导热系数测量方法
稳态法测量导热系数

稳态法测量导热系数方案
分析:
由傅里叶定律可知,要想得出材料的导热系数,首先得知道通过材料上的热流密度q 及其材料的温度变化率/t x 。
热流密度是指单位时间内通过单位面积的热量,热量可由电功率计算,即可通过电压电流表间接测出,面积可由尺具测出。
温度变化率可由测温仪器和计时表测出。
热源可由温度可控的电热管提供。
测量方案:
1. 主要实验器材
电热管、保温箱、电流表、电压表、测温器、计时表
2. 实验步骤:
1.前期准备
检查实验设备能否正常工作,对于固体工件可对其表面进行打磨处理,减少工件表层氧化膜对工件正常导热造成影响,对于液体材料要保证装乘器皿要足够清洁,同时应将实验处的门窗关上,减小实验误差。
2.测量材料导热面积和温度
使用尺具测量材料的边界温度并计算出其面积A ,使用测温仪器测量出材料的初始
中心温度0T
3.加热材料
将电热管的加热温度设定为T 并在保温箱里对材料进行加热,同时用计时表开始计
时,每格t 便对材料的中心处进行温度测量,记录下相应的温度12,,n T T T ……并对
所测得的温度值进行观察。
4.测量热流量
当材料被加热一段时间后,当材料温度超过某一个测得温度后不在升高或者变化幅
度很小的时候,再测5组温度值,并用电流电压表测出材料两端的电流I,电压V 。
5.结束测量
关掉电源停止加热,清理实验设备。
3. 数据处理
将最后测得的5组温度值取平均数得T ,并求出从初始加热到倒数第6组温度所需
要的时间t,则材料的导热系数为:
/(/)IU A T t λ=-
4. 结论
将所测得的温度与标准值进行对比并分析误差。
导热系数实验测定

导热系数实验测定
导热系数是描述材料导热性能的物理量,可以通过实验测定得到。
以下是一种测定导热系数的实验方法:
1. 准备实验样品:将需要测量导热系数的样品切成形状相同的小块,尺寸大约为1cm x 1cm x 1cm。
样品表面需要平整光滑,可以使用砂纸打磨。
2. 准备实验仪器:导热系数实验仪、温度计、电源等。
3. 实验步骤:
a. 将实验仪器接通电源,调整好温度计。
b. 将样品放在导热系数实验仪的试样台上。
c. 打开实验仪器,开始测试。
d. 实验仪器会通过导热方式将样品热量传递到散热器上,散热器会将热量散发到空气中。
e. 在测试过程中,记录样品表面和散热器表面的温度。
f. 根据测试数据,计算出样品的导热系数。
4. 实验注意事项:
a. 为了减小误差,需要重复测试多次,取平均值作为最终结果。
b. 在测试过程中,要保证实验环境的恒温恒湿,以免影响测试结果。
c. 在测试不同材料时,需要及时清洗试样台和散热器,以免样品之间相互影响。
这是一种比较简单的测定导热系数的实验方法,实际操作时还需要根据具体情况进行调整。
导热系数检测内容及方法

导热系数检测内容及方法(1)防护热板法检测导热系数本方法适用于处于干燥状态下单一材料或者复合板材等中低温导热系数的测定。
依据标准:《绝热材料稳态热阻及有关特性的测定防护热板法》GB/T10294-88原理:在稳态条件下,防护热板装置的中心计量区域内,在具有平行表面的均匀板状试件中,建立类似于以两个平行匀温平板为界的无限大平板中存在的一维恒定热流。
为保证中心计量单元建立一维热流的准确测量热流密度,加热单元应分为在中心的计量单元和由隔缝分开的环绕计量单元的防护单元。
并且需有足够的边缘绝热或(和)外防护套,特别是在远高于或低于室温下运行的装置,必须设置外防护套。
通过测定稳定状态下流过计量单元的一维恒定热流量Q、计量单元的面积A、试件冷、热表面的温度差/T,可计算出试件的热阻R 或热导率CA(C1试验仪器:1.1平板导热仪(1)导热系数测定范围:(0∙020~L000)W∕(m∙K)(2)相对误差:±3%(3)重复性误差:±2%(4)热面温度范围:(0-80)℃(5)冷面温度范围:(5~60)℃1.2、钢直尺1.3、游标卡尺2、试件要求:1)尺寸试件测量范围:30OmmX30OnInIXI(10~38)mm试件的表面用适当方法加工平整,使试件与面板紧密接触,刚性试件表面应制作的与面板一样平整,并且整个表面的不平行度应在试件厚度的±2%。
试件的尺寸应该完全覆盖加热单元的表面,由于热膨胀和板的压力,试件的厚度可能变化,在装置中在实际的测定温度和压力下测量试件厚度。
热敏感材料不应暴露在会改变试件性质的温度下,当试件在实验室空气中吸收水分显著(如硅酸盐制品),在干燥结束后尽快将试件放入装置中以避免吸收水分。
3、试件加工试验前,将试件加工成30OnlnI(长)×300mm(宽)的正方形,并且保证冷热两个传热面的平行度,特别是硬质材料的试件,如果冷热两个测试面不平行,这种情况下必须将试件磨平后才能做实验。
大学物理实验导热系数的测定

