随机数序列的产生方法
随机数序列的产生方法

一.随机数的概念与产生 在连续型随机变量的分布中,最常用、最 基础的随机数是在(0,1)区间内均匀分布的 随机数(简记为RND)。由该分布抽取的简单 子样称为随机数序列,其中每一个体称为随 机数。
一般采用某种数值计算方法产生随机数序列, 在计算机上运算来得到. 通常是利用递推公式:
舍选法原理分析:
设P{a<Z<b}=1,Z的概率密度为f(z), (A).选常数λ,使λf(z)≤1,z∈(a,b); (B).随机变量X1,X2相互独立Xi~U(0, 1), 令 Y1=a+(b-a)X1~U(a, b); (C).若X2≤λf(Y1),则令 X = Y1,否则剔除 X1,X2重复到(2)。 则随机变量X的分布与Z相同。
优点:一种普通而适用的方法; 缺点: 当反函数不存在或难以求出时, 不适合使用。
2.舍选法 基本思想:实质上是从许多RND随机数 中选出一部分, 使之成为具有给定分布的 随机数. 设随机变量X的概率密度函数为f(x),存 在实数 a<b,使 P{a<X<b}=1。
步骤:
(1) 选取常数λ,使λf(x)<1,x∈(a, b); (2) 产生两个RND 随机数r1 、r2,令 y= a+(b-a)r1 ; (3) 若 r2≤λf(y),则令x=y, 否则剔除 r1和r2, 重返步骤(2). (4)重复循环, 产生的随机数x1,x2,…,xN 的分布由概率函数 f(x) 确定.
证明 : FZ(z)= P{F-1(X) ≤ z}= P{X≤F(z)}
=G(F(z)) = F(z)
因G(x)是随机变量X 的分布函数:
0, G( x) x, 1, x 0; 0 x 1; 1 x.
随机数的生成方法

常 用 方 法 乘同余法 混合同余法 M xn+1 (modulus), ), λxn 余
1.乘同余法 .
x n + 1 ≡ λx n (mod M ) rn = x n M
λ M 乘 ,M 同余 x0 (
r1,r2,…, , 即在(0, 1)上均匀分布的随机数序列 即在 上均匀分布的随机数序列. 上均匀分布的随机数序列 例2 取x0=1,λ=7,M=103,有 , , λx0=7×1=7 , x1=7 , r1=7/1000=0.007 × λx1=7×7=49 , x2=49 , r2=49/1000=0.049 × λx2=7×49=343 , x3=343 ,r3=343/1000=0.343 × λx3=7×343=2401 , x4=401 , × 其余类推. 其余类推 r4=401/1000=0.401 λx4=7×401=2807, x5=807 , r5=807/1000=0.807 ×
- (2) 若 P(n-1)<r≤P(n) ,则令 取值为 n. 则令X 取值为x 离散型随机变量X的分布律如下 例3 离散型随机变量 的分布律如下
X=x 0 P(x) 0.3
1 0.3
2 0.4
随机数, 设r1,r2,…,rN是RND随机数,令 , 随机数
0, xi = 1, 2,
取定种子x 取定种子 0=71,得 , 97x0+3=6890, x1=890, r1=0.890 , , 97x1+3=86333, x2=333, r2=0.333 , ,
97x2+3=32304, x3=304, r3=0.304 , , 97x3+3=29491, x4=491, r4=0.491 , , 97x4+3=47830, x5=630, r5=0.630 , , 余类推,接下来的随机数是: 余类推,接下来的随机数是: 0.113,0.964,0.511,0.570,0.293,0.424, , , , , , , 0.131,0.710,0.873,0.684,0.351,0.050, , , , , , , 0.853… 有下述问题: 有下述问题: 是有周期的, 1.数列 n}是有周期的,周期 数列{r 是有周期的 周期L≤M(模数); 数列 (模数) 个相异值, 因0≤xn≤M,数列 n}最多有 M个相异值, ,数列{x 最多有 个相异值 从而{r 也同样如此 也同样如此. 从而 n}也同样如此
随机序列的产生方法

概率论与数理统计小报告随机序列的产生方法随机数由具有已知分布的总体中抽取简单子样,在蒙特卡罗方法中占有非常重要的地位。
总体和子样的关系,属于一般和个别的关系,或者说属于共性和个性的关系。
由具有已知分布的总体中产生简单子样,就是由简单子样中若干个性近似地反映总体的共性。
随机数是实现由已知分布抽样的基本量,在由已知分布的抽样过程中,将随机数作为已知量,用适当的数学方法可以由它产生具有任意已知分布的简单子样。
