稳态法测量固体导热系数

合集下载

稳态法导热系数实验报告

稳态法导热系数实验报告

稳态法导热系数实验报告稳态法导热系数实验报告引言导热系数是材料传导热量的能力,对于热工学和材料科学研究具有重要意义。

稳态法是一种常用的测量导热系数的方法,通过实验测量材料的温度分布和热流量,可以得到导热系数的数值。

本实验旨在通过稳态法测量导热系数,探究不同材料的导热性能。

实验装置本实验使用的实验装置主要包括一个导热试样,两个温度计和一个加热电源。

导热试样是一个长方形的金属块,具有一定的厚度和面积。

温度计用于测量导热试样的两侧温度差,加热电源用于提供稳定的加热功率。

实验步骤1. 将导热试样放置在水平台上,并确保其两侧与温度计接触良好。

2. 将一个温度计放置在导热试样的一侧,作为加热侧的温度计。

3. 将另一个温度计放置在导热试样的另一侧,作为冷却侧的温度计。

4. 打开加热电源,设置合适的加热功率,待系统达到稳定状态。

5. 记录加热侧和冷却侧的温度,并计算温度差。

6. 根据导热试样的尺寸和温度差,计算导热系数。

实验结果与分析通过实验测量得到的温度差和导热试样的尺寸,可以计算出导热系数。

实验结果显示,不同材料的导热系数存在较大差异。

导热系数较大的材料具有较好的导热性能,而导热系数较小的材料则导热性能较差。

实验结果的差异可以归因于材料的结构和性质。

晶体结构较为紧密的材料通常具有较高的导热系数,因为结构紧密可以提高原子之间的热传导效率。

而材料中存在的缺陷和杂质会降低导热系数,因为它们会散射热传导的能量。

导热系数的测量对于材料的研究和应用具有重要意义。

在工程领域,了解材料的导热性能可以帮助工程师选择合适的材料,以提高设备的散热效果。

在材料科学领域,通过测量导热系数可以评估材料的热传导性能,进而优化材料的设计和合成。

实验误差的分析在实验过程中,存在一些误差可能会对测量结果产生影响。

首先,温度计的精度和灵敏度会对测量结果产生影响。

如果温度计的精度较低或者灵敏度不够高,可能会导致温度测量的误差。

其次,导热试样的制备和安装也会对测量结果产生影响。

稳态法测算导热系数的原理

稳态法测算导热系数的原理

稳态法测算导热系数的原理
稳态法是一种常用的测算导热系数(也称热传导系数)的方法,其原理基于热传导定律和热平衡原理。

根据热传导定律,热量的传导速率与物体的导热系数、传热面积和温度梯度有关。

导热系数是物质本身的特性,可以通过测量来确定。

在稳态法中,我们需要测量导热系数的样品处于稳态状态,即温度分布不随时间而变化。

这可以通过采用两个恒温源(通常称为热源和冷源),在样品两端分别提供稳定的温度,并保持温度恒定。

这样,在稳态的情况下,温度梯度将会稳定下来。

接下来,我们在样品上测量温度梯度。

通常会在样品的两侧放置多个温度传感器,并记录下每个传感器的温度值。

通过这些温度值的差异,我们可以计算出样品内的温度梯度。

最后,将测得的温度梯度、传热面积和已知的热流量(由热源提供的热量)代入热传导定律中,可以计算出导热系数。

稳态法测算导热系数的原理即基于热传导定律,在稳态状态下通过测量温度梯度和已知参数计算导热系数。

稳态法测量固体导热系数

稳态法测量固体导热系数

t 2 20
(3)
式(3)中M 是散热紫铜盘的质量,C 是其比热。C 385.0J /(kg0C)
这样,只要测出散热铜盘的冷却速率
,就
t 2 20
可以联立(1)、(2)及(3)式而得出导热系数λ,但
是,当散热铜盘处在稳定系统中时,其冷却速率不方便测
量,必须将它独立放在空气中才可以测量,这时相应的冷
附录 物体的冷却速率
物体的散热(或冷 却)遵守牛顿冷却定律, 冷却的快慢用冷却速率来 表示,冷却的快慢与物体 及环境间的温差、物体的 散热面积、冷却介质、传 热方式(热传导、热对流 以及热辐射)等因素有 关,冷却曲线在温度范围 不太大时,局部可以用线 性关系近似。
a bt
0
0
t
散热盘冷却曲线
所用材料的导热系数都需要用实验的方法精确测定。其 测量方法大致上有稳态法和非稳态法两类。
