开关式全波相敏检波电路
传感器原理及工程应用_(第三版)_((郁有文))_(西安电子科技大学出版)_详细答案

2-1 什么叫传感器?它由哪几部分组成?它们的作用及相互关系如何?【答】1、传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
2、传感器由:敏感元件、转换元件、信号调理与转换电路和辅助的电源组成。
3、它们的作用是:(1)敏感元件:是指传感器中能直接感受或响应被测量的部分;(2)转换元件:是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分;(3)信号调理与转换电路:由于传感器输出信号一般都很微弱,需要有信号调理与转换电路,进行放大、运算调制等;(4)辅助的电源:此外信号调理转换电路以及传感器的工作必须有辅助的电源。
4、最简单的传感器由一个敏感元件(兼转换元件)组成,它感受被测量时直接输出电量,如热电偶。
有些传感器由敏感元件和转换元件组成,没有转换电路,如压电式加速度传感器,其中质量块m是敏感元件,压电片(块)是转换元件。
有些传感器,转换元件不只一个,要经过若干次转换。
2-2 什么是传感器的静态特性?它有哪些性能指标?分别说明这些性能指标的含义。
【答】1、传感器的静态特性是指被测量的值处于稳定状态时的输出与输入的关系。
也即当输入量为常量,或变化极慢时,这一关系就称为静态特性。
2、静态特性性能指标包括:线性度、灵敏度、迟滞、重复性和漂移等。
3、性能指标:(1)灵敏度:输出量增量Δy 与引起输出量增量Δy 的相应输入量增量Δx 之比。
用S 表示灵敏度,即(2)线性度:传感器的线性度是指在全量程范围内实际特性曲线与拟合直线之间的最大偏差值ΔL max 与满量程输出值Y FS 之比。
线性度也称为非线性误差,用γL 表示,即(3)迟滞:传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。
用γH 表示,迟滞误差又称为回差或变差。
即 :(4)重复性:重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
精品文档-传感器原理及应用(郭爱芳)-第5章

ΔL
ΔL1
ΔL2
2L0
第5章 电感式传感器 图5.11 差动变压器原理及特性
第5章 电感式传感器
5.2.2 信号调理电路 1. 差动整流电路 差动整流电路是对差动变压器两个次级线圈的输出电压分
别整流后进行输出,典型电路如图5.12所示。图5.12(a)和(b) 用于低负载阻抗的场合,分别为全波和半波电流输出。图 5.12(c)和(d)用于高负载阻抗的场合,分别为全波和半波电 压输出。可调电阻Rp调整零点输出电压。
(2) 高次谐波主要由导磁材料磁化曲线的非线性引起。 当磁路工作在磁化曲线的非线性段时,激励电流与磁通的波形 不一致,导致了波形失真;同时,由于磁滞损耗和两个线圈磁 路的不对称,造成了两线圈中某些高次谐波成分,于是产生了 零位电压的高次谐波;
(3) 激励电压中包含的高次谐波及外界电磁干扰,也会 产生高次谐波。
第5章 电感式传感器 图5.9 BYM型自感式压力传感器
第5章 电感式传感器
2. 螺管式位移传感器 图5.10所示为螺管式位移传感器,测杆7可在滚动导轨6 上作轴向移动,测杆上固定着衔铁3。当测杆移动时,带动衔 铁在电感线圈4中移动,线圈放在圆筒形铁芯2中,线圈配置成 差动式结构,当衔铁由中间位置向左移动时,左线圈的自感量 增加,右线圈的自感量减少。两个线圈分别用导线1引出,接 入测量电路。另外,弹簧5施加测量力,密封套8防止尘土进入, 可换测头9用螺纹固定在测杆上。
《测控电路》分析题

与脉宽 B 成正比,也即与相位差 成正比。Uo 的下降沿来到时,发出锁存指令,将计数器
计的脉冲数 N 送入锁存器。延时片刻后将计数器清零。这样锁存器锁存的数 N 为在 Us 和
Uc 的一个周期内进入计数器的脉冲数,它反映 Us 和 Uc 的相位差 。 鉴相器的鉴相范围为 0-- ,它不能鉴别 Us 和 Uc 哪个相位超前。鉴相器要求 Us 和 Uc
3