1.随机数的定义及产生方法1).随机数的定义及性质在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。
由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。
单位均匀分布也称为[0,1]上的均匀分布,其分布密度函数为:分布函数为 :由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。
由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。
也就是说,独立性、均匀性是随机数必备的两个特点。
随机数具有非常重要的性质:对于任意自然数s ,由s 个随机数组成的s 维空间上的点(ξn+1,ξn+2,…ξn+s )在s 维空间的单位立方体Gs 上均匀分布,即对任意的ai , 如下等式成立: 其中P (·)表示事件·发生的概率。
反之,如果随机变量序列ξ1, ξ2…对于任意自然数s ,由s 个元素所组成的s 维空间上的点(ξn+1,…ξn+s )在Gs 上均匀分布,则它们是随机数序列。
由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。
2).随机数表为了产生随机数,可以使用随机数表。
随机数表是由0,1,…,9十个数字组成,每个数字以0.1的等概率出现,数字之间相互独立。
这些数字序列叫作随机数字序列。
如果要得到n 位有效数字的随机数,只需将表中每n 个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。
随机信号分析实验:随机序列的产生及数字特征估计

实验一 随机序列的产生及数字特征估计实验目的1. 学习和掌握随机数的产生方法。
2. 实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky y y nn n n ===-) (mod ,110 (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了(1.1)式的3组常用参数:① 1010=N ,7=k ,周期7105⨯≈;②(IBM 随机数发生器)312=N ,3216+=k ,周期8105⨯≈; ③(ran0)1231-=N ,57=k ,周期9102⨯≈;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理1.1 若随机变量X 具有连续分布函数)(x F X ,而R 为(0,1)均匀分布随机变量,则有)(1R F X X -= (1.2)由这一定理可知,分布函数为)(x F X 的随机数可以由(0,1)均匀分布随机数按(1.2)式进行变换得到。
2.MATLAB 中产生随机序列的函数 (1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
随机数生成公式

随机数生成公式随机数生成公式是一种计算机程序中常用的技术,可以生成随机的数字,用于模拟和实验等场景中。
本文将介绍几种常见的随机数生成公式及其应用场景。
一、线性同余法(Linear Congruential Method)线性同余法是一种简单而又高效的随机数生成方法,其公式为:Xn+1 = (aXn + c) mod m其中Xn为当前随机数,a、c、m为常数,mod为模运算符。
该公式的原理是通过不断迭代计算,每次得到一个新的随机数。
该方法的优点是计算速度快,缺点是会产生周期性重复的随机数序列。
该方法常用于模拟和实验场景中。
二、梅森旋转算法(Mersenne Twister)梅森旋转算法是一种广泛应用的随机数生成方法,其公式为:Xn+1 = Xn⊕(Xn >> u)其中Xn为当前随机数,⊕为异或运算符,>>为右移运算符,u为常数。
该公式的原理是通过对当前随机数进行位运算,得到一个新的随机数。
该方法的优点是生成的随机数序列较为均匀,缺点是计算速度较慢。
该方法常用于加密和安全场景中。
三、高斯分布随机数生成公式(Gaussian Distribution)高斯分布随机数生成公式是一种生成符合正态分布(高斯分布)的随机数的方法,其公式为:X = μ + σ * Z其中μ为均值,σ为标准差,Z为符合标准正态分布的随机数。
该公式的原理是通过对标准正态分布进行线性变换,得到符合正态分布的随机数。
该方法的优点是生成的随机数符合实际分布规律,缺点是计算量较大。
该方法常用于金融和统计场景中。