实验内容
记录橡胶盘(样品)、黄铜盘(散热板)的直径、厚度DB、hB、DC、hC,黄铜盘质量mC,由实验室提供。
测量散热板(黄铜板)的冷却速率 ,计算。
稳态法测橡胶盘上下表面的温度10 和20
调整好实验装置,各盘之间不能有间隙。
调整电热板的供电方式,人为控制发热盘的温度在:
每隔2分钟观察散热盘的温度θ2 , 记录θ1 , θ2;若在10分钟内θ2基本保持不变则系统的热传导已达到稳定状态。对最后10分钟内的5次温度分别求平均得θ10, θ20。
实验原理
考虑散热盘自由冷却与稳态时的散热面积不同,引入修正系数:
于是,导热系数为:
实验原理
0°C 冰水
4、温差热电偶的工作原理
两种金属接触处由于温度差而产生电动势的现象称为温差电动势,一般情况下,温差电动势近似与两接触端的温度差成正比。
检流计
加热
检流计
电压值即为温度示数
杜瓦瓶里冰水混合物为冷端;发热盘、散热盘分别与冷端形成两个温差电偶。
θ/mv
210
180
150
120
90
60
30
0
t/S
用逐差法求冷却速率:
数据记录和处理
记录橡胶盘(样品)和黄铜盘(散热板)的直径、厚度DB、hB、DC、hC,黄铜盘(散热板)质量mC。
采用逐差法求散热板(黄铜板)在温度为20时的冷却速率 ,其中t=120s。
记录稳态时橡胶盘上下表面的温度10 和20
计算橡胶板的导热系数,并与标准值比较,计算出百分比误差。
操作要点
1
数字电压表调零,注意热电偶接线。实验过程中散热风扇保持开启。
2
构建稳态环境, 10保持在3.50mV±0.03mV范围内,测量20
导热系数的测定

