光纤通信综述
光纤发展综述展望

光纤发展综述展望一、光纤的起源与发展光纤,这个在今天看来已经离我们生活越来越近的高科技产物,最开始的时候其实只是个“谁也不看好”的小角色。
你知道吗?光纤的发明其实挺“戏剧性”的,根本没想到它能在通讯领域起到这么大的作用。
早在20世纪60年代,科学家们就在做这个“心血来潮”的实验:把光通过玻璃线传输看看会不会有意想不到的效果。
没想到,这一试,光纤就“火”了!那时候的光纤根本不被大家看重,很多人都觉得它就是个“鸡肋”,用来传光没有什么实用的地方,甚至连人们自己都觉得它远远不如传统的电线方便,谁能想到,它却在短短几十年后,变成了现代通讯的“中流砥柱”?记得以前有个笑话,说光纤是个“老牛吃嫩草”的角色,大家都觉得它还不成熟,却不知道它的潜力有多大。
好在,后来随着科技的进步和需求的增加,光纤的技术不断优化,变得越来越成熟,从最初的单一用途,到如今几乎无所不能:它被广泛应用在通讯、医疗、军事等各个领域。
现在的光纤已经不仅仅是你家网络的“幕后英雄”,还是各种高速数据传输的“超级快递员”。
想象一下,如果没有光纤,我们这些吃瓜群众的手机视频、高清直播,甚至连最基本的网络搜索都可能会变得一塌糊涂,那时的世界肯定跟现在完全不一样。
二、光纤技术的创新与挑战你知道吗?光纤技术如今已经不仅仅是简单的“光”那么简单,随着人类探索的深入,光纤的技术早已突破了传统的界限。
你一定听说过“光纤通信”,也许以为它就是传光这么简单,其实它已经变得复杂得不得了!现在的光纤,不仅仅是为了传输数据,它已经通过各种新技术,变成了一个可以进行超高速数据传输的载体。
像什么多模光纤、单模光纤、甚至是那种超导的光纤,简直就像是给“信息快车”装上了发动机,让它可以跑得更快、更稳、穿越的距离也更远。
话说回来,光纤技术的快速发展并不是没有挑战的。
要知道,光纤在应用的过程中,虽然给我们带来了许多好处,但也有不少“坎儿”需要跨。
比如,光纤的成本一直让不少企业头疼,尤其是高质量的光纤材料制作起来,成本可是“高得离谱”,这也让一些公司在推广的路上踩了不少“雷”。
光纤通信概述通信原理论文(一)

光纤通信概述通信原理论文(一)光纤通信概述通信原理论文光纤通信是一种传输信息的方法,通过利用光纤传输光的方式来传输信息。
相较于传统的电缆传输方式,光纤传输方式有着更高的传输速度和更大的传输容量,因此已经被广泛应用于很多领域之中。
光纤通信的传输原理由两部分构成:信号的传输和光波的传输。
信号的传输是指电子信号通过光纤中的信号处理器进行数字化,然后通过调制器将其转换为光信号。
光信号的传输是指在光纤中的光信号的传输。
这两部分共同构成了光纤通信的传输原理。
光纤通信的传输速率是指可以在单位时间内传输的数据量。
它的速率一般用每秒钟传输的比特数(bps)来表示。
光纤通信的传输速率很高,可以达到1Gbps或更高。
由于传输速率越高,传输的数据量越大,因此光纤通信的传输容量也很大。
光纤通信的传输容量是指在单位时间内可以传输的最大数据量。
传输容量决定了光纤通信可以传输多少数据,传输速率决定了将这些数据传输到目的地所需的时间。
光纤通信主要有两个部分构成:发送端和接收端。
发送端是指发送信息的终端设备,它通常由一个数字到模拟转换器、一个调制器和一个激光二极管组成。
接收端是指接收信息的终端设备,它通常由一个接收器和一个放大器组成。
在光纤通信中,发送端的任务是将信号转换为光信号,并将其通过光纤发送到接收端。
接收端的任务是收集光信号并将其转换为电信号,然后将其发送到接收端的终端设备。
总的来说,光纤通信是一种高速、高容量的通信方式。
它的传输原理由信号的传输和光波的传输构成,传输速率和传输容量都很高。
通过发送端和接收端的协调工作,光纤通信可以将信息准确、快速地传输到目的地。
随着技术的不断改进,光纤通信在未来的通信领域中有着广阔的发展前景。
光钎通信报告总结范文