四、指数分布随机数生成公式(Exponential Distribution)指数分布随机数生成公式是一种生成符合指数分布的随机数的方法,其公式为:X = -ln(U) / λ其中U为符合均匀分布的随机数,ln为自然对数函数,λ为指数分布的参数。
该公式的原理是通过对均匀分布进行变换,得到符合指数分布的随机数。
随机数讲解

随机数讲解随机数是指一个数列,其中的每个数是按照一定的规则排列的,看起来像是没有规律可循的。
在计算机科学中,随机数是非常重要的概念,它被应用于众多领域,例如密码学、模拟实验、数据分析等。
本文将从随机数的定义、分类、特性、产生方法、应用等方面进行讲解,以帮助读者更好地理解和应用随机数。
首先,让我们来了解什么是随机数。
随机数(Random Number)通常是指在一定范围内等可能地取得各个数值的数列。
按照这个定义,随机数具有以下特性:1.不可预测性:随机数的出现是随机的,没有规律可循,无法事先预测;2.均匀性:理想情况下,随机数应该是均匀分布的,即每个数值出现的概率相等;3.独立性:随机数之间应相互独立,前一个数的出现不应对后一个数的出现产生影响。
根据生成方法的不同,随机数可以分为伪随机数和真随机数。
伪随机数是通过算法和初始种子生成的,虽然看起来像是随机的,但实质上是重复周期性的。
真随机数则是通过物理过程产生的,例如大气噪声、放射性衰变等不可预测的事件。
本文将主要介绍伪随机数。
伪随机数的生成方法有很多种,常见的有线性同余法、离散均匀分布法和高斯分布法等。
其中,线性同余法是最常用的一种方法。
它的基本原理是通过迭代计算,在一定范围内产生一系列看起来随机的数值。
具体的计算公式为:X(n+1) = (a * X(n) + b) mod m其中,X(n)是当前随机数,X(n+1)是下一个随机数,a、b和m是常数。
通过调整这些参数的值,可以得到不同范围和分布的随机数。
随机数的应用非常广泛,下面是其中几个常见的应用领域:1.密码学:随机数在密码学中扮演着非常重要的角色,用于生成加密密钥、初始化向量等。
因为随机数具有不可预测性和均匀性,所以在密码学中可以保证密钥的安全性和难以破解性。
2.模拟实验:随机数在模拟实验中起到重要的作用,用于生成仿真数据、模拟实验的随机变量等。
通过引入随机数,可以使得模拟结果更加真实且具有统计学意义。
Excel高级函数RAND和RANDBETWEEN的随机数生成

Excel高级函数RAND和RANDBETWEEN的随机数生成在Excel中,有很多强大的函数可以用来生成随机数。
其中,RAND函数和RANDBETWEEN函数是两个常用的函数。
本文将介绍Excel中RAND函数和RANDBETWEEN函数的详细用法,以及如何利用它们生成随机数。
一、RAND函数的用法RAND函数是Excel中用于生成0到1之间的随机数的函数。
使用方法如下:1. 在要生成随机数的单元格中输入"=RAND()";2. 按下回车键,单元格将显示一个0到1之间的随机数。
示例:在A1单元格中输入"=RAND()",按下回车键,A1单元格将显示一个0到1之间的随机数。
二、RANDBETWEEN函数的用法RANDBETWEEN函数是Excel中用于生成指定范围内整数的随机数的函数。
使用方法如下:1. 在要生成随机数的单元格中输入"=RANDBETWEEN(下界, 上界)";2. 按下回车键,单元格将显示一个介于下界和上界之间的随机整数。
示例:在A1单元格中输入"=RANDBETWEEN(1, 100)",按下回车键,A1单元格将显示一个介于1和100之间的随机整数。
三、利用RAND和RANDBETWEEN函数生成随机数序列除了单个随机数的生成,我们还可以利用RAND和RANDBETWEEN函数生成随机数序列。
具体方法如下:1. 在第一个单元格(例如A1单元格)中输入"=RAND()"或"=RANDBETWEEN(下界, 上界)";2. 拖动填充手柄(位于单元格右下角)向下拖动,填充需要生成随机数的单元格。
示例:在A1单元格中输入"=RAND()",拖动填充手柄向下拖动,可以生成一列随机数。
四、控制RAND和RANDBETWEEN函数的随机数范围有时候,我们希望生成的随机数范围不仅仅是0到1或者指定的整数范围。
各种分布的随机数生成算法

各型分布随机数的产生算法随机序列主要用概率密度函数(PDF〃Probability Density Function)来描述。
一、均匀分布U(a,b)⎧1x∈[a,b]⎪ PDF为f(x)=⎨b−a⎪0〃其他⎩生成算法:x=a+(b−a)u〃式中u为[0,1]区间均匀分布的随机数(下同)。
