双曲线标准方程课件PPT
合集下载
双曲线及其标准方程ppt课件

x2
y2
变式.给出曲线方程
+
=1.
4+k 1-k
(1)若该方程表示双曲线,求实数k的取值范围;
(2)若该方程表示焦点在y轴上的双曲线,求实数k的取值范围.
y2 x2
例 5.已知双曲线 C 的方程是 - =1,其上下焦点分别是 F2,
16 20
F1,点 M 在双曲线 C 上,且|MF1|=9,则|MF2|=________.
归纳总结
y
图形
y
P
P
x
O
F1
F1 O F2
方程
焦点
a,b,c之间的关系
F2
x
x2 y2
2 1(a 0, b 0)
2
a
b
y2 x2
2 1(a 0, b 0)
2
a
b
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
c2=a2+b2
a,b大小不定
椭圆与双曲线的区别
O
焦点在对应轴上
x2 y2
2 1(a 0, b 0)
2
a
b
① 方程用“-”号连接;
y
F2
F1
y2 x2
2 1(a 0, b 0)
2
a
b
② c2=a2+b2 ;
③分母是a2, b2, 且a>0, b>0,但a, b大小不定;
④ 如果x2的系数是正的,则焦点在x轴上;
如果y2的系数是正的,则焦点在y轴上.
x
F1 O
F2
结论:已知F1,F2分别是双曲线C:
双曲线及其标准方程 课件

(3)设双曲线的方程为 Ax2+By2=1,AB<0. ∵点 P,Q 在双曲线上,
∴92A956+A2+12652B5B==1,1,
解得AB==-19. 116,
∴双曲线的标准方程为y92-1x62 =1.
[规律方法] 1.求双曲线标准方程的步骤 (1)确定双曲线的类型,并设出标准方程; (2)求出 a2,b2 的值. 2.当双曲线的焦点所在坐标轴不确定时,需分焦点在 x 轴上和 y 轴上两 种情况讨论,特别地,当已知双曲线经过两个点时,可设双曲线方程为 Ax2 +By2=1(AB<0)来求解.
图 2-3-1
[思路探究]
建立平面直 角坐标系
→
由已知条件得 到边长的关系
→
判断轨迹 的形状
→
写出轨迹方程
[解] 以 AB 边所在的直线为 x 轴,AB 的垂直平分线为 y 轴,建立平面直
角坐标系,如图所示,则 A(-2 2,0),B(2 2,0).由正弦定理,得 sin A=|B2CR|,
sin B=|A2CR|,sin C=|A2RB|(R 为△ABC 的外接圆半径).
求双曲线的标准方程
例 2、根据下列条件,求双曲线的标准方程:
(1)a=4,经过点
A1,-4
310;
(2)与双曲线1x62 -y42=1 有相同的焦点,且经过点(6,5且焦点在坐标轴上.
[思路探究] (1)结合 a 的值设出标准方程的两种形式,将点 A 的坐标代 入求解.
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°, 所以102=(|PF1|-|PF2|)2+|PF1|·|PF2|, 所以|PF1|·|PF2|=64, ∴S△F1PF2=12|PF1|·|PF2|·sin ∠F1PF2 =12×64× 23=16 3.
3-2-1双曲线及其标准方程 课件(共67张PPT)

【解析】 距离的差要加绝对值,否则只为双曲线的一支.若 F1,F2 表示双曲线的左、右焦点,且点 P 满足|PF1|-|PF2|=2a,则点 P 在右支上;若点 P 满足|PF2|-|PF1|=2a,则点 P 在左支上.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
互动 2 在双曲线的定义中,必须要求“常数小于|F1F2|”, 那么“常数等于|F1F2|”“常数大于|F1F2|”或“常数为 0”时,动 点的轨迹是什么?
【解析】 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以 F1,F2 为端点的两条射线 F1A,F2B(包括端点),如图所示.
(2)若“常数大于|F1F2|”,此时动点轨迹不存在. (3)若“常数为 0”,此时动点轨迹为线段 F1F2 的垂直平分线.
互动 3 已知点 P(x,y)的坐标满足下列条件,试判断下列各 条件下点 P 的轨迹是什么图形?
