空气环境监测系统
大气环境监测与预警系统建设

大气环境监测与预警系统建设随着城市化进程的加快和工业化水平的提高,大气污染问题在世界范围内引起了广泛关注。
空气质量直接关系到人们的健康和生活质量,因此,大气环境监测与预警系统的建设变得越来越重要。
本文将探讨大气环境监测与预警系统的建设和发展,以及它的意义和挑战。
一、大气环境监测系统的建设大气环境监测系统是通过收集、传输和分析大气污染相关数据,来评估和监测大气环境质量的一种技术体系。
这个系统通常包括空气质量监测站、气象监测站、排放源监测设备、数据传输设备等。
首先,空气质量监测站是大气环境监测系统的核心组成部分。
监测站具有多种传感器和仪器,能够实时监测空气中的污染物浓度,如二氧化硫、氮氧化物、可吸入颗粒物等。
这些数据不仅能够帮助评估空气质量,还可以为后续预警系统提供数据支持。
其次,气象监测站对于大气环境监测也非常重要。
通过收集气象数据,例如风速、风向、湿度等,可以帮助分析和预测大气污染的扩散和传播路径。
这对于预警系统的建设至关重要。
此外,排放源监测设备也是大气环境监测系统中的关键组成部分。
这些设备可以实时监测工业企业、发电厂、车辆尾气等排放源的污染物排放情况。
通过对这些数据的分析,可以更加准确地评估大气环境质量,并及时采取相应的控制措施。
二、大气环境预警系统的建设大气环境预警系统是在大气环境监测系统基础上发展而来的一种预测和预警机制。
它通过分析监测数据、建立模型和算法,来预测和预警大气污染事件,为决策者提供更及时和有效的控制措施。
预警系统的建设离不开人工智能和大数据分析的支持。
通过收集和整合大量的气象、环境、社会经济等数据,预警系统可以建立模型,并通过算法分析来帮助预测污染事件的发生概率和程度。
这些预测和预警结果可以有效指导政府和相关部门在污染事件发生之前采取应对措施,以减少人员伤害和环境破坏。
三、大气环境监测与预警系统的意义和挑战大气环境监测与预警系统的建设对于改善空气质量、保护公众健康至关重要。
室内环境监测系统的设计与实现

室内环境监测系统的设计与实现随着现代化进程的推进,人们对室内空气质量的关注度越来越高。
作为人们日常所处的环境,室内环境的质量直接影响着人们的健康和生活质量。
因此,设计和实施一个高效可靠的室内环境监测系统变得非常重要。
本文将就室内环境监测系统的设计和实现进行探讨。
设计一个有效的室内环境监测系统,我们首先需要考虑的是系统的硬件设施。
室内环境监测系统通常由传感器、数据采集工具、通信设备和数据存储设备等组成。
传感器是系统中最关键的部分,它们能够感知室内环境中的各个参数,如温度、湿度、二氧化碳浓度等。
常见的传感器有温湿度传感器、气体传感器、光照度传感器等。
数据采集工具负责从传感器中读取数据,并将其传输给中央处理单元。
通信设备用于与外部系统进行数据交互,可以选择无线通信方式,如Wi-Fi或蓝牙。
数据存储设备可以选择使用云存储或本地存储,根据需求选择合适的存储容量,确保实时数据的记录和存储。
接下来,我们需要考虑系统的软件设计。
软件设计是整个系统的灵魂,它负责数据的采集、处理和分析。
首先,我们需要设计一个用户友好的界面,使用户能够方便地查看实时数据和历史数据。
界面的设计应简洁明了,信息展示清晰。
其次,我们需要实现数据的实时采集和更新。
通过与传感器连接,实时读取环境参数数据,并将其显示在界面上。
此外,系统还可以提供数据报警功能,当环境参数超出设定范围时,系统能够及时发出警报通知用户。
最后,对于历史数据的处理和分析,系统可以提供图表和报告生成功能,以帮助用户更好地了解室内环境的变化趋势和潜在问题。
除了硬件和软件设计,室内环境监测系统的实施也需要考虑安装和维护的问题。
首先,系统的传感器需要合理地布置在室内,以确保数据的准确性和全面性。
