用SPSS做回归分析
SPSS回归分析过程详解

线性回归的假设检验
01
线性回归的假设检验主要包括拟合优度检验和参数显著性 检验。
02
拟合优度检验用于检验模型是否能够很好地拟合数据,常 用的方法有R方、调整R方等。
1 2
完整性
确保数据集中的所有变量都有值,避免缺失数据 对分析结果的影响。
准确性
核实数据是否准确无误,避免误差和异常值对回 归分析的干扰。
3
异常值处理
识别并处理异常值,可以使用标准化得分等方法。
模型选择与适用性
明确研究目的
根据研究目的选择合适的回归模型,如线性回 归、逻辑回归等。
考虑自变量和因变量的关系
数据来源
某地区不同年龄段人群的身高 和体重数据
模型选择
多项式回归模型,考虑X和Y之 间的非线性关系
结果解释
根据分析结果,得出年龄与体 重之间的非线性关系,并给出 相应的预测和建议。
05 多元回归分析
多元回归模型
线性回归模型
多元回归分析中最常用的模型,其中因变量与多个自变量之间存 在线性关系。
非线性回归模型
常见的非线性回归模型
对数回归、幂回归、多项式回归、逻辑回归等
非线性回归的假设检验
线性回归的假设检验
H0:b1=0,H1:b1≠0
非线性回归的假设检验
H0:f(X)=Y,H1:f(X)≠Y
检验方法
残差图、残差的正态性检验、异方差性检验等
非线性回归的评估指标
判定系数R²
SPSS回归分析

SPSS回归分析SPSS(统计包统计软件,Statistical Package for the Social Sciences)是一种强大的统计分析软件,广泛应用于各个领域的数据分析。
在SPSS中,回归分析是最常用的方法之一,用于研究和预测变量之间的关系。
接下来,我将详细介绍SPSS回归分析的步骤和意义。
一、回归分析的定义和意义回归分析是一种对于因变量和自变量之间关系的统计方法,通过建立一个回归方程,可以对未来的数据进行预测和预估。
在实际应用中,回归分析广泛应用于经济学、社会科学、医学、市场营销等领域,帮助研究人员发现变量之间的关联、预测和解释未来的趋势。
二、SPSS回归分析的步骤1. 导入数据:首先,需要将需要进行回归分析的数据导入SPSS软件中。
数据可以以Excel、CSV等格式准备好,然后使用SPSS的数据导入功能将数据导入软件。
2. 变量选择:选择需要作为自变量和因变量的变量。
自变量是被用来预测或解释因变量的变量,而因变量是我们希望研究或预测的变量。
可以通过点击"Variable View"选项卡来定义变量的属性。
3. 回归分析:选择菜单栏中的"Analyze" -> "Regression" -> "Linear"。
然后将因变量和自变量添加到正确的框中。
4.回归模型选择:选择回归方法和模型。
SPSS提供了多种回归方法,通常使用最小二乘法进行回归分析。
然后,选择要放入回归模型的自变量。
可以进行逐步回归或者全模型回归。
6.残差分析:通过检查残差(因变量和回归方程预测值之间的差异)来评估回归模型的拟合程度。
可以使用SPSS的统计模块来生成残差,并进行残差分析。
7.结果解释:最后,对回归结果进行解释,并提出对于研究问题的结论。
要注意的是,回归分析只能描述变量之间的关系,不能说明因果关系。
因此,在解释回归结果时要慎重。
第九章 SPSS的线性回归分析

第九章 SPSS的线性回归分析线性回归分析是一种常用的统计方法,用于探索自变量与因变量之间的线性关系。
在SPSS中,进行线性回归分析可以帮助研究者了解变量之间的关系,并预测因变量的数值。
本文将介绍如何在SPSS中进行线性回归分析,并解释如何解释结果。
一、数据准备。
在进行线性回归分析之前,首先需要准备好数据。
在SPSS中,数据通常以数据集的形式存在,可以通过导入外部文件或手动输入数据来创建数据集。
确保数据集中包含自变量和因变量的数值,并且数据的质量良好,没有缺失值或异常值。
二、进行线性回归分析。
在SPSS中进行线性回归分析非常简单。
首先打开SPSS软件,然后打开已经准备好的数据集。
接下来,依次点击“分析”-“回归”-“线性”,将自变量和因变量添加到相应的框中。
在“统计”选项中,可以选择输出各种统计信息,如残差分析、离群值检测等。
点击“确定”按钮后,SPSS会自动进行线性回归分析,并生成相应的结果报告。
三、解释结果。
线性回归分析的结果报告包括了各种统计信息和图表,需要仔细解释和分析。