稳态法是在加热和散热达到平衡状态、样品内部形 成稳定温度分布的条件下进行测量。非稳态法则是指在 测量过程中样品内部的温度分布是变化的,变化规律不 仅受实验条件的影响,还与待测样品的导热系数有关。 本实验介绍一种比较简单的利用稳态法测定不良导体导
定量描述物体导热性能的物理量是导热系数,一般说 来,金属的导热系数比非金属的要大;固体的导热系数 比液体的要大;气体的导热系数最小。
导热系数是描述材料性能的一个重要参数,在锅炉 制造、房屋设计、冰箱生产等工程实践中都要涉及这个 参数,而且通过研究物质的导热系数,还可以进一步了 解物质组成及其内部结构等。所以,导热系数的研究和 测定有着重要的实际意义。在科学实验和工程设计中,
七、注意事项
1.实验操作过程中,要注意防止高温烫伤; 2.测温传感器插入小孔时抹些硅油,并插到孔洞底部, 使之保证良好接触; 3.实验前,要标定一下两测温传感器,若不一致,要 进行修正; 4.用稳态法测量导热系数时,要使温度稳定下来,约 要半个小时左右。待θ2的数值在数分钟内不变时,即可认 为已达到稳定状态。(由于控温精度有限, θ1、θ2 的读数 可能会出现波动 ) 5 . 测量稳态温度和散热速率过程中,要注意保持一样 的环境条件。 6.实验之后,整理好仪器设备,做好清洁卫生。

用准稳态法测介质的导热系数和比热的实验报告

用准稳态法测介质的导热系数和比热的实验报告

用准稳态法测介质的导热系数和比热的实验报告实验目的本实验旨在通过准稳态法来测量介质的导热系数和比热。

实验原理介质热传导定律可以表示为:$\frac{dQ}{dt}=-kA\frac{dT}{dx}$其中$dQ$表示通过横截面$A$传导的热量、$dT/dx$表示温度梯度,$k$表示介质的导热系数。

考虑一根长为$L$、半径为$r$的柱形介质,将其放置在恒定温度$T_1$的热源上,使其与热源建立稳定热流,由于介质与外界的热交换可能会影响温度场的分布,但如果用温度计沿柱形介质的径向测量,可以保证温度场分布近似于径向对称的形态。

当恒定稳态建立后,热传导方程的解析解可以表示为:$T(r)=T_1+\frac{dQ}{2\pi kL}ln{\frac{r}{r_0}}$其中$r_0$表示温度计的距离。

同时根据恒定稳态条件,热流向是恒定的,可以通过测量温度差得到热流,即:$q=-k\frac{A}{\Delta x}(T_2-T_1)$其中$A$表示圆柱体的横截面积,$\Delta x$表示$\Delta T$的距离。

结合以上两式,可以得到介质的导热系数$k$为:$k=\frac{qd}{2\pi T_1 L ln{\frac{r_2}{r_1}}}$其中$d$为材料的直径,$T_1$为热源的温度,$r_1$和$r_2$为温度计的测量位置。

而比热则是通过热平衡条件给出的:$q_1t_1=q_2t_2$其中$q$为热流,$t$为温度,1和2表示两个状态。

在本实验中,温度上升了$\Delta T$,热流在某一时间间隔$t$内对介质的热量为$q=mC_p\Delta T$,其中$m$为穿过某一截面的质量,$C_p$为比热容。

因此可以得到比热:$C_p=\frac{q}{m\Delta T}$实验步骤1.准备材料:圆柱形样品和两台K型热电偶。

2.组装实验装置:将圆柱形样品嵌入加热炉中,将热电偶分别穿过样品并与数据采集仪相连。

稳态法测固体导热系数的测量

稳态法测固体导热系数的测量

固体导热系数的测量Measurement of thermalconductivity of solid摘要:导热系数是表征物质热传导性质的物理量,对保温材料要求其导热系数尽量小,对散热材料要求其导热系数尽量大。

测量导热系数的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类为动态法。

用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分布,然后进行测量,在动态法中,待测样品中的温度分布是随时间变化的,例如按周期性变化等。

