相敏检波——专题..
移相器相敏检波器实验

实验二移相器相敏检波器实验一、实验目的:了解移相器、相敏检波器的工作原理。
二、基本原理:1、移相器工作原理:图2—1为移相器电路原理图与调理电路中的移相器单元面板图。
图2—1 移相器原理图与面板图图中,IC1、R1、R2、R3、C1 构成一阶移相器(超前),在R2=R1的条件下,其幅频特性和相频特性分别表示为:KF1(jω)=Vi/V1=-(1-jωR3C1)/(1+jωR3C1)KF1(ω)=1ΦF1(ω)=-л-2tg-1ωR3C1其中:ω=2лf,f为输入信号频率。
同理由IC2,R4,R5,Rw,C3构成另一个一阶移相器(滞后),在R5=R4条件下的特性为:KF2(jω)=Vo/V1=-(1-jωRwC3)/(1+jωRwC3)KF2(ω)=1ΦF2(ω)=-л-2tg-1ωRwC3由此可见,根据幅频特性公式,移相前后的信号幅值相等。
根据相频特性公式,相移角度的大小和信号频率f及电路中阻容元件的数值有关。
显然,当移相电位器Rw=0,上式中ΦF2=0,因此ΦF1决定了图7—1所示的二阶移相器的初始移相角:即ΦF=ΦF1=-л-2tg-12лfR3C1若调整移相电位器Rw,则相应的移相范围为:ΔΦF=ΦF1-ΦF2=-2tg-12лfR3C1+2tg-12лfΔRwC3已知R3=10KΩ,C1=6800p,△Rw=10kΩ,C3=0.022μF,如果输入信号频率f一旦确定,即可计算出图2—1所示二阶移相器的初始移相角和移相范围。
2、相敏检波器工作原理:图2—2为相敏检波器(开关式)原理图与调理电路中的相敏检波器面板图。
图中,AC为交流参考电压输入端,DC为直流参考电压输入端,Vi端为检波信号输入端,Vo端为检波输出端。
图2—2 相敏检波器原理图与面板图原理图中各元器件的作用:C1交流耦合电容并隔离直流;A1反相过零比较器,将参考电压正弦波转换成矩形波(开关波+14V ~-14V);D1二极管箝位得到合适的开关波形V7≤0V (0 ~-14V),为电子开关Q1提供合适的工作点;Q1是结型场效应管,工作在开或关的状态;A2工作在反相器或跟随器状态;R6限流电阻起保护集成块作用。
相敏检波器 ppt课件

相关检测系统原理框图如下图所示。
返回首页
3.7.1 相敏检波器概述
1、系统工作原理 信号通道把输入的被测信号选频放大(初步滤除噪声)
(a)
uGS/V
返回首页
3.7.3 预备知识二——结型场效应管的应用: 电子开关
iD/mA 可 变 UDS=UGS-UGSoff
电
4阻区恒ຫໍສະໝຸດ 3流 2区
1
UGS =0V -0.5V
-1V -1.5V
-2V
0
5
10
15
20
截止 区
(b)
图3.7.3 JFET的 转移特性曲线和
(a)转移特性曲线; 击 穿 (b)输出特性曲线 区
与双极型晶体管不同,在JFET中,栅源
小。当两者幅度相等时输出电压产生跃变,由高电 平变成低电平,或者由低电平变成高电平。由此来 判断输入信号的 大小和极性。 用途:
数模转换、数字仪表、自动控制和自动检测等 技术领域,以及波形产生及变换等场合 。
运放工作在开环状态或引入正反馈。
返回首页
3.7.2 预备知识一——运算放大器的应用: 零电压比较器
时,沟道在漏极附近被局部夹断(称为预夹
断),如图3.7.4(b)所示。此后,uDS再增大,电 压主要降到局部夹断区,而对整个沟道的导电
能力影响不大。所以uDS的变化对iD影响很小。
返回首页
3.7.3 预备知识二——结型场效应管的应用: 电子开关
2. 可变电阻区
实验一开关式全波相敏检波实验