以下是一些常见的统计信息和图表:1. 相关系数,线性回归分析的结果报告中通常包括了自变量和因变量之间的相关系数,用来衡量两个变量之间的线性关系强度。
相关系数的取值范围为-1到1,接近1表示两个变量呈正相关,接近-1表示呈负相关,接近0表示无相关。
2. 回归系数,回归系数用来衡量自变量对因变量的影响程度。
回归系数的符号表示自变量对因变量的影响方向,系数的大小表示影响程度。
在结果报告中,通常包括了回归系数的估计值、标准误、t值和显著性水平。
3. 残差分析,残差是因变量的观测值与回归方程预测值之间的差异,残差分析可以用来检验回归模型的拟合程度。
在结果报告中,通常包括了残差的分布图和正态概率图,用来检验残差是否符合正态分布。
4. 变量间关系图,在SPSS中,可以生成自变量和因变量之间的散点图和回归直线图,用来直观展示变量之间的线性关系。
回归分析spss

回归分析spss回归分析是一种常用的统计方法,用于探究变量之间的关系。
它通过建立一个数学模型,通过观察和分析实际数据,预测因变量与自变量之间的关联。
回归分析可以帮助研究者得出结论,并且在决策制定和问题解决过程中提供指导。
在SPSS(统计包括在社会科学中的应用)中,回归分析是最常用的功能之一。
它是一个强大的工具,用于解释因变量与自变量之间的关系。
在进行回归分析之前,我们需要收集一些数据,并确保数据的准确性和可靠性。
首先,我们需要了解回归分析的基本概念和原理。
回归分析基于统计学原理,旨在寻找自变量与因变量之间的关系。
在回归分析中,我们分为两种情况:简单回归和多元回归。
简单回归适用于只有一个自变量和一个因变量的情况,多元回归适用于多个自变量和一个因变量的情况。
在进行回归分析之前,我们需要确定回归模型的适用性。
为此,我们可以使用多种统计性检验,例如检验线性关系、相关性检验、多重共线性检验等。
这些检验可以帮助我们判断回归模型是否适用于收集到的数据。
在SPSS中进行回归分析非常简单。
首先,我们需要打开数据文件,然后选择“回归”功能。
接下来,我们需要指定自变量和因变量,并选择适当的回归模型(简单回归或多元回归)。
之后,SPSS将自动计算结果,并显示出回归方程的参数、标准误差、显著性水平等。
在进行回归分析时,我们需要关注一些重要的统计指标,例如R方值、F值和P值。
R方值表示自变量对因变量的解释程度,它的取值范围在0到1之间,越接近1表示模型的拟合效果越好。
F值表示回归模型的显著性,P值则表示自变量对因变量的影响是否显著。
我们通常会将P值设定为0.05作为显著性水平,如果P值小于0.05,则我们可以认为自变量对因变量有显著影响。
此外,在回归分析中,我们还可以进行一些额外的检验和分析。
比如,我们可以利用残差分析来检查回归模型的拟合优度,以及发现可能存在的异常值和离群点。
此外,我们还可以进行变量选择和交互效应的分析。
如何使用统计软件SPSS进行回归分析

如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。
SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。
本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。
一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。
将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。
1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。
此时数据文件将被导入到SPSS的数据编辑器中。
2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。
可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。
3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。
可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。
二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。