光钎通信报告总结范文光纤通信报告总结范文光纤通信是一种基于光学原理的信息传输技术,近年来得到了广泛的应用和发展。
本次报告总结了光纤通信的基本原理、优势以及相关技术的研究进展。
首先,本报告介绍了光纤通信的基本原理。
光纤通信通过将信息转化为光信号并通过光纤进行传输,其基本原理是利用光的全反射特性以及光的波动模式来传输信息。
相比于传统的电缆传输,光纤通信具有更高的传输带宽和更低的信号损耗率,因此被广泛应用在高速通信领域。
其次,本报告阐述了光纤通信的优势。
光纤通信不受电磁干扰影响,信号传输距离较长,传输带宽大,具有抗噪声干扰、低损耗的特点。
光纤通信技术的发展,使得高清视频、大容量数据传输、网络通信等应用成为可能。
光纤通信的优势使其在现代社会中得到广泛应用,推动了信息传输速度与质量的提升。
此外,本报告还对光纤通信的相关技术进行了总结和研究进展的介绍。
光纤通信领域的研究主要集中在光纤材料、光纤器件、光纤传输技术等方面。
例如,研究人员对光纤材料的制备和特性进行了研究,以提高光纤的传输能力和可靠性;同时,开发了多种光纤器件,如光纤放大器、光纤激光器等,用于增强光信号的传输和处理能力;此外,光纤传输技术也在不断创新,如频分复用技术、波分复用技术等,进一步提高了光纤通信的传输效率和容量。
综上所述,光纤通信作为一种先进的信息传输技术,具有许多优势,并且在相关技术方面也有了长足的发展。
然而,光纤通信仍存在一些挑战,如光纤的制造成本高、布线复杂等问题。
因此,未来的研究应该致力于提高光纤的制造工艺,降低成本,并进一步探索更多的应用领域,以促进光纤通信技术的全面发展。
在光纤通信的发展过程中,我们期待通过持续的技术创新和研发投入,将光纤通信技术应用于更广泛的领域,为人们的生活带来更多便利和创新。
光纤通信年终总结报告

一、前言随着信息技术的飞速发展,光纤通信作为一种高效、稳定、可靠的传输方式,已成为现代通信网络的核心技术。
在过去的一年里,我国光纤通信行业取得了显著的成果,本报告将对本年度的光纤通信工作进行总结,并对未来发展趋势进行展望。
二、工作回顾1. 技术创新(1)光纤技术:本年度,我国在光纤技术方面取得了多项突破。
新型光纤材料的研究取得了显著进展,使得光纤传输性能得到进一步提升。
同时,光纤预制棒、光纤拉丝等关键技术得到优化,降低了生产成本,提高了产品质量。
(2)光纤器件:光纤通信器件作为光纤通信系统的核心组成部分,其性能直接影响整个系统的传输性能。
本年度,我国在光纤耦合器、光开关、光放大器等关键器件的研发方面取得了重要进展,部分产品已达到国际先进水平。
2. 网络建设(1)城市光纤网络:本年度,我国城市光纤网络建设取得了显著成果。
全国大部分城市实现了光纤到户,宽带接入速率不断提高。
同时,光纤城域网、骨干网建设稳步推进,为用户提供更加高速、稳定的网络服务。
(2)农村光纤网络:农村光纤网络建设本年度取得了突破性进展。
通过实施“宽带中国”战略,我国农村地区光纤覆盖率不断提高,有力地推动了农村信息化发展。
3. 市场拓展(1)国内市场:本年度,我国光纤通信市场保持稳定增长。
光纤通信设备、光缆、光纤等产品的市场需求旺盛,企业业绩稳步提升。
(2)国际市场:我国光纤通信企业在国际市场的影响力不断提升。
本年度,我国企业在国际市场上签订了一系列重要订单,进一步扩大了国际市场份额。
三、存在问题1. 技术创新能力不足:虽然我国在光纤通信领域取得了一定的突破,但与发达国家相比,仍存在较大差距。
技术创新能力不足,制约了我国光纤通信产业的发展。
2. 产业链协同性不高:光纤通信产业链涉及多个环节,但各环节之间协同性不高,导致产业链整体效率较低。
3. 人才培养与引进:光纤通信行业对人才的需求日益旺盛,但人才培养与引进方面存在一定问题,制约了行业的发展。
光纤通信概述与发展趋势

光纤的折射率分布
光纤通信概述和发展趋势
• 2.