28.图示电路是异或门鉴相电路?Us 和 Uc 为将调相信号与参考信号整形后形成占空比为 1:1 的方波信号,试述其工作原理,该鉴相电路存在那些问题。 答:将调相信号与参考信号整形后形成占空比为 1:1 的方波信号 Us 和 Uc,将它们送到异
或门 DG1,异或门输出 Uo 的脉宽 B 与 Us 和 Uc 的相位差 相对应。Uo 用作门控信号,只有
I R0
uo2 ui2 R2
ui1 uo1 R1
ui2 ui1 R0
;
uo1
(1
R1 R0
)ui1
R1 R0
ui2
;
uo2
(1
R R
2 0
)ui
2
R2 R0
ui1
;
uo2
uo1
(1
R1 R2 R0
)(u i 2
ui1 )
;
K d12
(u o 2 (u i 2
uo1 ) ui1 )
当U cm =U sm ,上二式分别可简化为U1m
2U cm
cos 2
U 2 m 2U cm sin 2
这种鉴相器的特性要比 Ucm>>Usm 时要好,因为正弦函数的自变量变化范围减小了一半。因 此,在用作鉴相器时,常取 Ucm=Usm。 25.为什么图 3-32 所示电路实现的是调频,而图 3-52 所示电路实现的是脉冲调宽,它们的关 键区别在哪里?
测控电路实验报告

华北水利水电学院机械学院测控电路实验报告实验(一):信号放大电路实验专业:测控技术与仪器学号:200907030姓名:郭丙康指导教师:宋小娜实验一 信号放大电路实验一、实验目的1.研究由集成运算放大器组成的基本放大电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有电压放大倍数高的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可以组成反相比例放大器,同相比例放大器,电压跟随器,同相交流放大器,自举组合电路,双运放高共模抑制比放大电路,三运放高共模抑制比放大电路等。
理想运算放大器的特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件(如表1-1所示)的运算放大器称为理想运放。
表1-1开环电压增益 输入阻抗 输出阻抗 带宽A ud =∞ r i =∞ r o =0 f BW =∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U O 与输入电压之间满足关系式:U 0=A ud (U +-U -),而U 0为有限值,因此,(U +-U -)=0,即U +=U -,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即称为“虚断”。
这说明运放对其前级吸取电流极小。
以上两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
1.基本放大电路: 1)反向比例放大器电路如图1-1所示。
对理想运放,该电路的输出电压与输入电压之间的关系为:i 1F O U R R U -=,为了减少输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1∥R F图1-1 反向比例放大器 图1-2 同相比例放大器 2)同相比例放大器电路如图1-2所示。
对理想运放,该电路的输出电压与输入电压之间的关系为:i 1FO )U R R 1(U +=,其中R 2= R 1∥R F 。
相敏检波电路简介

相 敏 检 波 电 路
将调制信号ux乘以幅值为1的载波信 号就可以得到双边带调幅信号us,将 双边带调幅信号us再乘以载波信号, 经低通滤波后就可以得到调制信号ux。 这就是相敏检波电路在结构上与调制 电路相似的原因。二者主要区别是调 幅电路实现低频调制信号与高频载波 信号相乘,输出为高频调幅信号;而 相敏检波器实现高频调幅信号与高频 载波信号相乘,经滤波后输出低频解 调信号。这使它们的输入、输出耦合 回路与滤波器的结构和参数不同。
相敏检波电路的应用
大气电场中
其他领域中
在电场仪设计中,电 压信号的极性与被测 电场的极性相反。全 波检波后为单一正方 向脉动直流电压信号 ,即保证了微弱感应 电压信号与同步脉冲 信号的同相。因此, 经低通滤波器后输出 一负极性直流电压信 号,即可判断出被测 电场为负电场,从而 实现了被测电场极性 的准确鉴别。
