温度监控系统毕业设计
本科毕业论文PID温控系统的设计及仿真

CENTRAL SOUTH UNIVERSITY 本科生毕业论文题目PID温控系统的设计及仿真学生指导教师学院信息科学与工程学院专业班级完成时间年月摘要温度是工业控制的主要被控参数之一。
可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。
要对温度进行控制,有很多方案可选。
PID 控制简单且容易实现,在大多数情况下能满足性能要求。
模糊控制的鲁棒性好,无需知道被控对象的数学模型,且在快速性方面有着自己的优势。
研究分析了PID 控制和模糊控制的优缺点,把两者相互结合,采用了用模糊规则整定P K 、I K 两个参数的模糊自整定PID 控制方法。
本研究以电烤箱为控制对象,用MATLAB 软件对PID 控制、模糊控制和参数模糊自整定PID 控制的控制性能分别进行了仿真研究。
仿真结果表明PID 对于对象模型复杂和模型难以确定的控制系统具有很大的局限性,不能满足调节时间短、超调小的技术要求。
由于模糊控制的理论(如量化因子和比例因子的确定问题)并不完善,其可能获得的控制性能无法把握,而且模糊控制易受模糊规则有限等级的限制而引起稳态误差。
参数模糊自整定PID 控制吸收前两种方法的长处,满足了调节时间短、超调量为零且稳态误差较小的控制要求。
因此本论文最终确定采用参数模糊自整定PID 控制方案。
本系统硬件采用了以 AT89C52 单片机为核心的温度控制器,选用 k 型热电偶为温度传感器结合MAX6675芯片构成前向通道,同时双向晶闸管和SSR 构成后向通道,由按键、LED 数码显示器及报警单元等组成人机联系电路。
关键词:单片机,PID ,模糊控制,仿真ABSTRACTTemperature is one of the main parameters in the industrial process control.Yetthere are difficultiesto have a good control oftemperature becauseof the characteristics of the temperature itself:the temperature inertia is great, its time-lag is serious and it is hardto establish an accurate mathematical model.There are many methods to be selected in order to control a system. The PID controlis simple,easily realized andin most casesit meetsthe control demand. Fuzzy control has the advantage of quickness,itsrobustness is good and there is no needto know theobject ’smathematical model.This paper analyses the advantages and disadvantages of both PID control and fuzzycontrol and es to the method of bining them together,fuzzy self-tuningPID control. In this method,P K and I K of the PID controller are adjusted by fuzzy control rules .In the paper simulations of PID control, fuzzy control and fuzzyself-tuning PID control are done by MATLAB to control a electric oven.Conclusions are that for those control objects of which models are plicated or hard to establish,the PID method has limitation and doesn ’t meet the control demand. As the fuzzy control method theory is not perfect, a good control performance cannot be expected. And it could easily cause the steady-state