• 按光纤中传输的模式数量,可以将光纤分为多 模光纤(Multi-Mode Fiber,MMF)和单模光纤(Single Mode Fiber,SMF)。 • 在一定的工作波上,当有多个模式在光纤中传 输时,则这种光纤称为多模光纤。
在1.31μm时约为0.4dB/km;在1.55μm时仅为0.2dB/km,已接近理论值( 理论极限为0.1dB/km)。
光纤通信概述和发展趋势
3.光纤损耗主要包括: • (1) 材料的吸收损耗 • 光纤材料吸收损耗包括紫外吸收、红外吸收和杂质吸收等,它是材料本
身所固有的,因此是一种本征吸收损耗。
光纤通信概述和发展趋势
• (3) 辐射损耗 • 当理想的圆柱形光纤受到某种外力作用时,会产生一定曲率半径的弯曲
,导致能量泄露到包层,这种由能量泄露导致的损耗称为辐射损耗。
光纤通信概述和发展趋势
3.4光纤的色散特性
1.什么是光纤色散
信号在光纤中是由不同的频率成分和不同模式成分携带的,这些不同 的频率成分和模式成分有不同的传播速度,从而引起色散。
光纤通信概述和发展趋势
• (2)G.653光纤。G.653光纤特点是零色散波长由G.652光纤的1.31μm位 移到1.55μm制得的光纤,故其称为色散位移光纤。G.653光纤同时实现 了1.55μm窗口的低衰减系数和小色散系数。但是当其用于带有掺铒光 纤放大器的波分复用系统中时,由于光纤芯中的光功率密度过大产生了 非线性效应,限制了G.653光纤在单信道速率10Gbit/s以上波分复用或密 集波分复用系统中的应用
光纤通信概述和发展趋势
3.3光纤的损耗特性
1.衰减系数
光纤通信综述报告

光纤通信综述报告摘要:光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。
光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
关键词:光纤通信新技术新器件新材料仅在过去5年中,光纤技术领域取得了大量突破性进展,其中包括10Gbit/s网络的构建和单根光纤上每秒太比特容量的成功演示。
不久前,业内成功演示了40Gbit/s和80Gbit/s网络。
这些演示进一步突出了对速度更高、容量更大的网络的需求和期望。
一、光纤通信的发展史世界光纤通信发展史光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。
1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。
于1970年损失为20db/km的光纤研制出来了。
据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。
这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。
1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。
在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。
光纤通信系统开始显示出长距离、大容量无比的优越性。
按理论计算:就光纤通信常用波长1.3微米和1.55微米波长窗口的容量至少有25000GHz。
自然会想到采用多波长的波分复用技术WDM (WavelengthDivisionMultiplex)。
1996年WDM技术取得突破,贝尔实验室发展了WDM技术,美国MCI公司在1997年开通了商用的WDM线路。
光纤通信概论课件

感谢您的观看
THANKS
光纤放大技术
总结词
简化网络结构
详细描述
光纤放大技术简化了网络结构,减少了中继 站的数量,降低了网络的复杂性和成本。这 有助于提高网络的可靠性和可维护性,降低 运营和维护成本。
光纤放大技术
总结词
推动光网络发展
详细描述
光纤放大技术是推动光网络发展的重要支撑 技术之一。它促进了光网络的规模应用和发 展,使得光网络成为现代通信网络的主流技
光的衍射
光波在传播过程中遇到障碍物或孔隙时,会绕过障碍物或孔隙继续传播的现象。 衍射是光波的波动性的另一重要表现,它也是光学仪器和光通信中常用的技术手 段。
光的全反射
• 光的全反射:当光从光密介质射向光疏介质时,如果入射角大 于某一临界角,光波将在界面上完全反射回光密介质,而不能 进入光疏介质的现象。全反射是光纤通信中的重要原理之一, 它使得光波能够在光纤中实现低损耗、长距离的传输。
光纤通信面临的挑战
技术成熟度