Abstract:Material thermal conductivity is characterized by physical properties of thermal conductivity of insulation material requirements of its thermal conductivity as small as possible, on the cooling requirements of its thermal conductivity material as large as possible.Method of measuring thermal conductivity of more, but the basic method can be grouped into two categories: one is the steady state, and the other for the dynamic method.Steady-state method, first with the heat source to heat the test sample and the sample to form a stable internal temperature distribution, and then measured in the dynamic method, the temperature distribution in the sample is changing with time, for example, by cycle of change.关键词:物质热传导性质稳态法温度分布Key words: material properties of steady state heat conduction temperature distribution引言:测量导热系数的方法比较多,可以归纳为两类基本的方法,一类是稳态法,另一类为动态法。

东北大学稳态法测固体的导热系数详细过程

东北大学稳态法测固体的导热系数详细过程

(1)实验准备中首先是实验报告,这次的实验记录的表格,书中并没有给出,所以我们需要自己画表格,需要画的表格一共三个,一个是求稳态时T1、T2的表格,第二个是算待测物厚度h 的表格,最后一个是求散热时T2-t的关系的表格。

下铜盘直径D、下铜盘厚度δ、下铜盘质量m都不需要测量。

第一个表格的话画10~11列左右就够用了,其实也可以再少点,以防万一可以多画2、3列,表一是个3行11列(这个列数可以自由调整)左右的表格。

待测物厚度要测量三次最后取平均值,所以需要画2行4列。

表三的话要多画一些,数据还是不少的,地方不够可以另起一行接着画,最后我测得了14个数据,所以一般数据15列(加表头一共16列)比较保险。

三个表具体怎么画在学长们的报告里都有,参考一下就可以了。

其他的没什么可说,接下来进入实验吧。

(2)实验开始啦实验台,中间偏左的仪器即为YBF-2型导热系数测试仪。

接下来是各个角度的图片面板(开启前)面板(开启后)测试仪上半部分仪器上半部分(后部)仪器后部,左边的按钮是电源开关冰水混合物,温度在0˚C左右,一个人拿一个铜盘及待测物首先打开仪器后部的电源开关,可以看到仪器面板上有示数,此时先检查一下第三个面板下半部分的黄字是否是50.0(如之前的图所示),然后检查一下面板上“控制方式”的那个开关是否为“自动”,最后检查一下风扇是否打开,若打开则可以听到风扇的声音,将其关闭,整个实验用不到风扇。

使上、下铜盘与待测物紧密接触,待测物的半径与铜盘半径基本相同,所以要使其严密对齐,水平方向看去不要有明显的缝隙,若有缝隙则可以通过调节下铜盘下方的三个螺丝,使其严密接触。

连线,面板左侧一共有两根线,每根线上伸出了两个接头黑色接头伸入冰水混合物中,蓝色接头伸入上、下铜盘的小孔中:接好以后就准备读数了线路接好后旋转上图中的旋钮,旋至I时显示的是上面的线两端的电势差,旋至II 时显示的则是下面的线两端的电势差,所以一般来说I线接上铜盘,II线接下铜盘。

用准稳态法测介质的导热系数和比热的实验报告

用准稳态法测介质的导热系数和比热的实验报告

用准稳态法测介质的导热系数和比热的实验报告实验报告:
本实验组进行了一系列实验,目的是测量介质的导热系数和比热。

为此,我们采用了准稳态法(Steady-State Method),通过测量系统的热流,温度和物理量来评估介质的热特性。

实验装置由两个金属块构成,它们之间以一定宽度填充介质。

两个金属块用热电偶连接,控制机械温度。

一个块由常温水浴恒温,使另一块保持稳定的温度,以产生恒定的热流。

然后,通过特殊测量仪器读取温度差。

通过改变被测物质的厚度,实验运行三次,同时测量温度。

在改变热流情况下,记录温度差随热导率的变化情况。

根据所得温度与热导率的关系,用分析技术计算出介质的导热系数和比热。

实验运行时,实验装置保持在常温水浴中,当热偶发出热量时,两个金属块之间的温差增大,测量装置会自动调整两个金属块的温度,以保持恒定的热流输出。

本实验的结果显示,随着介质的厚度的增加,介质的导热系数和比热值也随之增加。

未来,我们可以改进实验装置,看看它们是否可以产生更精确的结果。

实验讲义稳态法测固体的导热系数

实验讲义稳态法测固体的导热系数

稳态法测固体的导热系数热传导是热量传递的三种基本形式之一,是指物体各部分之间不发生相对宏观位移情况下由于温差引起的热量的传递过程,其微观机制是热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。

在金属中自由电子起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。

法国科学家傅里叶(J.B.J.Fourier 1786——1830)根据实验得到热传导基本关系,1822年在其著作《热的解析理论》中详细的提出了热传导基本定律,指出导热热流密度(单位时间通过单位面积的热量)和温度梯度成正比关系。