例如,温湿度传感器应尽可能避免阳光直射和水汽直接接触,以免影响测量结果。
其次,系统应提供一定的防护措施,以确保设备的稳定运行。
这包括防雷、防水、防尘等多方面的考虑。
此外,定期进行系统的维护和检修也很重要,例如更换传感器、清洁设备、及时处理故障等。
空气自动监测系统

四、空气在线自动监测系统主要监测项目
我国《环境监测技术规范》规定,空气自动监测系统的监 测站分为Ⅰ类测点和Ⅱ类测点。 Ⅰ类测点数据按要求进国家环境数据库,Ⅱ类测点数据 由各省市管理。 Ⅰ类测点测定温度、湿度、大气压、风向、风速五项气 象参数和下表中的污染参数。
采样系统由采样头、采样总管室外室内 部分、采样支管和采样抽气风机组成, 采样总管有垂直层流多路支管和竹节式 多路支管两种。无论采用哪种,在设计 时应考虑到诸如防雨、防粗大的颗粒物 落人采样总管和防止结露水流人采样支 管。采样管直径和长度应与采气流量、 管内压力等综合考虑。采样管一般采用 对被测物无吸附和反应、无干扰物质释 放的硼硅酸盐玻璃或聚四氟乙烯材料制 成。
2.压电晶体差频法:传感器由一对完全相同 的石英晶片及振荡器组成,一片晶片作参比, 另一片作测量用。石英片位于采样室内由振荡 器振获得一定的谐振频率,当飘尘微粒通过采 样室时,由于被高压静电针放电电离,成为带 负电的微粒,沉积于测量晶片的表面,从而使 振动频率降低,由测得频率的变化,即可求出 飘尘的浓度。
5.数据传输及站房设施包括远程数据通讯设备、 站房环境条件保证设施(空调、除湿设备、稳压电 源等)。
三、空气在线自动分析仪器的分析方法 (一) 二氧化硫监测仪 二氧化硫在线自动分析仪的主要技术原理有: 1.溶液电导法(EC),其原理是利用酸性过氧化氢 溶液吸收空气中的SO2,由测定溶液电导率的变化 求出空气中SO2的含量。 2.动态库仑法,通常采用三电极动态库仑滴定法, 一对Pt电极,外加一个恒电流,当SO2气进入库仑 池时由于SO2+Br2+2H2O=H2SO4+2HBr,破坏了电极反 应平衡,阴极电流降低,降低的部分从第三个活性 碳参考电极流出,由测定参考电极电流即可求出与 之成正比例的SO2含量。
环境空气连续自动监测系统运行和质控技术规范

环境空气连续自动监测系统运行和质控技术规范1. 引言环境空气质量对于人类的健康和生活质量具有重要的影响。
为了及时了解环境空气状况,并采取相应的措施来保护环境和人类健康,连续自动监测系统(Continuous Automatic Monitoring System,简称:CAMS)在环保领域被广泛应用。
本文档旨在规范环境空气连续自动监测系统的运行和质控技术,以确保监测数据的准确性、可靠性和一致性。
2. 运行要求2.1 系统设置环境空气连续自动监测系统应设置在环境污染物浓度较大的地点,例如工业园区、交通要道等。
系统的布置应合理,能够覆盖监测区域的主要污染源和空气流动路径。
同时,应避免系统设置在遮挡物后或其他干扰因素存在的位置。
2.2 传感器选择在选择传感器时应考虑其测量范围、精度和可靠性等因素。
传感器的测量范围应能够覆盖所监测的污染物浓度范围,同时精度和可靠性要符合国家标准要求。
2.3 数据记录和传输环境空气连续自动监测系统应具备数据记录和传输功能。
监测数据应以数字或模拟信号的形式进行记录,并能周期性或实时地传输到数据服务平台。
3. 数据质控要求3.1 仪器校准环境空气连续自动监测系统的传感器应定期进行校准。
校准应按照国家标准的要求进行,包括校准方法、频率和参考标准等。
3.2 环境质控为了保证监测数据的准确性和可靠性,环境质控措施应得到重视。
在系统运行中,应监测环境参数(如温度、湿度、气压等)的变化,并进行必要的校正。
3.3 质量控制样品质量控制样品的使用能够评估监测系统的准确性和稳定性。