二、指数分布e(β)x⎧1⎪exp(−x∈[0,∞)βPDF为f(x)=⎨β⎪0〃其他⎩生成算法:x=−βln(1−u)或x=−βln(u)。
由于(1−u)与u同为[0,1]均匀分布〃所以可用u 替换(1−u)。
下面凡涉及到(1−u)的地方均可用u替换。
三、瑞利分布R(µ)⎧xx2exp[−x≥0⎪回波振幅的PDF为f(x)=⎨µ2 2µ2⎪0〃其他⎩生成算法:x=−2µ2ln(1−u)。
四、韦布尔分布Weibull(α,β)xα⎧−αα−1⎪αβxexp[−(]x∈(0,∞)βPDF为f(x)=⎨⎪0〃其他⎩生成算法:x=β[−ln(1−u)]1/α五、高斯(正态)分布N(µ,σ2)⎧1(x−µ)2exp[−]x∈ℜ2PDF为f(x)=⎨2πσ 2σ⎪0〃其他⎩生成算法:1〄y=−2lnu1sin(2πu2)生成标准正态分布N(0,1)〃式中u1和u2是相互独立的[0,1]区间均匀分布的随机序列。
2〄x=µ+σy产生N(µ,σ2)分布随机序列。
六、对数正态分布Ln(µ,σ2)⎧1(lnx−µ)2exp[−x>0PDF为f(x)=⎨2πσx 2σ2⎪0〃其他⎩生成算法:1〄产生高斯随机序列y=N(µ,σ2)。
2〄由于y=g(x)=lnx〃所以x=g−1(y)=exp(y)。
七、斯威林(Swerling)分布7.1 SwerlingⅠ、Ⅱ型7.1.1 截面积起伏σ⎧1−exp[σ≥0⎪σ0截面积的PDF为f(σ)=⎨σ0〃【指数分布e(σ0)】⎪0〃其他⎩生成算法:σ=−σ0ln(1−u)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中μ,σ(>0)为常数,它们分别为数学期望和均方差,可以看出,在μ附近的概率密度大,远离μ的地方概率密度小,我们要产生的随机数要服从这种分布,就是要使产生的随机数在μ附近的概率要大,远离μ处小,怎样保证这一点呢,可以采用如下的方法:大矩形中随机产生点,这些点是平均分布的,如果产生的点落在概率密度曲线的下方,则认为产生的点是符合要求的,将它们保留,如果在概率密度曲线的上方,则认为这些点不合格,将它们去处.如果随机产生了一大批在整个矩形中均匀分布的点,那么被保留下来的点的横坐标就服从了正态分布.可以设想,由于在μ处的f(x)的值比较大,理所当然的在μ附近的点个数要多,远离μ处的少,这从面积上就可以看出来.我们要产生的随机数就是这里的横坐标.
二、一维均匀分布随机数的产生
一般采用某种数值计算方法产生随机数序列,在计算机上运算来得到.
通常是利用递推公式:
三、非均匀分布随机数的产生
3.1一般通用方法
数学软件有产生常用分布随机数的功能,但是对特殊分布需要数据量很大时不太有效,需要寻求一种简便、经济、可靠,并能在计算机上实现的产生随机数的方法.
利用在(0 , 1)区间上均匀分布的随机数来模拟具有给定分布的连续型随机数.
在查阅关于随机数的产生的文献中,我发现理解随机数的产生让我更加了解了这一门课程的精髓,对概率的理解更加透彻了,有时自己也能理解有些数字或概率图像的拟合不上的时候自己也能稍微明白一些原理来,同样的,也可以理解一些随机数的局限性有助于我们筛选一些产生随机数的方法,对今后学习概率论的知识有很大帮助。
(B).随机变量X1,X2相互独立Xi~U(0, 1),令Y1=a+(b-a)X1~U(a, b);
(C).若X2≤λf(Y1),则令X = Y1,否则剔除X1,X2重复到(2)。
则随机变量X的分布与Z相同。
3.2正态分布的随机数的产生
下面提出了一种已知概率密度函数的分布的随机数的产生方法,以典型的正态分布为例来说名任意分布的随机数的产生方法.
在计算机上用数学方法产生随机数的一般要求如下:
1)产生的随机数列要有均匀性、抽样的随机性、试验的独立性和前后的一致性.
2)产生的随机数列要有足够长的周期,以满足模拟实际问题的要求.
3)产生随机数的速度要快,占用的内存少.
计算机产生随机数的方法内容是丰富的,在这里我们介绍几种方法,计算机通常是先产生[0,1]区间上均匀分布的随机数,然后再产生其他分布的随机数.
1.反函数法
设连续型随机变量Y的概率函数为f(x),需产生给定分布的随机数.
步骤:1)产生n个RND随机数r1,r2,…,rn;
所得yi , i=1,2,…,n即所求.
基本原理:
设随机变量Y的分布函数F(y)是连续函数,而且随机变量X~U(0,1),令Z=F-1(X),则Z与Y有相同分布。
证明: FZ(z)= P{F-1(X)≤z}= P{X≤F(z)}
随机变量η的抽样序列 ,…称为随机数列.
如果随机变量η是均匀分布的,则η的抽样序列 ,…称为均匀随机数列;如果随机变量η是正态分布的随机变量则称其抽样序列为正态随机数列.
