稳态法测导热系数

合集下载

稳态法测量导热系数

稳态法测量导热系数

稳态法测量导热系数方案
分析:
由傅里叶定律可知,要想得出材料的导热系数,首先得知道通过材料上的热流密度q 及其材料的温度变化率/t x 。

热流密度是指单位时间内通过单位面积的热量,热量可由电功率计算,即可通过电压电流表间接测出,面积可由尺具测出。

温度变化率可由测温仪器和计时表测出。

热源可由温度可控的电热管提供。

测量方案:
1. 主要实验器材
电热管、保温箱、电流表、电压表、测温器、计时表
2. 实验步骤:
1.前期准备
检查实验设备能否正常工作,对于固体工件可对其表面进行打磨处理,减少工件表层氧化膜对工件正常导热造成影响,对于液体材料要保证装乘器皿要足够清洁,同时应将实验处的门窗关上,减小实验误差。

2.测量材料导热面积和温度
使用尺具测量材料的边界温度并计算出其面积A ,使用测温仪器测量出材料的初始
中心温度0T
3.加热材料
将电热管的加热温度设定为T 并在保温箱里对材料进行加热,同时用计时表开始计
时,每格t 便对材料的中心处进行温度测量,记录下相应的温度12,,n T T T ……并对
所测得的温度值进行观察。

4.测量热流量
当材料被加热一段时间后,当材料温度超过某一个测得温度后不在升高或者变化幅
度很小的时候,再测5组温度值,并用电流电压表测出材料两端的电流I,电压V 。

5.结束测量
关掉电源停止加热,清理实验设备。

3. 数据处理
将最后测得的5组温度值取平均数得T ,并求出从初始加热到倒数第6组温度所需
要的时间t,则材料的导热系数为:
/(/)IU A T t λ=-
4. 结论
将所测得的温度与标准值进行对比并分析误差。

稳态法测算导热系数的原理

稳态法测算导热系数的原理

稳态法测算导热系数的原理
稳态法是一种常用的测算导热系数(也称热传导系数)的方法,其原理基于热传导定律和热平衡原理。

根据热传导定律,热量的传导速率与物体的导热系数、传热面积和温度梯度有关。

导热系数是物质本身的特性,可以通过测量来确定。

在稳态法中,我们需要测量导热系数的样品处于稳态状态,即温度分布不随时间而变化。

这可以通过采用两个恒温源(通常称为热源和冷源),在样品两端分别提供稳定的温度,并保持温度恒定。

这样,在稳态的情况下,温度梯度将会稳定下来。

接下来,我们在样品上测量温度梯度。

通常会在样品的两侧放置多个温度传感器,并记录下每个传感器的温度值。

通过这些温度值的差异,我们可以计算出样品内的温度梯度。

最后,将测得的温度梯度、传热面积和已知的热流量(由热源提供的热量)代入热传导定律中,可以计算出导热系数。

稳态法测算导热系数的原理即基于热传导定律,在稳态状态下通过测量温度梯度和已知参数计算导热系数。

稳态法导热系数测量实验报告

稳态法导热系数测量实验报告

稳态法导热系数测量实验报告实验目的:利用稳态法测量材料的导热系数。

实验原理:稳态法是一种测量物质导热性质的方法,利用稳定的热传导过程来确定材料的导热系数。

稳态法的基本原理是根据热传导定律,当热传导达到稳定时,各层的热流量相等。

根据热传导定律可以得到以下公式:q = k * A * (T2 - T1) / d其中,q为单位时间内通过材料某一横截面的热流量,k为材料的导热系数,A为热流通过的横截面积,T1为热流起点的温度,T2为热流终点的温度,d为热流的传播距离。