定期使用质量控制样品进行系统校准和验证,保证监测数据的可比性和一致性。
3.4 数据处理和分析对于监测数据的处理和分析,应采用适当的算法和方法。
数据处理过程应透明、可追溯,确保数据的准确性和可信度。
4. 技术维护和日常管理4.1 仪器维护环境空气连续自动监测系统的仪器应定期进行维护,包括清洁、校准和更换部件等。
维护过程中应记录维护情况,以便后续分析和评估。
环境空气自动监测系统简介

案例二:上海市交通污染排放监测系统建设与应用
监测范围:覆盖上海市主要交通干道和交通枢纽 监测指标:包括一氧化碳、二氧化氮、二氧化硫等主要交通污染物的排放浓度 监测方式:采用固定站和移动站相结合的方式实现全市覆盖 应用效果:为上海市的环境保护和交通管理提供了科学依据有效推动了城市可持续发展
案例三:广东省区域环境空气质量评估体系建设与应用
环境空气自动监测系 统简介
,
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
环境空气自动 监测系统的应 用场景
02
环境空气自动 监测系统的概 述
05
环境空气自动 监测系统的优 势和局限性
03
环境空气自动 监测系统的技 术特点
06
环境空气自动 监测系统的实 际案例分析
01 添加章节标题
02
环境空气自动监测系统 的概述
04
环境空气自动监测系统 的应用场景
城市环境空气质量监测
监测城市中不同区域的环境空气质量 评估空气污染对城市居民健康的影响 预测和预警空气污染事件 为城市规划和环保政策提供数据支持
工业区污染源监测
监测工业区内的各种污染物排放如烟尘、二氧化硫、氮氧化物等。 监测工业区内企业排放的废气、废水等污染物确保其符合环保标准。 监测工业区内交通工具排放的尾气控制其对环境的影响。 监测工业区内噪声污染情况为治理提供数据支持。
案例四:江苏省工业区污染源监测系统建设与应用
建设背景:江苏省为应对工业区污 染问题启动了污染源监测系统建设。
实施效果:有效提高了工业区内的 空气质量降低了污染物排放量。
添加标题
添加标题
添加标题
ห้องสมุดไป่ตู้添加标题
环境空气质量连续自动监测系统的质控管理

环境空气质量连续自动监测系统的质控管理发布时间:2023-03-03T07:41:04.684Z 来源:《中国科技信息》2022年10月19期作者:章程[导读] 首先,环境空气污染的危害越来越严峻,成为我国当下最需要着重解决的主要问题之一章程江苏省张家港市大新镇综合行政执法局 215600摘要:首先,环境空气污染的危害越来越严峻,成为我国当下最需要着重解决的主要问题之一,环境空气质量自动监测的重要性在可持续发展理念的当下也逐渐得以彰显,从环境空气质量的整体情况着手,结合外部监测的管理要素,连续自动监测系统的质量控制管理高度重视自动监测系统维护,以确保环境空气质量监测结果,这种正确性科学性及其重要;通过对比以往的实验数据信息详细分析,本文解释了确保监测数据准确性的重要性和可行性,通过阐述环境空气质量连续自动监测系统的质控管理,希望为广大读者提供参考和借鉴作用,关键词:环境空气质量;连续自动监测;质控管理空气污染是我国当下的主要环境问题,更为严峻的是这种问题所导致的一些针对性疾病的比重也不断增加。
比如尤其是在环境受到影响的当下,各类呼吸道疾病也称为人们慢性疾病,主要出现的病理之一,而这类呼吸道疾病,表面上可能会影响人们的呼吸,但是严重者也会影响到人们的生命,通过对于以往数据的调查,我国每年死于慢性疾病的属于晚期,而这类慢性疾病很大程度上都来源于环境污染问题产生。
所以从根本上保障人们的生命健康安全,需要不断的改善空气污染状况,对于空气质量进行常态化监控和检测,以进一步保障人们的生命健康安全。
由二氧化硫引起的酸雨是中国重要的环境问题之一。