1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。
2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。
可以使用SPSS的“逐步回归”功能来进行自动选择变量。
3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。
点击“确定”即可建立回归模型。
三、结果解释在进行回归分析后,需要对结果进行解释和验证。
1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。
2. 检验回归系数:回归系数表示自变量对因变量的影响程度。
通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。
标准化的回归系数 spss

标准化的回归系数 spss在统计学中,回归系数是回归方程中自变量的系数,它表示因变量每单位变化时,自变量相应变化的程度。
在SPSS软件中,进行回归分析后,我们可以得到回归系数的估计值。
本文将介绍如何在SPSS中进行回归分析,并解释标准化的回归系数的含义和应用。
在SPSS中进行回归分析,首先需要导入数据,并选择“回归”分析。
在“回归”对话框中,将因变量和自变量添加到相应的框中。
在“统计”选项中,勾选“标准化系数”以获取标准化的回归系数。
点击“确定”后,SPSS将输出回归分析的结果,其中包括标准化的回归系数。
标准化的回归系数是指在进行回归分析时,对自变量和因变量进行标准化处理后得到的回归系数。
标准化处理可以消除不同变量之间的量纲影响,使得回归系数可以直接比较不同变量对因变量的影响程度。
标准化的回归系数的计算公式为,标准化系数=回归系数×(自变量标准差/因变量标准差)。
标准化的回归系数的绝对值表示自变量对因变量的影响程度,而正负号表示自变量对因变量的影响方向。
当标准化系数的绝对值越大时,自变量对因变量的影响越大;当标准化系数为正时,自变量和因变量呈正相关关系,为负时呈负相关关系。
标准化的回归系数在实际应用中具有重要意义。
首先,它可以帮助我们理解自变量对因变量的影响程度,从而进行变量的重要性排序。
其次,标准化系数可以用来比较不同变量对因变量的影响,找出对因变量影响最大的自变量。
此外,标准化系数还可以用来进行跨样本的比较,因为它消除了不同样本之间的量纲差异。
在解释回归分析的结果时,我们通常会关注标准化的回归系数。
通过解释标准化系数,我们可以清晰地说明自变量对因变量的影响程度和方向,从而为决策提供依据。
在学术研究和商业决策中,标准化的回归系数都扮演着重要的角色。
总之,标准化的回归系数是回归分析中的重要指标,它可以帮助我们理解自变量对因变量的影响程度和方向。
在SPSS中进行回归分析时,我们可以轻松获取标准化的回归系数,并通过解释它们来深入理解变量之间的关系。
如何使用统计软件SPSS进行回归分析

如何使用统计软件SPSS进行回归分析一、本文概述在当今的数据分析领域,回归分析已成为了一种重要的统计方法,广泛应用于社会科学、商业、医学等多个领域。
SPSS作为一款功能强大的统计软件,为用户提供了进行回归分析的便捷工具。
本文将详细介绍如何使用SPSS进行回归分析,包括回归分析的基本原理、SPSS 中回归分析的操作步骤、结果解读以及常见问题的解决方法。
通过本文的学习,读者将能够熟练掌握SPSS进行回归分析的方法和技巧,提高数据分析的能力,更好地应用回归分析解决实际问题。
二、SPSS软件基础SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)是一款广泛应用于社会科学领域的数据分析软件,具有强大的数据处理、统计分析、图表制作等功能。
对于回归分析,SPSS 提供了多种方法,如线性回归、曲线估计、逻辑回归等,可以满足用户的不同需求。
在使用SPSS进行回归分析之前,用户需要对其基本操作有一定的了解。
打开SPSS软件后,用户需要熟悉其界面布局,包括菜单栏、工具栏、数据视图和变量视图等。
在数据视图中,用户可以输入或导入需要分析的数据,而在变量视图中,用户可以定义和编辑变量的属性,如变量名、变量类型、测量级别等。
在SPSS中进行回归分析的基本步骤如下:用户需要选择“分析”菜单中的“回归”选项,然后选择适当的回归类型,如线性回归。