error for it is restricted by limited grades of the fuzzy rules.Finally the fuzzy self-tuning PID control method is selected, since it meets the control demands.In this paper AT89C52 is used as controller, toward access is posed of K which is used as the temperature sensor and MAX6675.Backward access is posed of bidirectional thyristor and SSR. Man-machine circuit is posed of keyboard, LED and warning unit, etc.Key words :Micro Controller, PID Control, Fuzzy Control, Simulation目 录摘要IABSTRACTII第一章绪论11.1 课题的提出及意义11.2 控制系统背景介绍11.3 当代温控系统及智能算法2第二章温控系统的设计52.1 温控系统的总体设计52.1.1 温控系统设计的基本原则52.1.2 温控系统的结构及设计62.2 温控系统的硬件设计72.2.1 前向通道设计72.2.2 后向通道设计102.2.3 人机通道设计11小结15第三章系统控制方案163.1 PID 控制163.1.1 PID的概述163.1.2 PID 控制的基本理论及特点163.2 模糊控制183.2.1 模糊控制的概述183.2.2 模糊控制的基本原理及特点183.3 模糊PID 控制19小结21第四章仿真研究224.1 MATLAB及其模糊逻辑工具箱和仿真环境simulink224.2 仿真和优选234.2.1 控制对象模型234.2.2 仿真和方案选择25小结32第五章总结与展望335.1 主要工作容335.2 工作小结335.3 存在的问题及未来的方向34结束语35参考文献36第一章绪论1.1 课题的提出及意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。
风冷式电力变压器温度监控系统设计(毕业设计)

关键词:单片机;变压器冷却系统;风机故障;油温采集
I
兰州工业学院毕业论文
Abstract
Power transformer is the important equipment in power system.In order to protect the transformer, to ensure the safety of the power supply system, reliable operation, the need to monitor the temperature of the transformer, high voltage alarm, tripping over temperature.Due to exist in the traditional control system of simple, electric power transformer capacity differ big fan protection way, measurement parameters is not accurate, cooling way different, and the size of the load, and running environment, design a set of intelligent transformer temperature monitoring system.Intelligent transformer temperature controller based on MCU as the core, using PT100 sensors, the direct embedment in transformer windings, the temperature measurement and control of three-phase.Implements of transformer oil temperature collection, LED display, data wireless transmission, real-time and refer to the oil temperature real-time control on the operation condition of the fan.When the fan is faulty, the controller can also signal fault alarm and protection, in order to ensure the safe operation of the transformer and other equipment.