而一旦出现酸雨,不仅会造成各地的农作物发生严重的损害,更严重者,也会对人们的生命财产造成影响,所以酸雨对于我国社会发展的影响是十分巨大的,要从根本上解决问题,需要改善我国空气污染的整体状况。
一、监测点位设置原则和要求1.监测点位设置原则根据我国相关的法律规范,在选择监测点的时候。
空气质量监测系统的设计与实现

空气质量监测系统的设计与实现一、引言随着城市化进程的加速,空气质量已经成为人们非常关注的话题之一。
由于大气污染的危害性,空气质量监测成为必不可少的环保措施。
而建立一套良好的空气质量监测系统,不仅可以有效防止气体污染,也可以为人们提供更加健康的生活环境。
本文将讨论空气质量监测系统的设计与实现。
二、空气质量监测系统的设计空气质量监测系统是通过对空气中的某些污染物进行测量,来判断空气质量的系统。
系统的设计和实现需要考虑以下几个方面:1. 传感器的选型传感器是进行空气质量测量的核心组件,传感器的精度和稳定性决定了测量结果的准确性。
因此,在选择传感器时需要考虑传感器的灵敏度、响应速度、精度和稳定性等因素,以保证测量的准确性。
2. 数据采集与处理在实现空气质量监测系统时,需要对传感器采集到的数据进行实时采集和处理。
通常使用微处理器或单片机来实现对数据的采集和处理,对采集到的数据进行滤波处理,进一步提高数据的准确性和稳定性。
3. 通讯模块的设计空气质量监测系统需要与云平台或其他设备进行数据的通讯。
因此,在设计空气质量监测系统时需要考虑通讯模块的设计,选择合适的通讯模块,如Wi-Fi、蓝牙或LoRa等,实现与云平台或其他设备的数据通讯。
4. 电源管理空气质量监测系统通常需要长期运行,因此需要考虑电源管理的问题。
可以采用充电式电池或太阳能电池来为系统提供电源,以确保系统长期稳定运行。
三、空气质量监测系统的实现1. 系统架构空气质量监测系统的实现,通常需要分为传感器、微处理器、通讯模块和电源管理模块四部分。
其中,传感器用于采集空气中的污染物数据,微处理器用于对传感器采集的数据进行处理和存储,通讯模块用于与云平台或其他设备进行数据通讯,电源管理模块用于为整个空气质量监测系统提供稳定的电源。
2. 系统流程当传感器采集到空气中的污染物数据后,经过微处理器进行数据的采集、处理和存储,同时实现系统的控制和调节。
将采集到的数据通过通讯模块和云平台或其他设备进行数据通讯,为空气质量监测提供数据支持。
环境空气质量监测系统技术参数

环境空气质量监测系统技术参数1.监测设备:-气象传感器:用于监测温度、湿度、大气压力和风速风向等气象参数的传感器。
-可吸入颗粒物(PM10和PM2.5)监测仪:用于监测可吸入颗粒物的浓度的仪器。
-氮氧化物(NOx)监测仪:用于监测氮氧化物浓度的仪器。
-二氧化硫(SO2)监测仪:用于监测二氧化硫浓度的仪器。
-一氧化碳(CO)监测仪:用于监测一氧化碳浓度的仪器。
-臭氧(O3)监测仪:用于监测臭氧浓度的仪器。
-挥发性有机化合物(VOCs)监测仪:用于监测挥发性有机化合物浓度的仪器。
2.数据采集和传输系统:-数据采集器:用于接收监测设备传输的数据,将其转换为数字信号并存储起来。
-通信模块:用于将采集到的数据通过有线或无线方式传输到数据处理和分析系统。
-数据传输协议:用于确保数据的安全传输和完整性。
-数据存储系统:用于长期存储大量的监测数据。
3.数据处理和分析系统:-数据预处理:对采集到的原始数据进行校正、滤波和插值等操作,以提高数据质量。
-数据分析算法:利用统计学和数学方法对监测数据进行分析,如趋势分析、时空分析等。
-模型建立和预测:通过建立数学模型,对未来的空气质量进行预测和预警。
-数据可视化:将处理后的数据以图表、地图等形式展示,方便用户理解和分析。