接下来,用户需要指定自变量和因变量,可以选择一个或多个自变量,并将它们添加到回归模型中。
在指定变量后,用户还可以设置其他选项,如选择回归模型的类型、设置显著性水平等。
完成这些设置后,用户可以点击“确定”按钮开始回归分析。
SPSS将自动计算回归模型的系数、标准误、显著性水平等统计量,并生成相应的输出表格和图表。
用户可以根据这些结果来评估回归模型的拟合优度、预测能力以及各自变量的贡献程度。
除了基本的回归分析功能外,SPSS还提供了许多高级选项和工具,如模型诊断、变量筛选、多重共线性检测等,以帮助用户更深入地理解和分析回归模型。
SPSS的线性回归分析分析

SPSS的线性回归分析分析SPSS是一款广泛用于统计分析的软件,其中包括了许多功能强大的工具。
其中之一就是线性回归分析,它是一种常用的统计方法,用于研究一个或多个自变量对一个因变量的影响程度和方向。
线性回归分析是一种用于解释因变量与自变量之间关系的统计技术。
它主要基于最小二乘法来评估自变量与因变量之间的关系,并估计出最合适的回归系数。
在SPSS中,线性回归分析可以通过几个简单的步骤来完成。
首先,需要加载数据集。
可以选择已有的数据集,也可以导入新的数据。
在SPSS的数据视图中,可以看到所有变量的列表。
接下来,选择“回归”选项。
在“分析”菜单下,选择“回归”子菜单中的“线性”。
在弹出的对话框中,将因变量拖放到“因变量”框中。
然后,将自变量拖放到“独立变量”框中。
可以选择一个或多个自变量。
在“统计”选项中,可以选择输出哪些统计结果。
常见的选项包括回归系数、R方、调整R方、标准误差等。
在“图形”选项中,可以选择是否绘制残差图、分布图等。
点击“确定”后,SPSS将生成线性回归分析的结果。
线性回归结果包括多个重要指标,其中最重要的是回归系数和R方。
回归系数用于衡量自变量对因变量的影响程度和方向,其值表示每个自变量单位变化对因变量的估计影响量。
R方则反映了自变量对因变量变异的解释程度,其值介于0和1之间,越接近1表示自变量对因变量的解释程度越高。
除了回归系数和R方外,还有其他一些统计指标可以用于判断模型质量。
例如,标准误差可以用来衡量回归方程的精确度。
调整R方可以解决R方对自变量数量的偏向问题。
此外,SPSS还提供了多种工具来检验回归方程的显著性。
例如,可以通过F检验来判断整个回归方程是否显著。
此外,还可以使用t检验来判断每个自变量的回归系数是否显著。
在进行线性回归分析时,还需要注意一些统计前提条件。
例如,线性回归要求因变量与自变量之间的关系是线性的。
此外,还需要注意是否存在多重共线性,即自变量之间存在高度相关性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结果说明——回归系数分析:
1. Model 为回归方程模型编号 2. Unstandardized Coefficients 为非标准化系数,B为系数值, Std.Error为系数的标准差 3. Standardized Coefficients 为标准化系数 4. t 为t检验,是偏回归系数为0(和常数项为0)的假设检验 5. Sig. 为偏回归系数为0 (和常数项为0)的假设检验的显著性 水平值 6. B 为Beta系数,Std.Error 为相应的标准差
从而用以进行预测或控制,达到指导生产活动的目的。
例1、某医学研究所对30个不同年龄的人的血压(高 压)进行了测量,得到如下数据:
年龄 血压 年龄 血压 39 47 45 47 65 45 67 42 67 56 36 50 39 21 44 144 120 138 145 162 142 170 124 158 154 136 142 120 120 116 64 56 59 34 42 48 45 17 20 19 53 63 29 25 69
xi yi
y 106.3094 1.7172ln x
112
首先绘出散点图:
步骤: Graphs →Scatter… →Simple
111
110
109
108
¿ ¬ Á ʺ ð ô ½
0 10 20
107 106
à À ¾ ë
根据散点图的形态可以认为变量X与Y之间具 有对数曲线类型的回归方程:
X4 27. 38. 20. 99. 43. 33. 46. 78. 52. 22. 39. 28. 46. 59. 70. 52. 38. 32.