2.关于双曲线应注意的几个问题 (1)双曲线的标准方程与选择的坐标系有关,当且仅当双曲线 的中心在原点,焦点在坐标轴上时,双曲线的方程才具有标准形 式.
(2)如图,设 M(x,y)为双曲线上任意一点,若 M 点在双曲线 的右支上,则|MF1|>|MF2|,|MF1|-|MF2|=2a(0<2a<|F1F2|);若 M 在双曲线的左支上,则|MF1|<|MF2|,|MF1|-|MF2|=-2a,因 此得|MF1|-|MF2|=±2a,这与椭圆不同.
(3)列式:由|MF1|-|MF2|=±2a, 可得 (x+c)2+y2- (x-c)2+y2=±2a.①
(4)化简:移项,平方后可得 (c2-a2)x2-a2y2=a2(c2-a2). 令 c2-a2=b2,得双曲线的标准方程为xa22-yb22=1(a>0,b>0).② (5)从上述过程可以看到,双曲线上任意一点的坐标都满足方 程②;以方程②的解(x,y)为坐标的点到双曲线两个焦点(-c, 0),(c,0)的距离之差的绝对值为 2a,即以方程②的解为坐标的 点都在双曲线上.这样,就把方程②叫作双曲线的标准方程.
双曲线及其标准方程课件

(3)当 k<0 时,方程为y42--x24k=1,表示焦点在 y 轴上的双曲线;
(4)当 0<k<1 时,方程为x42+y42=1,表示焦点在 x 轴上的椭圆; k
(5)当 k>1 时,方程为x42+y42=1,表示焦点在 y 轴上的椭圆. k
[一点通] 解决这类题的基本方法是分类讨论,在分
类讨论的过程中应做到不重不漏,选择适当的分界点.在
(3)若|F1F2|<2a,动点的轨迹不存在.
2.通过双曲线方程xa22-by22=1(焦点在 x 轴上)和ay22-xb22 =1(焦点在 y 轴上)(a>0,b>0)可以看出:如果 x2 项的系 数是正的,那么焦点在 x 轴上;如果 y2 项的系数是正的, 那么焦点在 y 轴上.对于双曲线,a 不一定大于 b,但是无 论双曲线的焦点在哪个轴上,方程中的三个量都满足 c2 =a2+b2.
[例3] 已知方程kx2+y2=4,其中k为实数,对于不同 范围的k值分别指出方程所表示的曲线类型.
[思路点拨] 解答本题可依据所学的各种曲线的标准形 式的系数应满足的条件进行分类讨论.
[精解详析] (1)当 k=0 时,y=±2,表示两条与 x 轴平行 的直线;
(2)当 k=1 时,方程为 x2+y2=4,表示圆心在原点,半径 为 2 的圆;
72 b2 =1,
解得a12=19, b12=116,
即 a2=9,b2=16.
∴所求双曲线的标准方程为y92-1x62 =1.
法二:∵双曲线的焦点位置不确定,
∴设双曲线方程为 mx2+ny2=1(mn<0). ∵P1,P2 在双曲线上,所以
4m+445n=1, 196×7m+16n=1,
双曲线及其标准方程完整版课件

2
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
2
则双曲线的标准方程为20 − 16 =1.
(2)设双曲线方程为 mx2-ny2=1,
1
= 25 ,
49-72 = 1,
则有
解得
1
28-9 = 1,
= ,
75
2
2
则双曲线的标准方程为25 − 75 =1.
归纳总结
求双曲线的标准方程与求椭圆的标准方程的方法相似,可
以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b
联立两方程解得 x=8(舍负),y=5 3,
所以 P(8,5 3),
kPA=tan∠PAx= 3,所以∠PAx=60°,
所以 P 点在 A 点的北偏东 30°方向.
当堂达标
1.已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,则当a=3和5时
,P点的轨迹为(
)
A.双曲线和一条直线
情景导学
双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声
音时差测定定位等都要用到双曲线的性质。本节我们将类比椭圆的研究方法研究双
曲线的有关问题。
问题导学
新知探究
如图,在直线
l 上取两个定点
在平面内,取定点
F1 , F 2,以点 F1 为圆心、线段
在以 F 2 为圆心、线段
我们知道,当点
2
2
解析:∵方程1+ + -2=1,∴(m-2)(m+1)<0,
解得-1<m<2,∴m的取值范围是(-1,2).