-数据报告和警报:生成定期报告,包括空气质量指数、污染源分析和建议措施,同时能够及时发出预警信息。
4.数据展示和报告系统:-网站和移动应用:提供用户界面,允许用户查看实时和历史空气质量数据。
-实时数据更新:确保数据的准确性和及时性,定时更新监测数据。
-空气质量指数(AQI)计算和显示:根据监测数据计算AQI并显示在界面上。
-空气质量报告和警报生成:根据监测数据生成报告和警报,并及时传送给相关用户和部门。
总的来说,环境空气质量监测系统的技术参数包括监测设备的类型和数量、数据采集和传输系统的稳定性和可靠性、数据处理和分析系统的算法和模型、数据展示和报告系统的用户界面和数据更新等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大气质量环境监测系统方案一、前言随着生活水平的提高,人们对健康越来越关注,对我们生活的环境也越来越关心,特别是一些对人体有危害的气体物质,并逐步在进行有效的监控和治理。
环境空气质量监测是伴随着日益严重的大气污染而发展起来的,环境空气质量自动监测系统近年来在我国得到普遍的应用。
二、我国环境空气质量自动监测概况1基本概念环境空气质量自动监测系统是一套自动监测仪器为核心的自动“测-控”系统。
空气质量的自动监测系统一般采用湿法和干法两种方式。
湿法的测量原理是库仑法和电导法等,需要大量试剂,存在试剂调整和废液处理等问题,操作繁琐,故障率高,维护量大。
干法基于物理光学测量原理,利用定电位电解传感器原理,结合国际上成熟的电子技术和网络通讯技术研制、开发出的最新科技产品。
使样品始终保持在气体状态,没有试剂的损耗,维护量较小,具有较强的实用性和理想的性能价格比。
2我国空气质量自动监测工作现状随着工业化进程的加快,科技的不断进步,环境空气监测从传统的事后的大气污染调查监测,事中大气染源监督发展到对大气的实时监测,据不完全统计,现阶段在我国空气质量监测工作的已经基本覆盖1800多个市、县,2000年,47个环保重点城市中只有25个城市建立了空气自动监测站,总数仅为109,,创建24小时连续自动采样系统的监测站为22个,多个城市共同建立了一个空气自动监测站的情况,大大降低了空气监测的准确性。
2004年, 42 个城市待建,除此之外的很多城市,因为城市和地区必要的仪器设备和专业人才的缺失,只能采用“五日法”监测,监测的项目具有局限性,监测常规指标为SO2 、NO2 、PM10和气象5参数,监测特异指标为CO2 、CH4 、H2O、NH3 、总烃、苯、二甲苯等。
观察我国环境空气监测工作现状,普遍化、自动化、标准化较世界先进水平都具有一定差距,为了更好地保证监测数据代表性、准确性、精密性和完整性,一方面应当抓紧空气自动监测站的普及,另一方面也要在监测技术上有所突破。
3空气质量自动监测系统的发展空气质量自动监测系统的硬件主要集中在子站,而子站的硬件又主要包括采样系统、监测仪器、校准设备,通信设备、数据处理设备等。
其中监测仪器是最重要的仪器。
空气质量监测仪器经历了第一代湿法仪器,第二代干法仪器,近年来,国内部分城市引进了瑞典OPSIS公司、美国TE公司或法国ESA公司的基于差分光谱法(也称长光程法)原理的监测仪器来代替SO2、NO2、O3等参数的测量,主要是利用长光程空气质量监测技术,能够分时测量以上三个主要参数外还能测量如:THC、CH4、n-MHC、BTX等有机污染参数,开启了空气监测仪器的第三个时代,在国内采用此类设备的空气自动监测系统即为DOAS大气环境质量监测系统,与第一代的湿法仪器和第二代的干法仪器相比,第三代的DOAS监测仪器的有点主要表现在以下几个方面,第一,传感器的使用率上,湿法仪器和干法仪器都无法避免其传感器和样气的直接接触,这样一来,湿法仪器就要经常更换库仑池中的溶液,而干法仪器传感器内中的光学元件会在受到气溶胶一类污染物的污染导致性能下降。