数学表达式为:T grad q λ-=此即傅里叶热传导定律,其中q 为热流密度矢量(表示沿温度降低方向单位时间通过单位面积的热量),λ是导热系数又称热导率,是表征物体传导热能力的物理量, λ在数值上等于每单位长度温度降低1个单位时,单位时间内通过单位面积的热量,其单位是11K m W --∙∙ 。

一般说来,金属的导热系数比非金属的要大;固体的导热系数比液体的要大;气体的导热系数最小。

因此,某种物体的导热系数不仅与构成物体的物质种类密切相关,而且还与它的微观结构、温度、压力、湿度及杂质含量相联系。

在科学实验和工程设计中,需要了解所用物体的一些热物理性质,导热系数就是重要指标之一,常常需要用实验的方法来精确测定。

测量导热系数的方法很多,没有哪一种测量方法适用于所有的情形,对于特定的应用场合,也并非所有方法都能适用。

要得到准确的测量值,必须基于物体的导热系数范围和样品特征,选择正确的测量方法。

测量方法可以分为稳态法和非稳态法两大类。

稳态法是在加热和散热达到平衡状态、样品内部形成稳定温度分布的条件下进行测量的方法。

非稳态法则是在测量过程中样品内部的温度分布随时间是变化的,测出这种变化,得到热扩散率再利用物体已知的密度和比热,求得导热系数。

本实验采用稳态平板法测量物体的导热系数,该法设计思路清晰、简捷,具有典型性和实用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于是我们可以进一步得出导热系数λ 的表示式为:
R2 2h2 h1 1 (4) MC 2 t 2 R2 2h2 10 20 R 1 2 20
一、实验目的
1.了解热传导现象的物理过程。 2.了解物体散热速率和传热速率的关系。 3.学会用铂电阻型传感器测定温度。 4.学习一种测量材料导热系数的实验方法。
二、实验原理
图一
导热系数实验装置示意图
当如图一所示的系统达到热平衡时,通过待测样品的传热 速率和散热铜盘向侧面和下面的散热速率相同,即有
q MC t 2 2 0 t
2 2 0
(3)
式(3)中M 是散热紫铜盘的质量,C 是其比热。C 385.0 J /( kg0 C ) 这样,只要测出散热铜盘的冷却速率
可以联立(1)、(2)及(3)式而得出导热系数λ ,但是, 当散热铜盘处在稳定系统中时,其冷却速率不方便测
Q q t 1 10 t 2 20
样品的传热速率,
q 是铜盘散热率。 t
( 1
(1)
式(1)中θ10、θ20是传热稳定时的样品上下表面温度, 是
Q t
根据傅立叶的热传导定律,(1)式左边可以写为:
1 2 Q S t h1
(2)
而根据物体的散热率与冷却率之间的关系,(1)式右边 可以写为:
U
说明:因本实验主要误差来源于散热速率的测量,所以
五、注意事项
1.实验操作过程中,要注意防止高温烫伤; 2.测温传感器插入小孔时抹些硅油,并插到孔洞底部, 使之保证良好接触; 3.实验前,要标定一下两测温传感器,若不一致,要 进行修正; 4.用稳态法测量导热系数时,要使温度稳定下来,约 要半个小时左右。待θ2的数值在数分钟内不变时,即可认 为已达到稳定状态。(由于控温精度有限, θ1、θ2 的读数 可能会出现波动 ) 5 . 测量稳态温度和散热速率过程中,要注意保持一样 的环境条件。 6.实验之后,整理好仪器设备,做好清洁卫生。
,就 t 2 20
量,必须将它独立放在空气中才可以测量,这时相应的冷
却速率我们不妨记为 ,根据散热速率也即冷 t 2 20
却速率与表面积成正比的规律,可以有如下的关系式成立:
t 2 20
R 2 2R h 2 2 2 t 2R 2 2R h 2 2 2 2 20
三、实验仪器
1.TC-3B型λ 测试仪和测试架 2.待测样品(环氧圆盘、硅橡胶盘) 3.游标卡尺 4.手套
四、数据处理
1.将测量数据填入数据表格。 2 .利用散热盘温度随时间变化的数据作散热曲线,并
选择θ20附近10组数据, 用逐差法计算散热盘散热速率 ,
进而计算待测样品导热系数λ。 3.计算不确定度Uλ,并给出结果表述。 计算不确定度时,只考虑这一项即可。
相关文档
最新文档