实验步骤:1. 准备实验装置,将待测材料样品剪制成适当大小,并用绝缘材料包裹,以减少热流的散失。

2. 将样品放置在导热盘上,保证样品与导热盘接触良好。

3. 通过电源调节导热盘的加热功率,使得样品上下两侧的温度差较大,但保持稳定。

4. 使用热电偶测量样品上下两侧的温度,记录两侧温度差ΔT。

5. 测量导热盘的尺寸并计算出热流通过的横截面积A。

6. 根据公式q = k * A * ΔT / d,计算出材料的导热系数k。

实验结果:根据实验数据计算出材料的导热系数k。

实验讨论:分析实验结果,讨论实验误差及其可能的来源。

结论:根据实验结果和讨论,得出关于材料导热系数的结论,并对实验进行总结。

实验注意事项:1. 实验中要保持恒定的外部环境温度,以减少外界因素对实验结果的影响。

2. 导热盘加热时要注意控制加热功率,避免样品温度过高导致结果不准确。

3. 热电偶要保持良好的接触,避免温度测量误差。

4. 实验结束后要将实验装置清理干净,保养各种仪器设备。

参考文献:[1] xxxx. 热传导与导热系数测量实验报告[M]. 北京:xx出版社,2000.以上是稳态法导热系数测量实验报告的基本内容,具体根据实验的具体要求和实验数据进行修改和补充。

稳态法测量不良导体的导热系数

稳态法测量不良导体的导热系数

稳态法测量不良导体的导热系数导热系数是表征物质热传导性质的物理量。

材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。

测量导热系数的实验方法一般分为稳态法和动态法两类。

在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。

而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。

【实验目的】本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。

【实验原理】1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。

由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。

设稳态时,样品的上下平面温度分别为1θ、2θ,根据傅立叶传导方程,在t ∆时间内通过样品的热量Q ∆满足下式:S h t QB21θθλ-=∆∆ (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为B d ,则由(1)式得:2214B Bd h t Qπθθλ-=∆∆ (2) 实验装置如图1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。

散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

稳态法测定导热系数实验ppt

稳态法测定导热系数实验ppt

最后一步是使用导热系数实验公式,
05
通过计算确定样品的传热性能,并得
出样品的导热系数。
稳态法测量导热系数的实验有几个要
06
点:
1.准备实验装置:建立导热系数实验装置,并确保样品的均匀覆盖面积。
2.控温设置:在温度控制系统中,分别设定多个温差和参考温度,以控制温度。
3.测量温差:测量样品表面温度,并使用实验数据计数实验通常分为四
01
个步骤。
第一个步骤是将样品放入导热系数测
02
试装置中,使之均匀地覆盖在被测表
面上。
第二步是稳定样品的温度,并根据实
03
验要求确定多个温差和参考温度,并
在温度控制系统中将这些值进行设置。
第三步是测量样品的温差和参考温度,
04
以确定样品的传热性能。
谢谢
4.计算导热系数:根据所得实验结果和相关理论,使用导热系数实验公式,得出 样品的导热系数。
在进行稳态法测量导热系数实验前,应确保样品具有一定的尺寸和厚度,以免影 响最终结果。此外,在实验中,应注意样品表面温度的稳定性,以保证实验效果 的准确性。
在进行稳态法测量导热系数实验时,应控制温度范围,确保每个 温度上下限以及温度变化率在实验设置的范围内。此外,应注意, 在样品的表面有很多元素(如水分、空气等),可能会影响实验 结果。因此,要尽量减少这些元素的影响,以保证实验结果的准 确性。

实验稳态法测定材料导热系数实验

实验稳态法测定材料导热系数实验

实验稳态法测定材料导热系数实验一.实验目的1.了解热传导现象的物理过程;2.掌握用稳态平板法测量材料的导热系数; 3.学习用作图法求冷却速率;4.掌握用热电转换方式进行温度测量的方法;二.实验原理导热系数(热导率)是反映材料热性能的物理量,本实验采用的是稳态平板法测量材料的导热系数。

热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z0 处取一个垂直截面积dS (如图1所示)。

以dT/dz 表示在Z 处的温度梯度,以dQ/dτ 表示在该处的传热速率(单位时间内通过截面积dS 的热量),那么传导定律可表示成:(S1-1)图1 导热示意图式中的负号表示热量从高温区向低温区传导,式中比例系数λ即为导热系数,可见热导率的物理意义:在温度梯度为一个单位的情况下,单位时间内垂直通过单位面积截面的热量。

利用(S1-1)式测量材料的导热系数λ,需解决的关键问题有两个:一个是在材料内造成一个温度梯度dT/dz ,并确定其数值;另一个是测量材料内由高温区向低温区的传热速率dQ/dτ。

1.温度梯度为了在样品内造成一个温度的梯度分布,可以把样品加工成平板状,并把它夹在两块良导体铜板之间(图2)使两块铜板分别保持在恒定温度T1和T2,就可能在垂直于样品表面的方向上形成温度的梯度分布。