答案:D
)
4. 一块面积为12公顷的三角形形状的农场.如图所示△PEF,已知
1
tan∠PEF=
双曲线及其标准方程课件

音乐艺术
双曲线在音乐艺术中用于 创作优美的音乐旋律和和 声,特别是在处理音高和 音程时。
交通工程
双曲线在交通工程中用于 设计道路和轨道,特别是 在处理弯道和交叉口时。
04
双曲线的图像绘制
使用数学软件绘制双曲线
使用Ge双曲 线。用户只需在软件中输入双曲线的标准方程,即可自动生 成对应的双曲线图像。
05
双曲线的性质与方程 的关联
双曲线的性质与标准方程的关系
焦点距离
双曲线的标准方程中的系数与焦 点距离有关,决定了双曲线的开
口大小和方向。
渐近线
双曲线的标准方程中的系数决定了 渐近线的斜率和截距,反映了双曲 线的形状和位置。
离心率
双曲线的标准方程中的系数与离心 率有关,离心率决定了双曲线的开 口程度和形状。
推导结果
01
双曲线的标准方程为
$frac{x^2}{a^2}
-
frac{y^2}{b^2} = 1$。
02
其中$a > 0, b > 0$,且满足 $c^2 = a^2 + b^2$。
推导结论
双曲线是一种特殊的二次曲线,其标 准方程反映了双曲线的几何特性。
双曲线的焦点到曲线上任意一点的距 离之差为常数,这个常数等于两焦点 之间的距离的一半。
绘制双曲线
在工具箱中选择“双曲线”工具,然 后在绘图区域单击并拖动鼠标,即可 绘制出双曲线。用户可以根据需要调 整双曲线的参数和位置。
使用手工绘制双曲线
准备工具
准备一张纸、一支笔和一把直尺。
绘制过程
首先在纸上确定双曲线的中心和焦点,然后使用直尺和笔绘制出双曲线的渐近线。接着,使用笔和直尺在纸上绘 制出双曲线的上半部分。最后,使用对称性画出双曲线的下半部分。这种方法虽然比较传统,但对于理解双曲线 的几何意义非常有帮助。
《双曲线方程》课件

直接代入法: 将已知条件 代入方程求 解
消元法:通 过消去一个 未知数求解
换元法:通 过引入新的 未知数求解
待定系数法: 通过设定未 知数的系数 求解
数值方法: 通过数值计 算求解
图解法:通 过画图求解
确定双曲线方程的形式,如 x^2/a^2 - y^2/b^2 = 1
确定双曲线的焦点位置,如 (c,0)
双曲线方程的离 心率:e = c/a
双曲线方程与 椭圆方程的联 系:都是二次 曲线方程,具 有相似的几何
性质
双曲线方程与 抛物线方程的 联系:都是二 次曲线方程, 但几何性质不
同
双曲线方程与 圆方程的联系: 都是二次曲线 方程,但几何
性质不同
双曲线方程与 直线方程的联 系:直线与双 曲线的交点问 题,需要运用 双曲线方程进
确定双曲线的焦点位 置
确定双曲线的顶点位 置
确定双曲线的渐近线 方程
确定双曲线的离心率
确定双曲线的标准方 程
确定双曲线的渐近线 方程
标准双曲线方程:x^2/a^2 - y^2/b^2 = 1 焦点在x轴上的双曲线方程:x^2/a^2 - y^2/b^2 = -1 焦点在y轴上的双曲线方程:x^2/a^2 - y^2/b^2 = 1 焦点在原点的双曲线方程:x^2/a^2 - y^2/b^2 = -1
确定双曲线的渐近线方程,如 y = ±b/a * x
利用双曲线的性质,如离心率、 渐近线等,求解双曲线方程
双曲线的定义: 平面内到两个 定点的距离之 差的绝对值等 于常数的点的
轨迹
双曲线的性质: 对称性、周期Байду номын сангаас性、渐近线等
双曲线的方程: x^2/a^2-
y^2/b^2=1 或y^2/a^2x^2/b^2=1
双曲线的简单性质课件ppt课件

04 双曲线的标准方程的推导
推导过程
设双曲线上任意一点为$P(x,y)$, 根据双曲线的定义,点$P$到两 个焦点的距离之差为常数,即 $2a$。
利用距离公式和双曲线的定义, 可以得到点$P$到两个焦点的距 离分别为$sqrt{(x+a)^2+y^2}$ 和$sqrt{(x-a)^2+y^2}$。
对称性
01
02
03
对称性
双曲线关于其对称轴对称, 即关于x轴和y轴都对称。
总结词
双曲线关于其对称轴对称, 即关于x轴和y轴都对称。
详细描述
双曲线上的任意一点关于 x轴和y轴的对称点都在双 曲线上。