温度控制系统的设计_毕业设计论文

温度控制系统的设计_毕业设计论文摘要:本文基于温度控制系统的设计,针对工况不同要求温度的变化,设计了一种通过PID控制算法实现温度控制的系统。
该系统通过传感器对温度进行实时监测,并将数据传输给控制器,控制器根据设定的温度值和反馈的实际温度值进行比较,并通过PID算法进行控制。
实验结果表明,该温度控制系统具有良好的控制性能和稳定性。
关键词:温度控制系统;PID控制;控制性能;稳定性1.引言随着科技的发展,温度控制在很多工业和生活中都起到至关重要的作用。
温度控制系统通过对温度的监测和控制,可以保持系统的稳定性和安全性。
因此,在各个领域都有大量的温度控制系统的需求。
2.温度控制系统的结构温度控制系统的结构主要包括传感器、控制器和执行器。
传感器负责对温度进行实时监测,并将监测到的数据传输给控制器。
控制器根据设定的温度值和反馈的实际温度值进行比较,并通过PID控制算法进行控制。
执行器根据控制器的输出信号进行操作,调节系统的温度。
3.PID控制算法PID控制算法是一种常用的控制算法,通过对控制器进行参数调节,可以实现对温度的精确控制。
PID算法主要包括比例控制、积分控制和微分控制三部分,通过对每一部分的权值调节,可以得到不同的控制效果。
4.实验设计为了验证温度控制系统的性能,我们设计了一组温度控制实验。
首先,我们将设定一个目标温度值,然后通过传感器对实际温度进行监测,并将数据传输给控制器。
控制器根据设定值和实际值进行比较,并计算控制信号。
最后,我们通过执行器对系统的温度进行调节,使系统的温度尽量接近目标温度。
5.实验结果与分析实验结果表明,通过PID控制算法,我们可以实现对温度的精确控制。
在设定目标温度值为40℃的情况下,系统的稳态误差为0.5℃,响应时间为2秒。
在不同工况下,系统的控制性能和稳定性都得到了有效的保证。
6.结论本文基于PID控制算法设计了一种温度控制系统,并进行了相应的实验验证。
实验结果表明,该系统具有良好的控制性能和稳定性。
仓库温湿度监测系统设计本科毕业论文

仓库温湿度监测系统设计本科毕业论文研究课题:仓库温湿度监测系统设计研究方案:一、引言:仓储行业对于温湿度的监测十分重要,对于一些特定的货物,如食品、药品等,温湿度的变化都会对其质量产生重要影响。
设计一套仓库温湿度监测系统,可以实时地监测温湿度数据,并进行分析与提取,对于提高仓储物品的质量和管理效率具有重要意义。
本文旨在探讨仓库温湿度监测系统设计的关键技术及实施情况,并为解决实际问题提供参考。
二、研究目标:1. 设计一个集温湿度采集、传输与分析为一体的仓库温湿度监测系统。
2. 通过采集的温湿度数据,结合已有研究成果,提出新的观点和方法,并对数据进行分析得出结论。
3. 探索更准确、稳定的温湿度监测技术,并建立相应的模型和算法。
三、方案实施情况:1. 硬件设计:a. 选择合适的传感器,可通过数字接口与主控板连接,并能准确地测量仓库内的温湿度。
b. 设计合适的电源供应系统,保证传感器和主控板的正常工作。
c. 开发合适的数据存储与传输模块,实现温湿度数据的存储与传输。
2. 软件设计:a. 完成主控板的固件开发,实现温湿度数据的采集、处理与传输。
b. 开发后台数据库和管理系统,实现温湿度数据的存储、管理与分析。
c. 设计用户界面与工具,方便用户实时地查看仓库温湿度数据,并进行数据分析与决策。
3. 实验环境与调试:a. 确定实验环境,建立标准的温湿度模拟环境。
b. 进行传感器的校准与测试,确保测量准确性。
c. 进行实验数据的采集与传输测试,验证系统的稳定性与可靠性。
四、数据采集与分析:1. 根据实验与调试所得的数据,使用合适的数据采集工具进行记录。
2. 对采集到的温湿度数据进行整理与分析,采用统计学方法和图表可视化工具,得出数据的基本特征与规律。
五、结论:通过本次实验与调研,我们成功地设计出了一套仓库温湿度监测系统,能够实时地采集、传输和分析仓库内的温湿度数据。
在已有研究成果的基础上,我们提出了一些新的观点和方法,并对数据进行了深入分析。
毕业设计stm32

毕业设计:基于STM32的智能温湿度检测系统引言智能温湿度检测系统是一种能够实时检测和监控环境温度和湿度的系统,广泛应用于仓储、办公室、工厂等场所。
本文介绍了一种使用STM32微控制器搭建的智能温湿度检测系统的设计和实现。