虽然光纤通信技术已经取得了长 足的进步,但在一些特殊环境和 应用场景中,技术成熟度仍需进
一步提高。
成本与投资
光纤通信系统的建设和维护成本较 高,需要大量的资金投入,同时也 需要探索更加有效的商业模式。
网络安全与隐私
随着光纤通信网络的普及,网络安 全和隐私保护问题也日益突出,需 要加强技术和管理措施,保障网络 的安全和用户的隐私。
军事领域
光纤通信在军事领域中具有保 密性好、抗电磁干扰等优点, 广泛应用于军事通信。
企业和校园网络
光纤通信也广泛应用于企业和 校园网络的建设,提供高速、 稳定的数据传输服务。
02
光纤通信系统组成
光源和光发送机
光源
光纤通信总结

一 绪论1. 1966年英籍华裔学者高琨和霍克哈姆发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。
2. 光纤通信技术不断创新:光纤从多模发展到单模,工作波长从0.85μm 发展到1.31μm ,传输速率从几十Mb/s 发展到几十Gb/s 。
3. 任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。
4. 电缆通信和微波通信的载波是电波,光纤通信的载波是光波。
5. 直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,是输出光随电信号变化而实现的,这种方案技术简单、成本较低、容易实现,但调制速率受激光器的频率特性所限制。
外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的,这种调制的优点是调制速率高,缺点是技术复杂,成本较高。
6. 目前,使用光纤通信系统普遍采用直接调制——直接检测方式,光接收机最重要的特性参数是灵敏度。
7. 光纤通信系统包括电信号处理部分和光信号传输部分。
光信号传输部分主要由基本光纤传输系统组成,包括光发射机、光纤传输线路和光接收机三个部分。
光纤通信系统可以传输数字信号,也可以传输模拟信号。
二 光纤和光缆1、光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。
纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
包层为光的传输提供反射面和光隔离,并起一点的机械保护作用。
2、光纤类型:突变型多模光纤 、渐变性多模光纤、单模光纤 等等3、损耗限制系统的传输距离,色散则限制系统的传输带宽。
色散是在光纤中传输的光信号,由于不同成分的光的传播时间不同而产生的一种物理效应。
色散一般包括模式色散、材料色散和波导色散。
模式色散:是由于不同模式的传播时间不同而产生的,它取决于光纤的折射率分布,并和光纤材料折射率的波长特性有关。
材料色散:是由于光纤的折射率随波长而变化,以及模式内部不同波长成分的光,其传播时间不同而产生的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概述随着社会信息技术的发展,3G网络的实施,4G网络的开发与研究,IPTV三网融合、物联网等的实施和提出,对现有的网络提出了革命性的要求,人类对于信号传输带宽的需求一直在以惊人的速度增长。
移动性、无线化、数字化和宽带化是当今信息业发展的趋势,超高速、超大容量成为信息传送追求的主要目标。
光纤通信(Optical Fiber Communications)技术是利用光波作为载波来传递信息的技术。
当今,光纤以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。
在20世纪60年代初期,由于人们无法解决光的散射等问题,光通信一直没有重大的发展。
直到20世纪60年代中期,情况才发生改变,而改变这一现状的正是一位中国人-高锟。
1966年,高锟发表了关于通信传输新介质的论文,提出可以利用光导纤维进行信息传输的可能性和技术途径,这才奠定了光通信的基础。
1970年,美国康宁公司按照高锟的思路造出了损耗为20dB/km的石英光纤,使得光纤的研制取得重大突破。
1972年,该公司生产的高纯石英多模光纤的损耗下降到4dB/km。
到了20世纪80年代初,单模光纤在波长1.55um的损耗已经下降到0.2dB/km,而目前G.654光纤在1.55um波长附近损耗仅0.1510.2dB/km,接近光纤的理论极限。
由于高锟在开创光纤通信历史上的卓越贡献,2009年10月6日被授予了诺贝尔物理学奖。