实验⼀开关式全波相敏检波实验实验⼀开关式全波相敏检波实验⼀、实验⽬的1.了解双边带调幅信号的形成及解调原理。
2.掌握开关式全波相敏检波电路的构成及⼯作原理。
3.掌握开关式全波相敏检波电路的特性。
⼆、实验原理调制信号、载波信号、双边带调幅信号分别如图所⽰,当调制信号U X>0时,双边带调幅波的相位极性与载波的相位极性相同,当调制信号U X<0时,双边带调幅波的相位极性与载波的相位极性相反,调制信号U X改变符号时,其调幅波信号相位改变180o。
要使原信号得到解调,检波电路就必须具有判别信号相位和选频的能⼒。
包络检波电路是不能满⾜这⼀要求的,必须采⽤相敏检波电路,相敏检波电路⼜称同步检波电路。
(⼀)实验电路框图实验电路框图如图13-1所⽰。
⾼频载波信号(正弦波)经移相器进⾏相位调整,然后经开关式全波相敏整流电路进⾏全波整流,再经低通滤波器取出低频成分,信号经放⼤电路放⼤从⽽获得解调信号。
图13-1 实验电路框图(⼆)实验电路分析电路原理图如图13-2所⽰。
U i为⾼频载波信号输⼊端,R1,R2,N1构成过零⽐较器,对⾼频载波信号整形,N1输出开关控制信号(⽅波)如图13-6所⽰,控制开关场效应管的通断。
N S为双边带调幅波输⼊端,R3,R4、R5,N2构成放⼤倍数受开关管Q控制的放⼤器,当U C为⾼电平时,放⼤器的放⼤倍数为-1;当U C为低电平时,放⼤器的放⼤倍数为+1。
其对U s双边带调幅波的整流后的信号波形如图13-7所⽰。
图13-2 全波相敏整流电路图三、实验设备1.测控电路实验箱2.函数信号发⽣器3.⽰波器四、实验内容及步骤1.打开实验箱上±5V、±12V直流电源。
2.把“U15信号产⽣单元”短路帽JP1,JP2拨到“VCC”⽅向,调节此单元的电位器(电位器RP2调节信号幅度,电位器RP1调节信号频率),使之输出频率为1.3KHz、幅值为1V P-P的正弦波信号(⽤⽰波器观察其波形输出),接⼊“U5幅度调制单元”的调制波输⼊端。
相敏检波

741
用普通检波二极管作检波器时,由于其正向伏安特性不是线性的,因此在小信号下,检波失真相当严重。
另外,二极管的正向压降随温度而变,所以检波器的特性也受温度影响。
用运算放大器构成的精密检波器,能克服普通二极管的缺陷,得到与理想二极管接近的检波性能。
而且检波器的等效内阻及温度敏感性也比普通检波器好得多。
如
上图所示:当Usr为负时,经放大器反相,U'sc>0,D2截止,D1导通。
D1的导通为放大器提供了深度负反馈,因此,放大器的反相输入端2为虚地点,检波器从虚地点经过R2输出信号。
所以Usc=0。
当Usr为正时,U'sc<0,所以D1截止,只要U'sc达到-0.7V,D2就导通,这时,可把D2的正向压降UD看成是放大器的输出失调电压,因此电路相当于反相输入的比例放大器,其传输特性为
Usc=-(R2/R1)Usr=-Usr。
综上所述,上图的传输特性为Usc=0(Usr<0);Usc=-Usr(uSR>0)。
由于运放的开环增益Gol很高,因此,当输入信号为正时,只要Usr≥UD/Gol,就会使D2导通,而且D2一旦导通,放大器就处于深度的闭环状态,非线性失真非常小,从小信号开始,输入和输出之间就是具有良好的线性关系。
它的死区电压非常小,等于二极管的正向压降UD的1/Gol倍。
设
D2导通时检波器的反馈系数为F,则这种精密检波器的内阻和温度系数为普通检波器的1/(Gol·F)倍,当R2>R1时,检波器还兼有电压放大作用,可将信号放大R2/R1倍。
3 、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是

一、相敏检波的功用和原理1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。
2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
第二,包络检波电路本身不具有区分不同载波频率的信号的能力。
对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。
为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。
从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。
有了参考信号就可以用它来鉴别输入信号的相位和频率。
4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号Ux乘以幅值为1的载波信号就可以得到双边带调幅信号Us,将双边带调幅信号Us再乘以载波信号,经低通滤波后就可以得到调制信号Ux。
这就是相敏检波电路在结构上与调制电路相似的原因。
二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。
这使它们的输入、输出耦合回路与滤波器的结构和参数不同。
二、相敏检波电路的选频与鉴相特性1、相敏检波电路的选频特性什么是相敏检波电路的选频特性?相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。
以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。
对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。
相敏检波

相敏检波(一)相敏检波的功用和原理1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。
2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。
第二,包络检波电路本身不具有区分不同载波频率的信号的能力。
对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。
为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。
3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。
从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。
有了参考信号就可以用它来鉴别输入信号的相位和频率。
4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。
这就是相敏检波电路在结构上与调制电路相似的原因。
二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。
这使它们的输入、输出耦合回路与滤波器的结构和参数不同。
(二)相敏检波电路的选频与鉴相特性1、相敏检波电路的选频特性什么是相敏检波电路的选频特性?相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。
以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。
对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。
相敏检波器的工作原理