设计目标本设计的目标是开发一种低功耗、高精度的智能温湿度检测系统,能够实时监测环境温湿度并提供数据记录和报警功能。
同时,该系统还具备良好的可扩展性,能够与其他设备进行数据通信和远程控制。
系统设计硬件设计本系统的硬件主要由STM32微控制器、温湿度传感器、液晶显示屏、按键和蜂鸣器等组成。
1.STM32微控制器:选择STM32F103C8T6,具备高性能、低功耗和丰富的接口资源。
2.温湿度传感器:采用DHT11数字温湿度传感器,具有简单、经济和稳定的特点。
3.液晶显示屏:使用1602液晶显示屏,能够通过显示温湿度数据和系统状态。
4.按键:设计了4个按键,用于系统设置和菜单导航。
5.蜂鸣器:用于温湿度异常时的报警提醒。
软件设计本系统的软件设计主要包括STM32固件程序和上位机监控程序两部分。
1.STM32固件程序:使用STM32CubeMX进行初始化配置和代码生成,通过定时器中断实现温湿度数据的采集和处理,通过串口通信实现数据传输和控制。
2.上位机监控程序:使用C#编写上位机程序,通过串口与STM32进行通信,实现数据的监控、记录和远程控制。
用户可以通过上位机设置查询间隔、报警阈值等参数。
系统实现系统实现主要包括硬件的搭建和软件的编程两个步骤。
硬件搭建方面,按照硬件设计进行电路连接和元件的布局,保证各元件之间的正常通信和协作。
软件编程方面,通过STM32CubeMX生成初始化代码,编写主程序和中断服务函数。
在上位机监控程序方面,使用C#编写串口通信程序,并进行数据处理和界面设计。
系统测试和评估系统测试主要针对温湿度检测精度、报警功能和系统稳定性进行评估。
通过与标准仪器进行对比测试,验证系统的测量精度。
PID温控系统的设计及仿真毕业论文

PID温控系统的设计及仿真毕业论文摘要:本论文针对PID温控系统的设计和仿真展开研究。
首先,介绍了PID控制器的基本原理和工作方式,并分析了PID控制器在温控系统中的应用。
然后,基于MATLAB/Simulink软件,建立了PID温控系统的数学模型,并进行了系统的仿真。
通过对比分析不同PID参数的变化对温度控制系统的影响,最终得到了最优的控制参数。
关键词:PID控制器,温控系统,MATLAB,仿真1.引言温控系统在日常生活中被广泛应用,例如家用温度控制、工业生产过程中的温度控制等。
PID控制器作为一种经典的控制方法,被广泛应用于温控系统中。
本论文旨在设计一个PID温控系统,并通过仿真实验分析不同PID参数对系统性能的影响,从而得到最优的控制参数。
2.PID控制器原理及应用PID控制器是一种反馈控制器,根据控制量与设定值之间的差异来调整输出信号。
它由比例环节、积分环节和微分环节组成,可以有效地抑制温度偏差、提高控制系统的稳定性和精度。
PID控制器在温控系统中的应用十分广泛。
通过对温度传感器采集到的信号进行处理,PID控制器可以实时调整控制系统的输出信号,从而控制温度在设定范围内波动。
PID控制器的参数调整对于系统性能和稳定性具有重要影响。
3.温控系统的数学模型建立基于PID控制器的温控系统可以用数学模型来描述。
以温度T为控制对象,控制量为输出温度U,设定温度为R,PID控制器的输出为Y。
根据温控系统的动力学特性,可以建立如下的数学模型:T * dY(t)/dt = Kp * (R - Y(t)) + Ki * ∫(R - Y(t))dt + Kd * d(R - Y(t))/dt其中Kp为比例系数,Ki为积分系数,Kd为微分系数。
4.温控系统的仿真实验通过MATLAB/Simulink软件,搭建了PID温控系统的仿真模型。
根据数学模型,设定了温度的变化范围和输出的控制参数。
在仿真实验中,通过对比分析不同PID参数的变化对温度控制系统的影响。
毕业设计(论文)-基于CC2530的温度监测系统设计

编号:( )字 号本科生毕业设计题目:姓名: 学号: 班级:二〇一四年六月基于CC2530的温度监测系统设计 信息工程2010-4班中国矿业大学本科生毕业设计姓名:学号:********学院:信息与电气工程学院专业:信息工程设计题目:基于CC2530的温度监测系统设计专题:指导教师:华钢职称:教授二〇一四年六月徐州中国矿业大学毕业设计任务书学院信息与电气工程学院专业年级信息2010级学生姓名李明达任务下达日期:2013年12月30日毕业设计日期:2013年12月30日至2014年6月10日毕业设计题目:基于CC2530的温度监测系统设计毕业设计专题题目:毕业设计主要内容和要求:1.设计基于CC2530的无线温度检测节点;2.多个节点组成一跳网络;3.节点可睡眠;4.设计节点软件;5.简单设计上位机软件院长签字:指导教师签字:年月日指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:指导教师签字:年月日评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:评阅教师签字:年月日中国矿业大学毕业设计答辩及综合成绩摘要本文主要对煤矿监控系统中温度的监测进行研究和分析,根据国内目前对于温度监测方法的研究,设计了一种基于CC2530的温度监测系统。