Hale Waihona Puke 数字相敏检波器以及其他多种 测量器具中,相敏检波因其独 特的精确性和稳定性而被广泛 应用于这些器具的制作和使用 中,根据相敏检波的原理,在 LabVIEW环境实现了数字相敏 检波算法,并分析了算法性能。 实验结果表明,整周期采样时, 信噪比低至-20dB时的幅度误 差小于0.2%,相位误差小于 0.7%。为进一步验证,还利用 NI公司的波形生成卡和数据采 集卡模拟了数字相敏检波在实 际中的应用效果。
调 幅 电 路
常用的导磁材料检测方法
磁粉检测
优点:灵敏度高 缺点:不易实现检 测自动化 优点:探头上无零 电势 缺点:灵敏度不够 精准
涡流检测
g
A D2 Xm(t)
e
c
uf
b
D1
a
Rf
D3
d
D4
相敏检波电路工作原理及工作过程

相敏检波电路工作原理及工作过程相敏检波器有两种:一种由变压器和二极管桥组成,这种电路体积大,稳定性差;另一种则由模拟乘法器构成,性能上得到了很大提高,但价格高,调试麻烦。
为此,在研制大气电场仪的过程中,根据大气电场仪探头的结构特点和大气电场测试中对检波器的要求,利用光电开关、四通道模拟开关和运放组合设计一种结构简单,性能稳定的相敏检波器。
同时,为了对电场信号的极性进行有效可靠的鉴别,根据相敏检波理论,将通过调整光电开关的设置位置,保证感应电压信号与同步脉冲信号同相,以获得最大整流输出,从而准确辨别被测电场极性。
1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。
2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
第二,包络检波电路本身不具有区分不同载波频率的信号的能力。
对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。
为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。
从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。
有了参考信号就可以用它来鉴别输入信号的相位和频率。
4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。
这就是相敏检波电路在结构上与调制电路相似的原因。
二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。
测控电路(第5版)第三章习题及答案
a)调制信号b)载波信号c)双边带调幅信号
3-37已知调幅信号表示为us(t)=(10+0.5×cos(2π×100t))cos(2π×104t) mV,确定载波信号频率,调制信号频率,调制度。
3-21从相敏检波器的工作机理说明为什么相敏检波器与调幅电路在结构上有许
多相似之处?它们又有哪些区别?
3-22试述图3-16开关式全波相敏检波电路工作原理,电路中哪些电阻的阻值必须满足一定的匹配关系?并说明其阻值关系。
图3-16题3-22图
3-23什么是相敏检波电路的鉴相特性与选频特性?为什么对于相位称为鉴相,而对于频率称为选频?
3-5什么是调频?请写出调频信号的数学表达式,并画出它的波形。
3-6什么是调相?请写出调相信号的数学表达式,并画出它的波形。
3-7什么是脉冲调宽?请写出脉冲调宽信号的数学表达式,并画出它的波形。
3-8为什么说信号调制有利于提高测控系统的信噪比,有利于提高它的抗干扰能力?它的作用通过哪些方面体现?
3-9为什么在测控系统中常常在传感器中进行信号调制?
调制是给测量信号赋以一定特征,这个特征由作为载体的信号提供。常以一个高频正弦信号或脉冲信号作为载体,这个载体称为载波信号。用需要传输的信号去改变载波信号的某一参数,如幅值、频率、相位。这个用来改变载波信号的某一参数的信号称调制信号。在测控系统中需传输的是测量信号,通常就用测量信号作调制信号。经过调制的载波信号叫已调信号。
第三章信号调制要采用信号调制?什么是解调?在测控系统中常用的调制方法有哪几种?
3-2什么是调制信号?什么是载波信号?什么是已调信号?