相敏检波器的工作原理
相敏检波器是一种广泛应用于射频和微波信号处理的设备,其工作原理基于信号的相位差引起输出电压变化的原理。
具体工作原理如下:
1. 进行信号混频:将待测信号与载波信号进行混频,产生一个中频信号。
2. 通过低通滤波:将混频后的中频信号通过低通滤波器,滤除高频成分,得到一个纯净的中频信号。
3. 产生参考信号:通过一个参考信号发生器产生一个参考电压或参考频率的信号,并与原始信号进行比较。
4. 使用相移器:将待测信号与参考信号进行相移,通常相移180度。
5. 相干检波:将相移后的信号与混频后的中频信号相乘,并通过低通滤波器进行滤波,得到一个直流信号。
该直流信号的幅度与相位差有关。
6. 输出结果:最后,根据相移后信号的幅度来测量相位差的大小,并通过输出电压或者其他形式的输出来展现。
总结,相敏检波器通过将待测信号与参考信号相乘,并通过低通滤波器进行滤波,输出和相位差相关的信号,实现对相位差的测量。
相敏检波器实验

实验八相敏检波器实验一、实验目的:了解相敏检波器的原理及工作情况。
二、基本原理:相敏检波器模块示意图如下所示,图中Vi为输入信号端,Vo为输出端,AC为交流参考电压输入端,DC为直流参考电压输入。
当有脉冲符号的两个端子为附加观察端。
三、需用器件与单元:移相器/相敏检波器/低通滤波器模块、音频振荡器、双踪示波器(自备)、直流稳压电源±15V、±2V、转速/频率表、数显电压表。
四、旋钮初始位置:转速/频率表置频率档,音频振荡器频率为4KHz左右,幅度置最小(逆时针到底),直流稳压电源输出置于±2V档。
五、实验步骤:1、了解移相器/相敏检波器/低通滤波器模块面板上的符号布局,接入电源±15V及地线。
2、根据如下的电路进行接线,将音频振荡器的信号0˚输出端和移相器及相敏检波器输入端Vi相接,把示波器两根输入线分别接至相敏检波器的输入端Vi和输出端Vo组成一个测量线路。
3、将主控台电压选择拨段开关拨至+2V档位,改变参考电压的极性(通过DC端输入+2V或者-2V),观察输入和输出波形的相位和幅值关系。
由此可得出结论,当参考电压为正时,输入和输出同相;当参考电压为负时,输入和输出反相。
4、调整好示波器,调整音频振荡器的幅度旋钮,示波器输出电压为峰-峰值4V,通过调节移相器和相敏检波器的电位器,使相敏检波器的输出Vo为全波整流波形。
六、思考题:根据实验结果,可以知道相敏检波器的作用是什么?移相器在实验线路中的作用是什么?(即参考端输入波形相位的作用)。
实验九交流全桥的应用——振动测量实验一、实验目的:了解利用交流电桥测量动态应变参数的原理与方法。
二、基本原理:对于交流应变信号用交流电桥测量时,桥路输出的波形为一调制波,不能直接显示其应变值,只有通过移相检波和滤波电路后才能得到变化的应变信号,此信号可以从示波器读得。
三、需用器件与单元:音频振荡器、低频振荡器、万用表(自备)、应变式传感器实验模块、移相/相敏检波/低通滤波器模块、振动源模块、示波器(自备)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 t
在检测系统中,通常就用测量信号作调制 信号。经过调制的载波信号叫已调信号。
6
7
a) 幅度调制(AM)
y(t ) [ Ax(t )]* cos(2 ft )
b) 频率调制(FM)
y(t ) A cos(2 [ f0 x(t )]* t )
c) 相位调制(PM)
专题:相敏检波
1
三、 调制解调电路
1 、调制解调的功用与类型 (1)在检测系统中为什么要采用信号调制? 在检测系统中,进入检测电路的除了传感器 输出的测量信号外,还往往有各种噪声。而传感 器的输出信号一般又很微弱,将测量信号从含有 噪声的信号中分离出来是检测电路的一项重要任 务。为了便于区别信号与噪声,往往给测量信号 赋予一定特征,这就是调制的主要功用。
3、频率调制与解调 调频就是用调制信号x去控制高频载波信号 的频率。常用的是线性调频,即让调频信号的频 率按调制信号x的线性函数变化。 调频信号us的一般表达式可写为:
x
us=Umcos(wc+mx)t
t a) 调制信号
1 & U 0 SU max (t ) cos 2 f 0t 4
& 经电桥调幅后,输出的信号 U & 上式表明,载波信号 U 0 幅值为 0.25SU max (t ) ,即余弦载波信号的幅值被应变 (t )所 调制。而且随着调制信号 (t ) 正负半周的改变,调幅波的 相位也随着改变:当调制信号 (t ) 为正时,调幅波与载波 同相;当 (t ) 为负时,调幅波与载波反相。