顶点
顶点
双曲线与对称轴的交点称 为顶点。
总结词
双曲线与对称轴的交点称 为顶点。
详细描述
顶点是双曲线与对称轴的 交点,也是双曲线离准线 最远的点。
比例常数。
性质
双曲线的焦点到任意一点的距离之 差等于常数2a,即|PF1| - |PF2| = 2a。
应用
通过焦点可以计算出双曲线的离心 率和准线方程。
焦距
定义
双曲线的两个焦点之间的距离称 为焦距,记作2c。
性质
焦距与半主轴长a和半次轴长b有 关,关系为c^2 = a^2 + b^2。
应用
通过焦距可以计算出双曲线的离 心率和准线方程。
双曲线的简单性质课件ppt课件
目录
• 双曲线的定义与标准方程 • 双曲线的几何性质 • 双曲线的焦点与焦距 • 双曲线的标准方程的推导 • 双曲线的应用
01 双曲线的定义与标准方程
定义
总结词
双曲线是由两个无限延伸的分支组成的,其形状类似于开口 的抛物线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1(a
0,b
0)
焦点
a.b.c的关 系
F(±c,0) F(0,±c)
a>b>0,a2=b2+c2
F(±c,0) F(0,±c)
a>0,b>0,但a不一 定大于b,c2=a2+b2
LUZHOU PEOPLE’S HOSPITAL
练习1:写出以下曲线的焦点坐标及a,b:
(1) x2 y2 1和x2 15 y2 15 25 9
-(-byx22)22= 1
(a>0,b>0)
M
叫做双曲线的标准方程 y-x
yxy
y F2
y x
它表示的双曲线焦点在y轴上, x Fy 1 焦点为F1(0,-c),F2(0,c),且c2=a2+b2 M
oo
F1
Fxy2 x
x LUZHOU PEOPLE’S HOSPITAL
x2 y2 a2 b2 1 F ( ±c, 0)
常数的点的轨迹叫做椭圆。
思考
F1
F2
差 平面内与两定点F1,F2的距离的 为非
零常数的点的轨迹是怎样的曲线呢?
LUZHOU PEOPLE’S HOSPITAL
思 考:
平面内与两 定点F1,F2的 距离的差为 非零常数的 点的轨迹是 什么?
定义:平面内与两个定点F1,F2的距离的差的绝对值等 于非零常数(小于︱F1F2︱)的点的轨迹叫双曲线。
F1
M
o F2 x
(x c)2 y2 (x c)2 y2 2a
移项平方整理得 cx -a2=±a (x-c)2+y2
再次平方,得: (c2-a2) x2-a2y2=a2(c2-a2) 由双曲线的定义知,2c>2a,即c>a,故c2-a2>0,
令c2-a2=b2,其中b>0,代入整理得
:
x2 a2
LUZHOU PEOPLE’S HOSPITAL
双曲线与椭圆之间的区别与联系
椭圆
双曲线
定义 方程
|MF1|+|MF2|=2a
x2 a2
y2 b2
1(a
b
0)
y2 a2
x2 b2
1(a
b
0)
||MF1|-|MF2||=2a
x2 y2 1(a 0,b 0) a2 b2
y2 a2
x2 b2
焦点(4,0), a 5, b 3 焦点(4,0), a 15, b 1
(2) x2 y2 1和 y2 x2 1
43
34
焦点(1,0), a 2, b 3 焦点(0, 7 ), a 3, b 2
LUZHOU PEOPLE’S HOSPITAL
练习2. 直接写出适合下列条件的双曲线的标准方程: (1)a=4,b=3,焦点在x轴上; x 2 y2 1
y
M
F1 o F2 x
y
M F2
F1
y2 x2 x a2 b2 1
F(0, ± c)
说明:
(1)双曲线的标准方程用减号 “-” 连接 ; (2)双曲线方程中a>0,b>0,但a不一定大于b
(3)如果x2的系数是正的,则焦点在x轴上; 如果y2的系数是正的,则焦点在y轴上;
(4)双曲线标准方程中,a,b,c的关系是c2=a2+b2;
则|MF1|=|MF2|
此时点的轨迹是线段的垂直平
分线。
F1
F2
(1)2a<2c ;
M
注意 (2)2a >0 ;
LUZHOU PEOPLE’S HOSPITAL
试说明在下列条件下动点M的轨迹各是什么图形?