本文首先对本课题的研究意义及国内发展现状进行分析和研究,详细比较了几种现有的温度监测方法,根据煤矿监控系统所处的复杂环境需要,提出了基于CC2530的温度监测系统设计。
随后本文对设计所采用的ZigBee无线自组网技术和ZigBee开发套件进行了简要介绍,并对设计所采用的Z-Stack协议栈的工作流程作详细介绍。
远程温度监测系统设计本科论文

题目远程温度监测系统设计学生姓名学号所在学院物理与电信工程学院专业班级电子信息工程1204 指导教师完成地点博远楼2016 年 6 月18日毕业论文﹙设计﹚任务书院(系) 物电学院专业班级电子信息工程学生姓名一、毕业论文﹙设计﹚题目远程温度监测系统设计二、毕业论文﹙设计﹚工作自___2016__年__ 2 _月_ 20_日起至__ 2016__年 6 月_ 20 _日止三、毕业论文﹙设计﹚进行地点: 物电学院实验室四、毕业论文﹙设计﹚的内容要求:温度远程监控在工业控制领域中有着十分重要的意义,在许多工业场合,需要对一些分散的、无人值守的现场温度数据进行定实时采集,同时发送简单的控制命令。
传统温度远程监控系统的实现方式一般都需要自己建设并维护有线或无线网络,维护费用高。
随着通信技术的发展,原有的远程监控系统已日益不能满足多方面的要求,温度数据无线传输设计。
系统主要由现场温度监测端,数据传输模块和监控端组成,数据的传输由NRF24L01模块完成。
具体要求如下:1、用微处理器(单片机或ARM)控制监控现场的温度信息采集和数据发送;2、采用温度传感器DS18B20和无线收发模块NRF24L01对试验现场温度数据进行远程无线测量和控制;3、完成系统的软件硬件设计;五、毕业论文﹙设计﹚应收集资料及参考文献:[1]黄贤武,郑筱霞.传感器原理及其应用[M].成都:电子科技大学出版社, 2010.[2]俞国亮.MCS-51单片机原理与应用[M].北京:清华大学出版社,2010.[3]李斯伟,雷新生.数据通信技术[M].北京:人民邮电出版社,2009.[4]谢自美.电子线路设计实验测试[M].武汉:华中科技大学出版社,2010.六、进度安排:2月20日─3月1日:查阅资料、完成英文资料翻译并准备开题报告. 3月2日─4月1日:完成开题报告,完成监控系统的监控软件设计.4月2日─5月1日:完成监控系统的硬件系统设计. 5月2日─5月30日:搭建硬件系统并进行测试验证. 准备验收。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言随着“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。
因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。
由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素。
传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。
因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用。
另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。
温度传感器是其中重要的一类传感器。
其发展速度之快,以及其应用之广,并且还有很大潜力。
为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。
本文利用单片机结合传感器技术而开发设计了这一温度监控系统。
文中传感器理论单片机实际应用有机结合,详细地讲述了利用热敏电阻作为热敏传感器探测环境温度的过程,以及实现热电转换的原理过程。
本设计应用性比较强,设计系统可以作为生物培养液温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统等等。
课题主要任务是完成环境温度检测,利用单片机实现温度调节并通过计算机实施温度监控。
设计后的系统具有操作方便,控制灵活等优点。
本设计系统包括温度传感器,A/D转换模块,输出控制模块,数据传输模块,温度显示模块和温度调节驱动电路六个部分。
文中对每个部分功能、实现过程作了详细介绍。
整个系统的核心是进行温度监控,完成了课题所有要求。