、
面和待测样品厚度。 2.将一个电热偶的插头插在表盘的测2内,把冷端放入装有冰水混合物的真空保温 杯内的细玻璃管中,热端插在散热盘的小插孔上;将另一个热电偶插头插在表盘的 测1内,冷端也放入装有冰水混合物的真空保温杯内的另一细管中;热端插入加热盘 上的小插孔中; 3.插好加热板的电源插头:再将 线的一端与数字电压表相连,另一端插在表盘的 中间位置; 4.分别接好导热系数测定仪与数字电压表的电源;数字电压表采用3位半LED显示, 最大量程为20mV。 5.调节数字电压表的调零旋钮,再将加热开关拨至220V档,开始加热; 6.待稳定后,可以将切换开关分别拨至测1和测2端,记录此刻样品上、下表面的温 度;(每隔3分钟读样品上下表面的温度,若在10分钟内样品上下表面的温度示数都 不变,可以认为已经达到稳定状态了); 7.移去样品,使加热盘与散热盘较好的接触,再将加热开关拨至220V档,加热散热 盘; 8.移开加热板,在散热盘上放置胶木板,使散热盘自然冷却;稳定状态时,通过样 品上表面的热速率与由散热盘向周围环境散热速率相等。记录散热盘冷却至稳态时 的温度。 根据上述装置,由傅里叶导热方程式可知,通过待测样品B盘的热流量 Q / t 为:
Q 2 R 2 1 t h
式中h为样品厚度,R为圆盘样品的半径, 为样品热导率,
1
2
分别为稳态时样品上下平面的温度。
、
实验过程中,当传热达到稳态时,样品上下平面的温度将稳定不变,这时可以认为发 热盘A通过圆盘样品上平面传入热量的速率与由散热盘P向周围环境散热的速率相等。 因此可以通过散热盘P在稳定温度 时的散热速率求出热流量.方法如下:当读得稳 后,将样品B盘抽去,让发热盘A的底面与散热盘P直接接触,使盘P的温 态时的 度上升到比 高出1mV左右时,再将发热盘A移开,放上圆盘样品(或绝缘圆盘), 让散热盘P自然冷却(电扇仍处于工作状态),每隔30秒钟读一次散热盘的温度示 值,选取邻近 的温度数据,求出铜盘P在的冷却速率 ,则 就是散热盘在 时的散 h 1 mc | 热速率,代入式(3-2)得: t R (3-3)式中, 为样品的质量,为样品 比热容。但须注意,这样求出的 是散热盘的全部表面暴露于空气中的冷却速率,其 p 2 R p h p 散热表面积为 2 R2 (其中 与 分别为散 热盘P的半径与厚度)。然而,在观测样品稳态传热时,P盘的上表面(面积为 )是 被样品覆盖着的。考虑到物体的冷却速率与它的表面积成正比,则稳态时散热盘散 热速率的表达式应修正如下:
导热系数的测试方法

导热系数的测试方法
导热系数是一个物质传递热量的能力的度量标准。
它是指单位时间内单位面积的物质传递热量的量。
导热系数的高低对于工业生产和科学研究都有着重要的影响,因此测试导热系数的方法也非常重要。
目前,常用的测试导热系数的方法有两种:静态方法和动态方法。
静态方法是通过测量材料在静态状态下传递热量的能力来测试导热
系数,这种方法适用于低温下的材料。
而动态方法是通过测量材料在动态状态下传递热量的能力来测试导热系数,这种方法适用于高温下的材料。
在静态方法中,最常用的测试方法是平板法和横截面法。
平板法是将材料样品置于两个不同温度的热源中,测量样品内部的温度分布,从而计算出导热系数。
而横截面法则是将材料样品制成圆柱体或长方体,通过在样品两端施加温度差来测量导热系数。
而在动态方法中,最常用的测试方法是热流计法和热板法。
热流计法是通过在样品表面施加一个恒定的热流密度,然后测量样品表面的温度分布来计算导热系数。
而热板法则是将样品压在温度均匀的热板上,测量样品和热板之间的温度差,从而计算出导热系数。
总之,测试导热系数的方法多种多样,选择何种方法应视具体情况而定。
在进行测试时,需要注意保证测试环境的稳定性和准确性,以保证测试结果的可靠性。
- 1 -。
导热系数测量方法及仪器

动态方法是指在变化温度下测量材料导热系数的方法。这种方法通常使用热脉冲法或热反应法。
1.热脉冲法
热脉冲法是一种迅速变化温度的方法,它通过在被测材料中加热脉冲,并测量温度变化来计算导热系数。实验中,通过一个电磁炉或者激光脉冲等方式给被测材料施加一个短时间的高温脉冲,然后通过测量温度的变化,以及脉冲能量的大小来计算Leabharlann 热系数。导热系数测量方法及仪器
导热系数是材料的一个重要物理参数,它描述了材料传导热量的能力。测量导热系数的目的是为了评估材料的热性能,以及使用该材料的可行性。下面将介绍导热系数的测量方法以及常用的测量仪器。
一、静态方法
静态方法是指在恒定温度下测量材料导热系数的方法。这种方法是通过测量材料两端的温度差来确定导热系数的。常用的静态方法有热板法和热流计法。
2.热反应法
热反应法是一种通过观察材料的热反应过程,从而求得导热系数的方法。实验中,将被测材料放置在一个加热腔中,然后在一定温度下对其进行恒定热反应,通过测量反应中产生的热量和反应过程的时间来计算导热系数。
常用仪器:
1.导热系数测试仪:这种仪器有多种型号,可以根据不同的测量方法选择合适的仪器。一般包括加热装置、温度传感器、温度控制系统、数据采集和分析系统等组成。
2.热板法仪器:热板法需要使用一块平板和对应的温度传感器,以及控制电路等。
3.热流计:热流计用于测量导热材料中的热流量,它包括散热区、热电偶和测温装置等。
4.热脉冲测试仪:热脉冲测试仪包括一个加热器、一个测温电阻和一个控制系统,用于给被测材料施加热脉冲以及测量温度变化。
总结:
导热系数是材料的一个重要物理参数,测量导热系数有静态方法和动态方法两种。常用的测量仪器包括导热系数测试仪、热板法仪器、热流计和热脉冲测试仪等。这些仪器可根据实验需要选择使用。随着科技的发展和进步,导热系数的测量方法和仪器也将进一步提高和完善。
凝胶导热系数测试方法