1.初步分析(作图观察)
1) 按Graphs→Scatter →Simple顺序展开对话框 2) 将y选入Y Axis,然后将其余变量逐个选入X Axis , 绘出散点图,观察是否适宜用线性方程来拟合。
y a b ln x
操作步骤:Analyze→Regression →Curve Estimation… 通过点击右键观看选择适当的 类型:Logarithmic 结果如右:
由图易知,结果 方程与书上结果 有差距 y 106.707 1.3834ln x
通过对图形仔细分析,可以发现X=14时, Y=106.62导致图形剧烈变化!
结果:
y 0.0472 0.3389 x 2 0.0019
F 117.1282 F0.01 (1, 8) 11.26 R 0.9675 R0.01 (8) 0.765
检验说明线性关系显著
操作步骤:Analyze→Regression →Linear… →Statistics→Model fit Descriptives
多元线性回归
一、简介 在现实生活中,客观事物常受多种因素影响,我 们记录下相应数据并加以分析,目的是为了找出对我 们所关心的指标(因变量)Y有影响的因素(也称自变 量或回归变量)x1、x2、…、xm,并建立用x1、x2、…、 xm预报Y的经验公式:
ˆ f ( x , x ,, x ) b b x b x b x Y 1 2 m 0 1 1 2 2 m m
结合SPSS的曲线模型选择:
操作步骤:Analyze→Regression →Curve Estimation…
鼠标在选项上点击右键可看到相应模型类型
例.
测量13个样品中某种金属含量Y与该样品采集点距 中心观测点的距离X,有如下观测值:
2 3 4 5 7 8 10 106.4 108.2 109.5 109.5 110.0 109.9 110.4 2 0 8 0 0 3 9 xi 11 14 15 16 18 19 yi Y关于 110.5 106.6 110.9 110.7 111.0 111.2 求 X的关系式。 9 2 0 6 0 0
逐步回归——变量选择问题
在实际问题中,影响因变量Y的因素(自变量)可 能很多。在回归方程中,如果漏掉了重要因素,则会 产生大的偏差;但如果回归式中包含的因素太多,则 不仅使用不便,且可能影响预测精度。如何选择适当 的变量,建立最优的回归方程呢? 在最优的方程中,所有变量对因变量Y的影响都应 该是显著的,而所有对Y影响不显著的变量都不包含 在方程中。选择方法主要有:
二、多元线性回归
ˆ f ( x , x ,, x ) b b x b x b x Y 1 2 n 0 1 1 2 2 m m
1. 参数估计方法——最小二乘法
2. 回归方程显著性的检验——就是检验以下假设是 否成立(采用方差分析法):
H0 : b0 b1 b2 bm 0
162 150 140 110 128 130 135 114 116 124 158 144 130 125 175
以年龄为自变量x, 血压为因变量y,可 作出如下散点图:
为了判断经验公式是否可用线性函数来拟合,可以 画出散点图观察。其方法如下:
改变显示格式
双击
改变坐标轴的显示
从散点图可以 看出年龄与血 压有线性关系:
ˆ y ˆ y y y y y
2 2 i i i i i 1 i 1 i 1 n
方差分析的主要思
ESS MSS
误差平方和
模型平方和
如果自变量对Y的影响显著,则总方差主要应由xi 引起,也就是原假设不成立,从而检验统计量为: MSS k MMS(模型均方 ) F ESS ( m k 1) EMS(均方误差 ) 多元线性回归的方差分析表: 方差来 源 自变量 随机误 差 和 自由度 m n-m-1 n-1 平方和 MSS ESS TSS 均方 MMS EMS F MMS —— EMS p值 p
结果说明——方差分析:
1. Sum of Squares为回归平方和(Regression)、残差平方和 (Residual)、总平方和(Total) 2. df 为自由度 3. Mean Square 4. F 5. Sig 为大于F的概率,其值为0.000,拒绝回归系数为0的原假 设:b0=b1=0——即认为回归方程显著性成立
例. 《概率论与数理统计》P280 例9.3.1
在汽油中加入两种化学添加剂,观察它们对汽车消 耗1公升汽油所行里程的影响,共进行9次试验,得到 里程Y与两种添加剂用量X1、X2之间数据如下: xi1 0 1 0 1 2 0 2 3 1 xi2 0 0 1 1 0 2 2 1 3 yi 15.8 16.0 15.9 16.2 16.5 16.3 16.8 17.4 17.2 试求里程Y关于X1、X2的经验线性回归方程,并求 误差方差σ2的无偏估计值。
为了求得经验公式, 可通过如下步骤进 行:
当自变量和 因变量选好 后,点击 OK 键
结果说明——常用统计量:
P (1 R 2 ) R R N P 1 ( P为 自 变 量 个 数 , N为 样 本 数 )
2 a 2
1. Model为回归方程模型编号(不同方法对应不同模型) 2. R为回归方程的复相关系数 3. R Square即R2系数,用以判断自变量对因变量的影响有 多大,但这并不意味着越大越好——自变量增多时,R2 系数会增大,但模型的拟合度未必更好 4. Adjusted R Square即修正R2,为了尽可能确切地反映模 型的拟合度,用该参数修正R2系数偏差,它未必随变量 个数的增加而增加 5. Std. Error of the Estimate是估计的标准误差
Y 309.0 400.0 454.0 520.0 516.0 459.0 531.0 558.0 607.0 541.0 597.0 558.0 619.0 618.0 742.0 805.0 859.0 855.0 X1 137.0 148.0 154.0 157.0 153.0 151.0 151.0 154.0 155.0 155.0 156.0 155.0 157.0 156.0 159.0 164.0 164.0 156.0 X2 4.0 6.0 10.0 18.0 13.0 10.0 15.0 16.0 27.0 36.0 46.0 47.0 48.0 60.0 96.0 191.0 186.0 195.0 X3 15.0 26.0 33.0 38.0 41.0 39.0 37.0 38.0 44.0 51.0 53.0 51.0 51.0 52.0 52.0 57.0 68.0 74.0
结果:
y 15.6468 0.4139 x1 0.3139 x2 2 0.0387 F 30.6202 F0.01 (2, 6) 10.92 R 0.9543
检验说明线性关系显著
三、非线性回归
在实际问题中,常会遇到变量之间关系不是线性的 相关关系,而是某种曲线的非线性相关关系。此时首 先要确定回归函数的类型,其原则是: 1. 根据问题的专业知识或经验确定 2. 根据观测数据的散点图确定 常选曲线类型: 双曲线、幂函数曲线、对数曲线、指数曲线、 倒数指数曲线、S形曲线
•逐步筛选法(STEPWISE) (最常用) •向前引入法(FORWARD) •向后剔除法(BACKWARD)等
逐步回归的基本思想和步骤:
开始 对不在方程中的变 量考虑能否引入? 能 否 筛选结束
引入变量
否 对已在方程中的变 量考虑能否剔除? 能 剔除变量
例2、大春粮食产量的预报模型
某地区大春 粮食产量 y 和大春粮食 播种面积x1、 化肥用量x2、 肥猪发展头 数x3、水稻 抽穗扬花期 降雨量x4的 数据如下表, 寻求大春粮 食产量的预 报模型。
3. 结果分析
被引入与被剔除的变量
回归方程模型编号 引入回归方程的自变量名称 从回归方程被剔除的自变量名称 回归方程中引入或剔除自变量的依据
常用统计量