1 设计要求1.1 控制要求(1)生物繁殖培养液的温度要保证在适于细胞繁殖的温度内,这主要在控制程序设计中考虑。
温度控制范围为15 ~25,升温、降温阶段的温度控制精度要求为0.5度,保温阶段温度控制精度为 0.5度。
图1.1.1温度控制曲线(2)微机自动调节正常情况下,系统投入自动。
(3)模拟手动操作当系统发生异常,投入手动操作。
(4)微机监控功能显示当前被控量的设定值、实际值,控制量的输出。
1.2 受控对象的数学模型生物繁殖的培养液主要用于生物的繁殖研究,而温度是影响生物繁殖的重要因素。
本系统要求长时间监视培养液的温度,并对当前的温度进行控制。
本控制对象为生物繁殖用培养液,采用继电器进行控制。
2 系统的硬件配置2.1 单片机和系统总线单片机:PIC16F877A(PIC16F877A为美国MICORCHIP公司生产的带A/D转换的8位单片机)。
显示系统:商用计算机。
用户内存:256M RAM。
系统总线:RS-232-C接口(又称EIA RS-232-C)RS232 C有25条线,,分为5个功能组,包括4条数据线,11条控制线,3条定时线,7条备用线和未定义线。
操作系统:Windows 2000。
2.2硬件介绍计算机工作的外围电路设备(1)温度传感器温度传感器采用补偿型NTC热敏电阻其主要性能如下:①补偿型NTC热敏电阻 B值误差范围小,对于阻值误差范围在5%的产品,其一致性、互换性良好。
适合于一般精度的温度测量和计量设备。
②外型结构和尺寸:图2.2.1 温度传感器结构尺寸图③主要技术参数:时间常数≤30S测量功率≤0.1mW使用温度范围-55~+125℃耗散系数≥6mW/℃额定功率0.5W④降功耗曲线:图2.2.2温度传感器功耗曲线图(2)核心处理单元MicroChip PIC16F877A单片机MicroChip PCI16F877A单片机主要性能:具有高性能RISC CPU仅有35条单字指令。
除程序指令为两个周期外,其余的均为单周期指令。
运行速度:DC-20M时钟输入。
DC-200ns指令周期。
8K*14个FLASH程序存储器。
368*8个数据存储器(RAM)字节。
引脚输出和PIC16C73B/74B/76/77兼容。
中断能力(达到14个中断源)。
8级深度的硬件堆栈。
直接,间接和相对寻址方式。
上电复位(POR)。
上电定时器(PWRT)和震动启动定时器。
监视定时器(WDT),它带有片内可靠运行的RC振荡器。
可编程的代码保护。
低功耗睡眠方式。
可选择的振荡器。
低功耗,高速CMOS FLASH/EEPROM工艺。
全静态设计。
在线串行编程(ICSP)。
单独5v的内部电路串行编程(ICSP)能力。
处理机读/写访问程序存储器。
运行电压范围2.0v到5v。
高输入/输出电流25mA。
商用,工业用温度范围。
低功耗:在5v,4MHz时典型值小于2mA。
在3v,32KHz时典型值小于20uA。
典型的静态电流值小于1uA。
外围特征:Timer 0 :带有预分频的8位定时器/计数器。
Timer 1 :带有预分频的16位定时器/计数器,在使用外部晶体时钟时在SLEEP期间仍能工作。
Timer 2 :带有8位周期寄存器,预分频和后分频器的8位定时器/计数器2个捕捉器,比较器和PWM模块。
其中:捕捉器是16位的,最大分辨率为12.5nS。
比较器是16位的,最大分辨率为200nS。
PWM最大分辨率为是10位。
10位多通道模/数转换器。
带有SPI(主模式)和I2C(主/从)模式的SSP。
带有9位地址探测的通用同步异步接收/发送(USART/RCI)。
带有RD,WR和CS控制(只40/44引脚)8位字宽的并行从端口。
带有降压的复位检测电路。
(3)RS-232-C接口电路计算机与计算机或计算机与终端之间的数据传送可以采用串行通讯和并行通讯二种方式。
由于串行通讯方式具有使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用。
在串行通讯时,要求通讯双方都采用一个标准接口,使不同的设备可以方便地连接起来进行通讯。
RS-232-C接口(又称EIA RS-232-C)是目前最常用的一种串行通讯接口。
它是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。
它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”该标准规定采用一个25个脚的DB25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。
①接口的信号内容实际上RS-232-C的25条引线中有许多是很少使用的,在计算机通讯中一般只使用3-9条引线。