光纤通信(Optical Fiber Communications)技术是利用光波作为载波来传递信息的技术。
当今,光纤以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。
在20世纪60年代初期,由于人们无法解决光的散射等问题,光通信一直没有重大的发展。
直到20世纪60年代中期,情况才发生改变,而改变这一现状的正是一位中国人-高锟。
1966年,高锟发表了关于通信传输新介质的论文,提出可以利用光导纤维进行信息传输的可能性和技术途径,这才奠定了光通信的基础。
1970年,美国康宁公司按照高锟的思路造出了损耗为20dB/km的石英光纤,使得光纤的研制取得重大突破。
1972年,该公司生产的高纯石英多模光纤的损耗下降到4dB/km。
到了20世纪80年代初,单模光纤在波长1.55um的损耗已经下降到0.2dB/km,而目前G.654光纤在1.55um波长附近损耗仅0.1510.2dB/km,接近光纤的理论极限。
由于高锟在开创光纤通信历史上的卓越贡献,2009年10月6日被授予了诺贝尔物理学奖。
目前,随着数据业务的爆炸性增长,通信道路越来越拥挤,光通信将成为唯一的出路。
因此,现在世界上所有新建的通信干线均采用光纤。
波分复用(WDM)系统也在海底光缆系统上使用,Tyco全球网大西洋部分有对光纤,目标容量为每对光纤传输64个10Gb/s WDM信道。
2002年阿尔卡特在C波段和L波段成功进行了10.2Tb/s(25642.7Gb/s)距离为3100km的传输实验。
根据OFC2009年报道,NTT 2007年演示了一个线路容量为10Tb/s的系统[NThB1],该系统采用DWDM的DQPSK调制,每个信道数据速率为111Gb/s,实现了48pb/s·km的传输。
该系统经过3600km传输后,所有信道的Q参数大于9.2dB,比BER为要求的9.1dB还要好。
我国的光通信技术研究大概从1974年。
并在进入80年代后,我国的光纤通信的关键技术开始达到国际先进水平。
烽火通信于2005年也进行了3.2Tb/s(8040Gb/s) DWDM的800km传输实验,引领我国光通信技术的发展。
另外,国内的华为,中兴等通信领域的重头在近年来开始大范围的光通信技术的研发实验,使得我国光通信技术更是站上时代的前沿。
在近日举行的“2012年中国光通信发展与竞争力论坛”上,华为一举获得了“2012年中国光通信最杰出企业大奖”、“2011-2012年度全球光传输与网络接入设备最具竞争力企业10强”、“2011-2012年度中国光通信最具综合竞争力企业10强”、“2011-2012年度中国光传输与网络接入设备最具竞争力企业10强”、“2011-2012年度中国光通信市场最具品牌竞争力企业10强”五项大奖。
这再次突显了我国通信传统强军在全球光通信市场中所占据的主导地位。
FOFDM,其不同于传统的ofdm,只需用传统ofdm一半的带宽,通常fofdm系统的搭建,要用到dft或者dct。
本系统中我们采用的是dct 调制。
DDO-FOFDM系统常规的强度调制和直接检测的光FOFDM长距离基带传输系统的原理框图如下图所示。
该系统中主要分为五个部分:FOFDM信号产生模块、光发送模块、光纤链路模块、光接收模块和OFDM信号处理模块。
伪随机比特序列,即需要发送的信息比特,进行串并转换并实现相应的ASK 和BPSK调制,对子载波进行反离散余弦变换,紧接着对信号进行并串转换和添加循环前缀,最后经数模转换器转换为模拟电FOFDM信号,循环前缀则能消除符号间干扰。
在光发射端,生成的基带电OFDM信号经过一个光马赫曾德尔强度调制器(MZM)被直接调制加载到光载波上,产生基带的光载OFDM信号,然后经过一个功率放大器放大后由光纤传输至光接收端。
在接收端,光电二极管将接收到的光信号检测并转换成模拟的基带电FOFDM 信号,经由低通滤波后,信号被模数转换器转换为数字FOFDM信号。
最后通过数字信号处理模块,对接收的数字信号进行FOFDM解调。
其中,OFDM解调主要包括:移除循环前缀、串并转换、离散余弦变换、均衡、ASK或BPSK解调、并串转换,得到传输的信息比特,并完成信息比特的误码分析。
单边带调制单边带调制,是一种可以更加有效的利用电能和带宽的调幅技术。
单边带调制根据调制信号的频谱样式可分为以下三类,如图2.1所示。
第一类是原型单边带:这种调制方法在传输消息时只利用了其中一个边带;第二类是残留单边带:该类调制方法在发送一个边带的同时,还会发送另外一个边带小部分信号。