R R AV 1 W 1 W 1 R4 R3
) u(t相同,位于正半周的波形。 ) 输出信号 x0 (t波形是一个幅值与被调制信号 当u(t ) 0时,G导通,N1同相端接地,为低电平,调幅波xm (t ) 从N1反相端 输入,N1的放大倍数为: RW 51 AV 1 1.7 R3 30 20 输出信号 x0 (t ) 波形是一个幅值与被调制信号 u(t ) 相反且略大的,位于正 半周的波形。
13
(2) 解调原理
解调器不仅 能将交流输 入电压变成 与其幅值成 正比的直流 电压信号, 而且还能反 映交流输入 电压的相位 变化。
10/13/2018 14
a). 包络检波
从已调信号中检出调制信号的过程称为解 调或检波。幅值调制就是让已调信号的幅 值随调制信号的值变化,因此调幅信号的 包络线形状与调制信号一致。只要能检出 调幅信号的包络线即能实现解调。这种方 法称为包络检波。
10/13/2018 19
波相敏检波电路例实例
N2为过零比较器,载 波信号 uc (t ) 经过N2 后转换为方波信号 u(t ) 。D为开关二极管, 将N2输出的方波信号u(t ) 加在场效应管G上。
当 u(t ) 0 时,G截止,N1同相端高电平,调幅波 xm (t )从N1同相端和反相 端同时输入,N1的放大倍数为:
例:交流电桥
R1
U cos 2 f t U max 0
R3
U cos 2 f t U max 0VinFra bibliotekVoR2
R4
12
应变电阻的电阻变化量和被测外力引起的应变 (t ) 之间 的关系为:
R S (t ) R
式中,S:应变片的灵敏度系数; R:应变片初始电阻值。 所以有:
10/13/2018
15
10/13/2018
16
b). 相敏检波
包络检波有两个问题: 一是解调的主要过程是对调幅信号进行半波或 全波整流,无法从检波器的输出鉴别调制信号 的相位。 二是包络检波电路本身不具有区分不同载波频 率的信号的能力。对于不同载波频率的信号它 都以同样方式对它们整流,以恢复调制信号, 这就是说它不具有鉴别信号的能力。为了使检 波电路具有判别信号相位和频率的能力,提高 抗干扰能力,需采用相敏检波电路。 相敏检波电路是具有鉴相和选频能力的检波电 路。
10/13/2018 17
10/13/2018
18
相敏检波与包络检波的主要区别 相敏检波电路能够鉴别调制信号相位,从而 判别被测量变化的方向。 相敏检波电路具有选频的能力,从而提高测 控系统的抗干扰能力。 从电路结构上看,相敏检波电路的主要特点 是,除了所需解调的调幅信号外,还要输入 一个参考信号。有了参考信号就可以用它来 鉴别输入信号的相位和频率。
y(t ) A cos(2 ft [0 x(t )]*)
8
载波信号:由一列占空比不同的矩形脉冲构成。
脉冲宽度调制电路:
9
2 、幅度调制与解调
(1)调制原理
调幅是将一个高频正弦信号(或称载波)与测 试信号相乘,使载波信号幅值随测试信号的变 化而变化.
y(t ) [ A0 * x(t )]cos(2 f0t )
调制
缓变信号 高频信号
放大
放大高 频信号
解调
放大缓 变信号
10
幅度调制与解调过程(波形分析)
X(t)
乘法器
Y(t)
X m(t)
放大器
乘法器
Y(t)
滤波器
x(t)
10/13/2018 11
幅度调制实例
先将微弱的缓变信号加载到高频交流信号 中去,然后利用交流放大器进行放大,最后 再从放大器的输出信号中取出放大了的缓变 信号。
2
(2)什么是信号调制?
调制就是用一个信号(测量信号)(称为调制信号
)去控制另一个做为载体的信号(称为载波信号
),让后者(载波信号)的某一特征参数按前者
(调制信号)变化。 (3)什么是解调? 在将测量信号调制,并将它和噪声分离,放 大等处理后,还要从已经调制的信号中提取反映
被测量值的测量信号,这一过程称为解调。
3
调制解调电路的作用:
4
(4)调制信号、载波信号、已调信号
调制是给测量信号赋予一定特征,这个 特征由作为载体的信号提供。常以一个 高频正弦信号或脉冲信号作为载体,这 个载体称为载波信号。
载波信号
z (t ) A cos(2ft )
z(t)
0 t
5
10/13/2018
用来改变载波信号的某一参数,如幅值、 频率、相位的信号称为调制信号。