∴ N→F=( a,- n).∵ M→N=(- m, n),
∴由
M→N·→NF= 0,得
2
n + am= 0.
设点 P 的坐标为( x, y),由 O→M= 2O→N+P→O,有( m, 0)= 2( 0, n)+(- x,- y),
m=- x,
y n= 2.
代入 n2+ am= 0,得 y2= 4ax. 即点 P 的轨迹 C 的方程为 y2= 4ax.
x0 的取值范围. 【答案】
( 1) y2
x2 4x , 9
( 2) ( 1,0)
y2 1 8
y kx m ( 2)显然 k 0 , m 0 ,由 y2 4x ,消去 x ,得
由题意知
,得 km 1 ,
y kx m
由 x2 9
y2 ,消去 y ,得 1
8
其中
又k
1 ,得
m
,化简得 ,解得 0 m2 9 .
N ,若 【答案】
,求点 M 的坐 标.
( 1)
( 2)
【解析】
( 1)因为椭圆 C 的短轴长为 2 2 ,离心率为 6 , 3
2b 2 2
a6
所以 c
6
解得 b
2 ,所以椭圆 C 的方程为 x 2
a3
6
a 2 b2 c2
c2
y2 1.
2
在直角 △AMN 中,由 AMN 60 ,得
,
所以
,解得 m
,或
解之得:点
P 坐标为 (
3
13 ,)
或
(
5
,
1) 。
22 2 2
2、已知椭圆
与抛物 线
MF2
1 ,且椭圆与抛物线的交点
Q 满足 QF
5 .
2
( 1)求抛物线的方程和椭圆的方程;
共交点 F2 ,抛物线上的点 M 到 y 轴的距离等于
( 2)过抛物线上的点 P 做抛物线的切线 y kx m 交椭圆于 A , B 两点,设线段 AB 的中点为 C (x0, y0 ) ,求
6 ,所以点 M 的坐标为
6 ,0
.
3
3
6、已知点
F
是椭圆
1
x2 +a
2+
y
2=
1
(
a>0)的右焦点,点
M( m, 0), N( 0,n)分别是 x 轴, y 轴上的动点,
且满足 M→N· N→F=0. 若点 P 满足 O→M= 2→ON+ P→O( O为坐标原点) .
( 1)求点 P 的轨迹 C 的方程;
由
y= k(x- a), y 2= 4ax ,
得
ky 2- 4ay- 4ka 2=0,∴
y 1y2=-
4a2.
则
F→S·
F→T=
4a2
+
16a 4 (- 4a2)
=
4a2-
4a2=
0.
因此,以线段 ST 为直径的圆经过点 F.
7、如图,已知抛物线 C:y2=x 和⊙ M:( x- 4)2+ y2= 1,过抛物线 C上一点 H( x0, y0)
,即
43
1 x0 , 因为
2
,
故
,
, 其中
且m 0.
令
,则
,
令 f m 0 得 m 1 7 , (因 4 和 1 7 不满足
且 m 0 , 舍去)
当
时, f m 0, 当
时 , f m 0 , 所以 , 当 m 1 7 时 , S ABP
取得最大值 , 此时直线 l 的方程为
.
10、已知抛物线
的焦点为 F ,抛物线 C 上存在一点 E 2,t 到焦点 F 的距离等于 3 .
( y0≥ 1)作两条直线与⊙ M分别相切于 A、 B 两点,分别交抛物线于 E、 F 两点.
( 1)当∠ AHB的角平分线垂直 x 轴时,求直线 EF的斜率;
( 2)若直线 AB在 y 轴上的截距为 t ,求 t 的最小值.
【答案】 1
( 1)- 4 ( 2) -11
法二:∵当∠ AHB的角平分线垂直 x 轴时,点 H( 4, 2), ∴∠ AHB=60°,可得 kHA= 3, kHB=- 3,∴直线 HA的方程为 y= 3x- 4 3+ 2,
( 2) 求 ABP 的面积取最大时直线 l 的方程 .
【答案】
x2 y2 1
(1) 4 3
( 2)
( 2)易得直线 OP 的方程 y A, B 在椭圆上 , 所以 x12 y12
43
1 x,设
A
x1, y1
, B x2 , y2
, AB 中点 R x0, y0
, 其中 y0
2
1 , x22 y22 1 , 相减得
x=- a,
∴ F→S· F→T=(- 2a)×(- 2a)+(- 2a)× 2a= 0.
y
2 1
y
2 2
②当 AB不垂直 x 轴时,设直线 AB 的方程为 y= k ( x- a)( k≠ 0), A 4a,y 1 , B 4a, y 2 ,
同解法一,得
F→S·
→FT=
4a2+
16a4 .
y1y2
1、已知圆
和圆
.
( 1)若直线 l 过点 A(4,0) 且被圆 C1 截得的弦长为 2 3 ,求直线 l 的方程; ( 2)设平面上的点 P 满足: 存在过点 P 的无穷多对互相垂直的直线 l1 和 l 2 ,它们分别与圆 C1 和圆 C2 相交,