而第三代DOAS监测仪和样气接触的是由发射端发射的光,传感器不会跟样气直接接触,各污染物的吸收光谱是通过接收端会聚后由光导纤维传导到仪器内部的传感器去的,确保了DOAS内部的分光计不受样气中污染物的污染,从而可以有效保证传感器的使用效率。
第二,在校零问题上,校零对于监测仪器的质控来说是一项重要的工作。
但是在零气的购买商,国内缺少正规严格的零气购买途径,各级计量部门并不提供商品零气,致使除少数城市国外进口零气之外,购买高纯度的惰性气体来作为零气,可能会导致干法仪器在校零后出现负值的情况,只能通过微调仪器上的校零旋钮或在仪器上设置一个估计的修正值来解决误差问题。
但是对于DOAS监测器而言,其校准装置为一个长1米的校准池,在对仪器校零时,可以在校准池中通零气,由于DOAS一般的监测距离为300米左右,所以零气误差对监测结果的影响是该误差的三百分之一,能够很好地解决校零误差的问题。
第三,代表性,由于干法仪器的监测距离很短,在采集样气的时候是在一个点上,因此干法仪器也被称为点式仪器,这样一来所采集的样气范围较小,其代表性也较低,需要进行多点采集,还要进行数据分析才能得出较为具有代表性的监测结果。
在这一点上,DOAS监测仪的工作原理是利用光线反射,经过100 m甚至1,000 m的长光程来收集数据,这样一来其监测距离为数百米,监测范围相较于干法仪器的监测范围而言,大大增加了,因而有更好的代表性。
第四,异常值的识别。
在对污染物浓度的数据进行计算时,如果3个或4个小时连续出现的小时均值为统一数值,一般认为是出现了异常值,如果是干法仪器,整个相同的数值就会被认为是异常数据,但是对于DOAS监测仪来说,在可能出现异常数据情况下,还可以辅以通观察污染物浓度数据对应的光强及偏差来进行进一步的判断,以确定是否属于异常数值。
第五,污染物敏感度上,无论是湿法仪器还是干法仪器,要保证其监测数据准确度的最佳状态,需要污染物浓度在其量程的20%-80%且其线性较好的前提条件,监测数据较为准确。
如果空气本身受污染不严重,污染物浓度在仪器量程的20%左右及以下时,鉴于此时仪器线性不好,监测数据基本上变化不大,近似于一条直线,而且此时污染物在采样系统上的损失已不能忽略不计。
在这一点上,DOAS的污染物敏感度很高,线形较强,即使污染物浓度很低,也会出现有变化的曲线。
最后,在设备的维护上,DOAS的日常维护比干法仪器简单,没有试剂的损耗,备件较少,维护运转费用较低,具有较高性价比和安全度。
4环境空气质量自动监测系统的发展趋势近年来,在对监测仪的研究上,国外还在致力于发展灵敏度更高的长光程吸收光谱仪,区别于DOAS,这种仪器是基于激光光源进行监测,但目前尚处于试验阶段,而且激光雷达技术在环境监测中的应用在国际范围内也受到了广泛的重视,日本通产省已着手研制能观测三维大气中物质密度和组分的环境监测用激光雷达,以测量都市上空的NOx、SOx、O3、甲烷等气体的三维立体分布。
成为空气质量自动监测系统发展的新方向。
目前,德国、美国、意大利和瑞典等国已分别研制成功了车载式差分吸收激光雷达样机,并正在进行实用性试验。
但是差分吸收激光雷达的技术复杂、造价昂贵、并且对于操作人员专业技术素质要求较高,估计近期内推广使用有困难。
但是,拉曼激光雷达技术,虽然探测灵敏度较差,但结构简单、造价较低、性能可靠,使用维护方便,在对城市大气污染源的流动监测方面可以发挥优势,究其原因是激光雷达本身具有距离分辨率高和实时测量范围较大的特点,再加上一方面利用的是待测气体的吸收和大气(包括气体分子和气溶胶)弹性后向散射的原理,保证了较大的气体吸收截面,另一方面,由于大气气体的弹性后向散射截面也很大,较大的回波强度便于自动监测系统的接收测量。