凝胶导热系数测试方法
凝胶导热系数测试方法主要有以下几种:
1.热线法。
通过添加金属针作为温度传感器,使用激光
功率计来测量热量传递,这种方法可以精确地测定材料在特定方向上的电导率。
如果热凝胶被用作散热器或电子设备的冷却剂时,可以使用此方法测试其导热性能。
2.面接触传热仪。
根据对流传热的经验公式,在氮氛条
件下控制平板间腔体的总发热量与上板接点面区域的流量相等,以保持上下板的恒温。
3.DSC(差示扫描热量分析)。
这是一种常用的表征物质在不同温度下的物态变化和相关转变的方法,从而间接获得材料的热传导值。
此外,还有石英晶体振动模式改变的热膨胀实验、通过有限元模拟技术进行分析预测等方法。
以上仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导热系数测量方法(一)
导热系数测试方法,分为稳态法和瞬态法(又称为非稳态法)两类;
稳态法有:平板法、护板法、热流计法、热箱法等
瞬态法有:热线法、探针法、热盘法、热带法、激光法等
各种导热系数测试方法,有其自身的适用范围。
由于物质具有固、液、气三种状态,不同状态时,其导热系数会差异很大;而不同状态时导热系数的测量也会有很大的不同;
相比于固体、液体和气体的导热系数测量更加困难,因为流体状态物质内更容易发生自然对流,温度场会很快发生变化,需要采集的速度相当快(如1秒),以避开自然对流的影响,所以对于仪器的要求会更高。
稳态法是指当待测试样上温度分布达到稳定后,即试样内温度分布是不随时间变化的稳定的温度场时,通过测定流过试样的热量和温度梯度等参数来计算材料的导热系数的方法。
它是利用稳定传热过程中,传热速率等于散热速率的平衡条件来测量导热系数。
稳态法具有原理清晰、模型简单、可准确直接地获得热导率绝对值等优点,并适于较宽温区的测量;缺点是实验条件苛刻、测量时间较长、对样品要求较高;为了获得准确的热流,需要严格保证测试系统的绝热条件,附设补偿加热器并增加保温措施,以减小漏热损失;为了保证一维导热,通常对样品的尺寸要求较大,而且为了保证整个受热面温度场的均匀一致,对样品表面的平整度要求较高。
稳态法主要用于测量固体材料,特别是低导热系数材料(如保温材料)的导热系数,而要把它用于研究湿材料,如生物质、土壤等会遇到很大困难,因为试样会由于长时间保证一定的温度场而引起含湿量的变化将导致试样物性的改变,这将导致导热系数的测量结果不正确。
而将稳态法用于液体导热系数的测量,更是非常困难,由于流体在温度梯度下产生自然对流,即使在一维热流下也难以做到纯粹的一维导热。
热流计法为相对测量方法,通常需要参比样品,且参比样品的导热系数测量必须由更高精度的方法或仪器获得,且热流计法的测量准确度永远不会高于参考样品的导热系数测量准确度;同时,热流计的应用范围应在参比样品导热系数数值附近区域,否则将引起较大误差;
激光法是获得热扩散系数的方法,如果需要获得导热系数,还需要有其他方法测量得到的密度值和比热值,然后带入公式计算得到导热系数,其导热系数的不确定度与上述三个物理量的测量准确度相关。