比如在掷一枚骰子的随机试验中出现的点数x是一个随机变量,该随机变量就服从离散型均匀分布,x取值为1,2,3,4,5,6,取每个数的概率相等均为1/6.如何得到x的随机数?通过重复进行掷骰子的试验得到的一组观测结果 就是x的随机数.要产生取值为乒乓球分别标上0,1,2,…,9,然后放在一个不透明的袋中,搅拦均匀后从中摸出一球记号码 后放回袋中,接着仍将袋中的球搅拌均匀后从袋中再摸出一球记下号码 后再放回袋中,依次下去,就得到随机序列 .通常称类似这种摸球的方法产生的随机数为真正的随机数.但是,当我们需要大量的随机数时,这种实际操作方法需要花费大量的时间,通常不能满足模拟试验的需要,比如教师不可能在课堂上做10000次掷硬币的试验,来观察出现正面的频率.计算机可以帮助人们在很短时间产生大量的随机数以满足模拟的需要,那么计算机产生的随机数是用类似摸球方法产生的吗?不是.计算机是用某种数学方法产生的随机数,实际上是按照一定的计算方法得到的一串数,它们具有类似随机数的性质,但是它们是依照确定算法产生的,便不可能是真正的随机数,所以称计算机产生的随机数为伪随机数.在模拟计算中通常使用伪随机数.对这些伪随机数,只要通过统计检验符合一些统计要求,如均匀性、随机性等,就可以作为真正的随机数来使用,我们将称这样产生的伪随机数为随机数.
有了以上基础,也就用同样的方法,只要知道概率密度函数,也就不难产生任意分布的随机数,方法都是先产生一个点,然后进行取舍,落在概率密度曲线下方的点就满足要求,取其横坐标就是所要获取的随机数
参考文献:
[1]肖云茹.概率统计计算方法[M].天津:南开大学出版社,1994.
[2]程兴新.曹敏.统计计算方法EM3.北京:北京大学出版社,1989.
(2)产生两个RND随机数r1、r2,令y= a+(b-a)r1;
(3)若r2≤λf(y),则令x=y,否则剔除r1和r2,重返步骤(2).
(4)重复循环,产生的随机数x1,x2,…,xN的分布由概率函数f(x)确定.
舍选法原理分析:
设P{a<Z<b}=1,Z的概率密度为f(z),
(A).选常数λ,使λf(z)≤1,z∈(a,b);
=G(F(z)) = F(z)
因G(x)是随机变量X的分布函数:
若Y的概率密度为f(y),由Y=F-1(X)可得:
对给定的(0, 1)上均匀分布随机数ri,则具有给定分布的随机数yi可由方程
解出
例模拟服从参数为λ的指数分布的随机数,其概率密度函数为
若随机变量X~U(0, 1)1-X~U(0, 1)
(1-ri)与ri均为在(0,1)区间内均匀分布的随机数
随机数的产生
摘要
本文研究了连续型随机数列的产生,先给出了均匀分布的随机数的产生算法,在通过均匀分布的随机数变换得到其他连续型随机数的产生算法.我们给出了产生均匀分布随机数的算法,然后探讨了同余法的理论原理.通过均匀随机数产生其他分布的随机数,我们列举了几种通用算法,并讨论各个算法的优缺点。
正文
一、随机数与伪随机数
[3]王永德等.随机信号分析基础.北京:电子工业出版社,2 0 0 3.
[4]皇甫堪等.现代数字信号处理.国防科技大学电子科学与工程学院内部印刷,2 0 0 2.
[5]杨自强,魏公毅.产生伪随机数的若干新方法.数值计算机应用, 2001,3:210~216.
体会感悟
通过简单的学习,我掌握到,概率统计是真正把实际为题转化为数学问题的学问, 因为它解决的并不是单纯的数学问题,而且不是给你一个命题让你去解决,是让你去构思命题,进而构建模型来想法设法解决实际问题。在实际应用中,就更加需要去想、去假设,对问题需要有更深层次的思考,因此使概率论和数理统计这门课学起来比微积分和线性代数更加吃力,但也比它们更加实用,更贴近实际。
模拟公式可改写为:
优点:一种普通而适用的方法;
缺点:当反函数不存在或难以求出时,不适合使用。
2.舍选法
基本思想:实质上是从许多RND随机数中选出一部分,使之成为具有给定分布的随机数.
设随机变量X的概率密度函数为f(x),存在实数a<b,使P{a<X<b}=1。
步骤:
(1)选取常数λ,使λf(x)<1,x∈(a, b);