RS-232-C最常用的9条引线的信号。
②接口的电气特性在RS-232-C中任何一条信号线的电压均为负逻辑关系。
即:逻辑。
“1”,-5~-15V;逻辑“0”+5~+15V 。
噪声容限为2V。
即要求接收器能识别低至+3V的信号作为逻辑“0”,高到-3V的信号作为逻辑“1”。
③接口的物理结构RS-232-C接口连接器一般使用型号为DB-25的25芯插头座,通常插头在DCE端,插座在DTE端. 一些设备与PC机连接的RS-232-C接口,因为不使用对方的传送控制信号,只需三条接口线,即“发送数据”、“接收数据”和“信号地”。
所以采用DB-9的9芯插头座,传输线采用屏蔽双绞线。
④传输电缆长度由RS-232C标准规定在码元畸变小于4%的情况下,传输电缆长度应为50英尺,其实这个4%的码元畸变是很保守的,在实际应用中,约有99%的用户是按码元畸变10~20%的范围工作的,所以实际使用中最大距离会远超过50英尺。
图2.3.1 Max232结构图(4)继电器继电器是具有隔离功能的自动开关,广泛用于遥控,遥测,通信,自动控制,机电一体化及电力电子设备中,是最重要的控制元件之一。
继电器是在自动控制电路中起控制与隔离作用的执行部件,它实际上是一种可以用低电压、小电流来控制大电流、高电压的自动开关。
在本系统中,继电器控制的自动温度调节电路和PCI16F877A单片机中程序构成温度自动监测电路,实现对生物培养液温度的监测和自动控制(5)半导体降温片及电阻加热丝①半导体制冷器是根据热电效应技术的特点,采用特殊半导体材料热电堆来制冷,能够将电能直接转换为热能,效率较高。
其工作原理如图2.5.1:图2.5.1半导体降温片工作原理图半导体制冷片由许多N 型和P 型半导体之颗粒互相排列而成,而N P 之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他金属导体,最後由两片陶瓷片像夹心饼乾一样夹起来,陶瓷片必须绝缘且导热良好,通上电源之後,冷端的热量被移到热端,导致冷端温度降低,热端温度升高。
它的外观如图2.5.2所示。
2)本控制系统是对生物培养液进行温度监控,故太快的温度变化对生物繁殖显图2.5.2半导体降温片外观图②本控制系统是对生物培养液进行温度监控,过快的温度变化对生物繁殖显然是不利的,因此在本系统中采用的是高阻抗小功率加热电阻丝进行温度的小范围调节。
正视图侧视图3 温度控制系统的组成框图采用典型的反馈式温度控制系统,组成部分见图3.1。
其中数字控制器的功能由单片机实现。
图3.1温度控制系统的组成框图培养皿的传递函数为),1/()(1+=-s Ke s G s τττLT =θ,其中τ1为电阻加热的时间常数,θ为电阻加热的纯滞后时间,T θ为采样周期。
A/D 转换器可划归为零阶保持器内,所以广义对象的传递函数为]/)1[()1/([)(11s Ts e s Ke s G s --⨯+-=τθ (3-1-1)广义对象的Z 传递函数为)/1/)11(]}/)1[()]11/{[)(1111-------=-⨯+-=z eT e Kz s e s s Ke Z z G T L Ts ττθτ (3-1-2) 所以系统的闭环Z 传递函数为)1/()1()1/(/)1[()(//1ττθτT T L s Ts e e z s e s e Z z --------=+⨯-=Φ (3-1-3)系统的数字控制器为)(G /)()(D )(E /)(U 1z z z z z Φ===L T T e T T T z e z e e K e z e ---------------1/1/1//11/)1(]1)[1(/)1)(1(ττττ (3-1-4)写成差分方程即为)1()1()1()(//L k u e k u e k u T T ---+-=--ττ)1(/)1()1()1(/)()1(1/1//1//τττττT T T T T e K k e e e e K k e e -----------+ (3-1-5)令 )1(/)1(1//0ττT T e K e a ----=)1(/)1(1/1//1τττT T T e K e e a -----= τ/1T e b -=,τ/21T e b --=,得)1()1()1()()(2110L k u b k u b k e a k e a k u --+-+--= (3-1-6) 式中)(k e ——第k 次采样时的偏差;)1(-k e ——第1-k 次采样时的偏差; )1(-k u ——第1-k 次采样时的偏差;4 温度控制系统结构图及总述图4.1温度控制系统结构图图4.1中温度传感器和Micro Chip PIC16F877A单片机中的A/D转换器构成输入通道,用于采集培养皿内的温度信号。