(F1、F2是两定点, |MF1|-|MF2|
|F1F2| =2c (a,c为正常数)
(5)双曲线的标准方程可统一写成Ax2-By2=1(AB>0)
LUZHOU PEOPLE’S HOSPITAL
位置 图形
方程 共性
焦点在X轴上
y
M
F1 O F2 x
焦点在Y轴上
y M
F2
x
O
F1
x2 y2 1 a2 b2
y2 x2 1 a2 b2
1、两种方程中,总有a>0 b>0 2、 a、 b、c 满足关系式a2+b2=c2 3、二次项系数为正,焦点在相应的轴上
-
y2 b2
=1
(a>0,b>0)
LUZHOU PEOPLE’S HOSPITAL
二、双曲线的标准方程:
y
M
方程
x2 a2
-
y2 b2
=1
(a>0,b>0)
y
叫做双曲线的标准方程
它表示的双曲线焦点在x轴上, x F1
o F2 x
焦点为F1(-c,0),F2(c,0),且c2=a2+b2
方程
xy22 a2
这两个定点叫双曲线的焦点,两焦点的距离叫双曲线的
焦距.
LUZHOU PEOPLE’S HOSPITAL
平面内与两个定点F1,F2的距 离之差的绝对值为常数(小于︱
F1F2︱)的点的轨迹叫双曲线。 F1 (|F1F2|记为2c; 常数记为 22a.)定义中这个常数2a能否为0?
AO1 A2 F2
M
∵若常数2a= |MF1|-|MF2| =0
因此,在应用定义时,首先要考查 2a与2c的大小 .
LUZHOU PEOPLE’S HOSPITAL
二、双曲线的标准方程:
y
如且y)图原为建点双立O曲与坐线线标上段系任F,一1F2使点的x,中轴双点经曲重过线合F焦1。、距F设为2,M(x并,
2c(c>0),则F1(-c,0), F2(c,0)
P= {M ||MF1 | - | MF2| = +_ 2a }
=2a,
当|MF1|-|MF2|=2a时,点M的轨迹 双曲线的右支
;
当|MF2|-|MF1|=2a时,点M的轨迹 双曲线的左支 ;
当a=c时,动点M的轨M迹 以F1、F2为端点的两条射线 ;
当a>c时,F动1 点M的轨F迹2 不存在 . F1
F2
当a=0时,动点M的是轨迹_线__段__F_1_F_2_的__M垂__直__平__分__线____.
LUZHOU PEOPLE’S HOSPITAL
一、复习与问题
1,椭圆的第一定义是什么?
平面内与两定点F1,F2的距离的和等于常
数(大于 |F1F2| )的点的轨迹叫做椭圆。
M
M
F1
F2
LUZHOU PEOPLE’S HOSPITAL
定义
图 象
标准 方程 焦点 a,b,c的关 系
|MF1|+|MF2|=2a(2a>|F1F2|)
··· y M
F1 o F2 x
y
·F2
·o
x
F1
M
x2 y2 a2 b2 1
(a>b>0)
(-c,0), (c,0)
y2 x2 a2 b2 1
(a>b>0)
(0, -c) ,(0, c)
a2=b2+c2
LUZHOU PEOPLE’S HOSPITAL
一、复习与问题
平面内与两定点F1,F2的距离的和等于