第三类是独立边带:该方法的做法是系统依然发送两个边带,但是这两个边带会被调制不同信息。
单边带调制从载频发送电平的大小的角度划分又分为三类。
第一类为载频全抑制制:只发送边带信号,不发送载频信号。
第二类为导频制:除了发送边带信号外,还发送一个低电平的载频信号作“导频”用。
第三类为兼容单边带制:即载频电平全发送的原型单边带。
单边带调制和解调的方法有多种,其中最常用的是滤波法。
用滤波法实现单边带调制,是分双边带信号形成和无用边带抑制两步完成的。
双边带信号由平衡调制器形成。
由于调制器的平衡作用,载频电平被抑制到很低。
对无用边带的抑制,是由紧跟在平衡调制器后面的边带滤波器完成的。
当需要形成多路独立边带信号时,就需要有相应数目的单边带信号产生器,它们具有不同的载频和不同中心频率的边带滤波器。
然后把这些占有不同频段的单边带信号线性相加,便可得到多路独立边带信号。
单边带信号的解调,除了载频全发送的兼容单边带和残留单边带可以用包络检波外,其他各类单边带的解调只能用单边带产生的相反过程来完成,即仍用平衡调制器完成单边带信号频谱向基带的平移,并通过紧跟在调制器后面的低通滤波器,提取有用的基带信号,抑制无用的边带信号。
光单边带调制光通信系统中传统的调制技术一般是产生光双边带信号(Optical Double Sideband,ODSB),这占用了较大的光纤带宽且容易受到光纤色散的限制。
因此,在后来的研究中,单边带调制技术在光通信得到了人们的重视。
相对于双边带调制,光单边带(O ptical Single Sideband,OSSB)调制的优势主要体现在以下几点。
(1) OSSB调制格式延长了色散限制的传输距离,使得频带的利用率在双边带调制格式的基础上有了很大的提高,达到一倍之多,这大大增加了系统容量。
(2) OSSB调制的检测相对简单,可以使用直接或者自差的探测方法,频谱上没有回叠现象的产生,保留了大部分的相位信息。
而这是双边带调制做不到的。
(3) OSSB的调制方法对系统的器件的噪声指数会有所缓和。
产生单边带信号最常用的方法如之前所陈述,即是滤波法。
当然还有另外一种实现单边带调制的方法,即移相法。
该方法的主要思想是对双边带信号的时域波形进行希尔伯特变换。
它通过对周期信号引入以移相网络加以实现。
其原理如图2.1所示。
图 2.1 单边带调制频谱图当前有很多研究都放在了光单边带调制上,也提出了很多具体的方案,其中最为典型的可以归纳为以下三种。
第一种移相法实现。
最早提出使用移相法实现光单边带调制的是Graham H. Smith等人,他们应用双臂的马赫曾德尔强度调制器成功实现了单边带调制。
该方案的本质其实是在电域内利用希尔伯特变换实现光单边带调制。
总的来说,利用双臂马赫曾德尔强度调制器实现光单边带调制是通过RF信号在双臂的混合耦合实现的。
此方案中,由于混合耦合的两个电信号经历不同的路径,长度不同,延时不同,很难实现理想的90度相移,所以边带的抑制效果并不明显。
后来也有文献提出了在双臂集成上做文章,通过改变电极的结构实现,但这实现起来较为困难。
2001年,A. Loayssa等人又提出利用单臂马赫曾德尔调制器实现单边带的方法。
2002年,K. Tanaka等人提出利用全光Hilbert 变换器产生单边带调制的高速宽带系统。
第二种是滤波法实现。
以光纤布拉格光栅(FBG)、阵列波导光栅(Array Waveguide Grating)等元件作为光滤波器滤掉一个边带形成单边带信号,1997年J. Park首次提出利用光栅滤波法实现单边带调制[42],FBG作为陷波滤波器滤除一个边带,可达到22dB的边带抑制比。
2005年,J. Capmany等人提出了利用连续放置串联的两个同样的FBG 光栅阵列来产生高质量单边带信号的方法,使得边带产生效率有了极大的提高。
第三种是通过非线性实现。
该方法利用半导体光放大器中的自相位调制和交叉相位调制效应来产生单边带。
这一方案中电吸收调制光源的光波长与信号光的波长是不相同的,在半导体光放大器后面,用滤波器将其滤除。
输入信号-90度+输出上边带信号-输出下边带信号-90度图 2.2 相移法产生单边带信号原理图兼容单边带调制原理希尔伯特变换希尔伯特变换是信号分析与信号处理中的重要理论工具与依据,在通信理论中一般用来构造解析信号。
本文研究的兼容单边带系统模型的构建的基础也正是希尔伯特变换。
希尔伯特变换可以提供90度的相位变化但是不影响频谱分量的幅度,即,对一个信号实施希尔伯特变换仅只是对该信号进行了正交移相,使得它成为自身的正交对[45]。