3-3什么是调幅?请写出调幅信号的数学表达式,并画出它的波形。
3-4已知调幅信号表示为us(t)=(10+0.5×cos(2π×100t))cos(2π×104t) mV,确定载波信号频率,调制信号频率,调制度。
实验十三开关式全波相敏检波实验(测控电路实验指导书)
实验十三 开关式全波相敏检波实验一、实验目的1、了解双边带调幅信号的形成及解调原理;2、掌握开关式全波相敏检波电路的构成及工作原理;3、掌握开关式全波相敏检波电路的特性。
二、实验原理调制信号、载波信号、双边带调幅信号分别如图所示,当调制信号0U X >时,双边带调幅波的相位极性与载波的相位极性相同,当调制信号0U X <时,双边带调幅波的相位极性与载波的相位极性相反,调制信号X U 改变符号时,其调幅波信号相位改变0180。
要使原信号得到解调,检波电路就必须具有判别信号相位和选频的能力。
包络检波电路是不能满足这一要求的,必须采用相敏检波电路,相敏检波电路又称同步检波电路 (一)实验电路框图如图13-1所示高频载波信号(正弦波)经移相器进行相位调整,然后经开关式全波相敏整流电路进行全波整流,再经低通滤波器取出低频成分,信号经放大电路放大从而获得解调信号。
低通滤波器放大电路双边带调幅(DSB)信号输入开关式全波整流电路解调输出载波信号输入移相器图13-1 实验电路框图(二)实验电路分析 电路原理图如图13-2所示i U 为高频载波信号输入端,1R ,2R ,1N 构成过零比较器,对高频载波信号整形,1N 输出开关控制信号(方波)如图13-6所示,控制开关场效应管的通断。
s U 为双边带调幅波输入端,3R ,4R ,5R ,2N 构成放大倍数受开关管Q 控制的放大器,当c U 为高电平时,放大器的放大倍数为 -1;当c U 为低电平时,放大器的放大倍数为 +1。
其对s U 双边带调幅波的整流后的信号波形如图13-7所示。
图13-2 全波相敏整流电路图三、实验设备 1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器四、实验内容及步骤 1、把5V ±、12V ±直流电源接入“测控电路二”实验挂箱2、在“1U 幅度调制单元”的“调制信号输入”端及“载波输入”端分别加入调制信号(正弦波),载波信号(正弦波),调制信号为Z 3KH .1,P P 1V -左右的正弦波(把本挂箱的U12单元的电源开关拨到“开”方向,利用“U12信号产生单元”产生此正弦波,U12单元的电位器W1用来调节信号幅度,电位器W2用来调节信号频率);载波信号为Z 20.5KH 左右,P P 4.0V -的正弦波(从实验屏上的函数信号发生器接入)。
相敏检波器的鉴相特性
相敏检波器的鉴相特性由于调制信号的频率远低于载波信号的频率,在载波信号的若干周期内,调制信号的值变化很小,常将其看作为常数,这时双边带调幅信号us与载波信号uc(或Uc)为同频信号;调制信号为正时,us与uc(或Uc)同相;调制信号为负时,us与uc(或Uc)反相。
为鉴别调制信号的相位,需采用相敏检波电路。
相敏检波电路除了输入需解调的调幅信号us外,还需要一个与之同频的信号uc(或Uc)作参考信号。
相敏检波电路的鉴相特性为:输出电压为正时,表示输入的调幅信号us与参考信号(即载波信号)uc(或Uc)同相,此时调制信号为正(或负);当输出电压为负时,表示输入的调幅信号us与参考信号uc(或Uc)反相,此时调制信号为负(或正)。
采用Multisim对3个相敏检波电路进行仿真实验,并给出实验结果。
1、仿真实验1.1、方案一相加式相敏检波仿真电路如图1所示。
电路选用理想元件,调幅信号经变压器T1输入,参考信号经变压器T2输入,参考信号uc的幅值远大于调幅信号us的幅值。
输出为低频信号(解调信号),经电容滤波后输出。
仿真电路运行结果如图2所示,图2(a)显示的是us与uc同相时的运行结果,图2(b)显示的是us与uc反相时的运行结果。
1.2、方案二开关式全波相敏检波仿真电路如图3所示。
电路选用实际元件。
Uc为uc整形后的方波信号。
在Uc=“1”的半周期,模拟开关导通,放大倍数为-1;在Uc=“0”的半周期,模拟开关截止,放大倍数为+1。
仿真电路运行波形如图4所示,图4(a)中us与Uc 同相;图4(b)中us与Uc反相。
1.3、方案三图5所示电路能鉴别两信号的超前或滞后关系,且输出电压的大小与两信号之间的相位差成对应关系。
A1,A2为过零比较器,输出经限幅得两个矩形波,其相位差与输入信号的相位差相同。
两矩形波经异或门和低通滤波电路得与两输入信号的相位差相对应的直流电压,经A3输出。
D触发器与三极管构成超前、滞后鉴别电路,当uA超前uB 时,触发器输出高电平,三极管导通,输出为负;uA滞后uB时,触发器输出低电平,三极管截止,输出为正。
THZTL-1实验指导书