这两方面的结合,形成差分吸收方法测量的高灵敏度,使的激光雷达成为测量气体分子浓度空间分布的一种有力工具。
但是对于国内而言,造价仍显昂贵,但是可以作为以后的发展方向,实现设备的国际化接轨。
最后,空气质量自动监测系统的硬件主要集中在子站,在子站管理模式上,我国空气质量自动监测子站将会实现普及,但是随着监测设备的不断进化,监测子站越来越多,因此,监测人员的规范管理和技术培训工作应进一步加强,子站的管理模式也应当从自管和托管两个方式入手,实现子站管理方式的规范化和科学化,这样一来才能更好地保证我国空气质量自动监测工作的进一步开展。
三、空气质量检测标准1国家、国际标准室内空气污染限量标准GB50325-2001《民用建筑工程室内环境污染控制规范》中有关空气质量验收标准如下:其中:Ⅰ类民用建筑工程包括:住宅、医院病房、老年建筑、幼儿园、学校教室等建筑工程;Ⅱ类民用建筑工程包括:办公室、旅店、文化娱乐场所、书店、图书馆、展览馆、体育馆、商场(店)、公共交通工具等候室、医院候诊室、饭店(馆)、理发店等公共建筑。
美国、欧洲等国家和香港特区空气中挥发性有害有机气体限量标准表1 室内空气质量标准(GB/T 18883——2002)2对人体的危害2.1对婴幼儿及儿童的影响儿童的身体正在发育中,免疫系统比较脆弱,另外儿童呼吸量按体重比比成年人高50%,这就使他们更容易受到室内空气污染的危害。
无论从儿童的身体还是智力发育看,室内空气环境污染对儿童的危害不容忽视!室内空气污染会对儿童构成下述三大威胁:诱发儿童的血液性疾病(如白血病);增加儿童哮喘病的发病率(据统计,我国儿童哮喘患病率为2~5%,其中1—5岁儿童患病率高达85%);影响儿童的身高和智力健康发育。
在中国的中小学及幼儿园教室里,普遍人均空间较小,而教师和学生在教室里学习的时间又长达6~8小时。
由于人多并普遍存在通风欠佳的情况,不少教室的CO2浓度都会在2000ppm以上,在冬季CO2浓度会更高,直接影响到教职员工和学生的身体健康和学习效率,处于成长期的少年儿童抵抗力比成人低,所以更容易受到不良空气的危害。
2.2对办公室白领的影响白领们长期工作在相对封闭的空调写字楼中,且不论装修、家俱的污染无法彻底散发,就是人员自身产生的污染,也会导致室内空气质量不好。
据中国疾病预防控制中心专家调查,由于办公室空间相对密闭,空气不流通,空气污浊,氧气含量低,容易导致肌体和大脑新陈代谢能力降低。
所以现在已有越来越多的白领和职员抱怨办公室空气污浊,感到呼吸不畅,注意力不集中,导致工作效率下降;还有一些体弱的人会出现头晕、胸闷、乏力等亚健康症状。
除以上人群外,在室内环境中,特别是在通风不良、人员拥挤的环境中,一些致病微生物容易通过空气传播,使易感人群发生感染。
一些常见的病毒、细菌引起的疾病如流感、麻疹、结核等呼吸道传染病都会借助空气在室内传播。
非典病毒肆虐的事实也充分说明,室内生物污染不可轻视!要改善这种情况,最经济可行的方法就是实时监测、保证良好的通风状况。
3防治措施时时监测室内的空气品质,做到科学有效地开窗通风,保持室内空气流通,保证室内新风量,最大幅度地减小室内空气污染对人体造成地危害;采光。
是指住宅内能够得到的自然光线,一般窗户的有效面积和房间地面面积之比应大于1:15。
太阳光可以杀来空气中的微生物,提高机体的免疫力。
专家认为,为了维护人体健康和正常发育,居室日照时间每天必须在2小时以上;室内净高最好高于2.8米。
这个标准是“民用建筑设计定额”规定的。
对居住者而言,适宜的净高给人以良好的空间感,净高过低会使人感到压抑。
微小气候的改善。
要使居室卫生保持良好的状况,一般要求冬天室温不低于12摄氏度,夏天不高于30摄氏度。
室内相对温度不大于65%,夏天风速不少于0.15米/秒,冬天不大于0.3米/秒。