目录实验一差动放大器实验 (1)实验二信号放大电路实验 (4)实验三信号运算电路实验 (9)实验四电压比较器实验 (12)实验五电阻链分相细分实验 (15)实验六幅度调制及解调实验 (17)实验七移相电桥实验 (19)实验八脉宽调制电路实验 (20)实验九调频及鉴频实验 (21)实验十开关电容滤波器实验 (24)实验十一开关式相乘调制及解调实验 (26)实验十二精密全波整流及检波实验 (28)实验十三开关式全波相敏检波实验 (30)实验十四锁相环单元实验 (32)实验十五分频器单元实验 (34)实验十六锁相环应用实验––频率合成实验 (36)实验十七可控硅触发调压实验 (38)附录: (40)实验一 差动放大器实验一、实验目的1.加深对差动放大器性能的理解。
2.学习差动放大器的主要性能指标的测试方法。
二、实验原理图1-1是差动放大器的实验电路图。
它由两个元件参数相同的基本共射放大电路组成。
当 开关K 拨向左边时,构成典型的差动放大器。
调零电位器Rp 用来调节T 1,T 2管的静态工作点,使得输入信号U i =0时,双端输出电压Uo=0。
图1-1差动放大器实验电路图当开关K 拨向右边时,构成具有恒流源的差动放大器。
它用晶体管恒流源代替发射极电阻Re ,可以进一步提高差动放大器抑制共模信号的能力。
1.静态工作点的估算典型电路: (认为U B1=U B2≈0);I C1=I C2=½I E 恒流源电路: ;C321C2C1I I I == 2.差模电压放大倍数和共模电压放大倍数当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。
双端输出:R E =∞,W 电位器在中心位置时,Pbe B CiOd R )1(21r R R U U A ββ+++-=∆∆=单端输出: di C2d2A 21U U A -=∆∆=当输入共模信号时,若为单端输出,则有di C1d1A 21UU A ==∆∆EBE EE E R U U I -≈||E3BEEE CC 212E3C3R U U U R R R I I -++≈≈|)|(ECE p be B C iC1C2C12R R )2R R 2)(1(r R R U U A A -≈++++-=∆∆==ββ若为双端输出,在理想情况下 0U U A iOd2=∆∆=,实际上由于元件不可能完全对称,因此Ac 也不会绝对等于零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 开关式全波相敏检波电路
一、实验目的
1.熟悉和掌握相敏检波器的工作原理。
2.验证相敏检波器的检幅特性和鉴相特性。
二、实验设备及参考电路图
1.实验台中部件:相敏检波器、音频振荡器、移相器、直流稳压电源、低通滤波器、电压表(毫伏表)
2.双踪示波器
3.实验参考电路图
三、实验步骤
将音频振荡器的输出信号(00 )接至相敏检波器的输入端(1)。
1.参考信号为直流电压
⑴将直流稳压电源+2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。
⑵将直流稳压电源-2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。
2.参考信号为交流电压
⑴将音频信号00接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~ (6)端波形。
⑵将音频信号1800 接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~ (6)端波形。
3.相敏检波器检幅特性
将相敏检波器的输出端(3)接低通滤波器的输入端,将低通滤波器的输出端接数字电压表。
⑴相敏检波器的输入信号(接(1))和参考信号(接(2))同相,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。
⑵相敏检波器的输入信号(接(1))与参考信号(接(2))反相时,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。
4.相敏检波器的鉴相特性
将音频信号接移相器的输入端,移相器电路输出接相敏检波器参考输入端(2),旋转移相器的电位器旋钮,改变参考电压的相位,音频振荡器输出幅值不变,用示波器观察(1) ~
(6)波形,并读出对应的电压表值。
四、实验报告要求
1.画出该相敏检波器的电路图,并说明该电路的工作原理。
2.画出该实验第三步骤和第四步骤的原理框图。
3.分别画出参考电压与相敏检波器的输入信号同相、反相时(1) ~ (6)点的波形图及低通滤波器的输出波形。
4.画出参考电压通过移相器后(差900 时),相敏检波器(1) ~ (6)点及低通滤波器的输出波形。
5. 分别纪录当参考电压与输入信号同相时、反向时,相敏检波器经低通滤波器输出对应输入信号的电压值。
五、思考题
1. 什么是相敏检波? 为什么要采用相敏检波?
2. 什么是相敏检波器的鉴相特性?。