样品厚度可做成h ≤D (样品直径)。

这样,由于样品侧面积比平板面积小得多,由侧面散去的热量可以忽略不计,可以认为热量是沿垂直于样品平面的方向上传导,即只在此方向上有温度梯度。

由于铜是热的良导体,在达到平衡时,可以认为同一铜板各处的温度相同,样品内同一平行平面上各处的温度也相同。

这样只要测出样品的厚度h 和两块铜板的温度dt dsdT dQ Z⋅-=0)(λ板板图2铜板导热示意图T1、T2 ,就可以确定样品内的温度梯度度 (T1-T2)/h 。

当然这需要铜板与样品表面的紧密接触,无缝隙,否则中间的空气层将产生热阻,使得温度梯度测量不准确。

稳态法测量导热系数

稳态法测量导热系数

稳态法测量导热系数TC—3型导热系数测定仪实验讲义杭州富阳精科仪器有限公司(原杭州富阳电表厂)导热系数的测量导热系数是表征物质热传导性质的物理量。

材料结构的变化与含杂志等因素都会对导热 数产生明显的影响,因此,材料的导热系数常常需要通过试验来具体测定。

测量导热系数 的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类为动态法。

用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分布,然后进行测量。

而在动态法中,待测样品的温度分布是随时间变化的,例如按周期性变化等。

本试验采用稳态进行测量。

【试验目的】用稳态法侧出不良导热体的导热系数,并与理论值进行比较。

【试验原理】根据傅立叶导热方程式,在物体内部,取两个垂直与热传导方向、彼此间相距为h 、温度分别为T1、T2的平行平面(设T1>T2),若平面面积为S,在△t 时间内通过面积S 的热量△Q 满足下述表达式:Q t ∆∆=λS 12T T h- (1) 式中Qt∆∆为热流量,λ即为该物质的热导率(又称作导热系数),λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是W 11m k --⋅⋅。

本试验仪器如图所示:图 1 稳态法测定导热系数试验组装图在支架上先放上圆铜盘P ,在P 的上面放上待侧样品B (圆盘形的不良导体),再把带发 热器的圆铜盘A 放在B 上,发热器通电后,热量从A 传到B 盘,在传到P 盘,由于A 、P 盘都是良导体,其温度即可以代表B 盘上、下表面的温度T1、T2,T1、T2分别由插入A 、 P 盘边缘小孔热电偶E 来测量。

热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。

由式(1)可以知道, 单位时间内通过待测样品B 任一圆截面的热流量为Qt=λ12T T hb -πR 2B(2)公式中R B 为样品的半径,h B 为样品的厚度,当然传导达到稳定状态时,T 1、T 2的值 不变,于是通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速度相等,因此,可通 过铜盘P 在稳定温度T 2时的散热速度来求出热流量Qt∆∆。

稳态法测量导热系数

稳态法测量导热系数

稳态法测量导热系数TC—3型导热系数测定仪实验讲义杭州富阳精科仪器有限公司(原杭州富阳电表厂)导热系数的测量导热系数是表征物质热传导性质的物理量。

材料结构的变化与含杂志等因素都会对导热 数产生明显的影响,因此,材料的导热系数常常需要通过试验来具体测定。

测量导热系数 的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类为动态法。

用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分布,然后进行测量。

而在动态法中,待测样品的温度分布是随时间变化的,例如按周期性变化等。

本试验采用稳态进行测量。

【试验目的】用稳态法侧出不良导热体的导热系数,并与理论值进行比较。

【试验原理】根据傅立叶导热方程式,在物体内部,取两个垂直与热传导方向、彼此间相距为h 、温度分别为T1、T2的平行平面(设T1>T2),若平面面积为S,在△t 时间内通过面积S 的热量△Q 满足下述表达式:Q t ∆∆=λS 12T T h- (1) 式中Qt∆∆为热流量,λ即为该物质的热导率(又称作导热系数),λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是W 11m k --⋅⋅。

本试验仪器如图所示:图 1 稳态法测定导热系数试验组装图在支架上先放上圆铜盘P ,在P 的上面放上待侧样品B (圆盘形的不良导体),再把带发 热器的圆铜盘A 放在B 上,发热器通电后,热量从A 传到B 盘,在传到P 盘,由于A 、P 盘都是良导体,其温度即可以代表B 盘上、下表面的温度T1、T2,T1、T2分别由插入A 、 P 盘边缘小孔热电偶E 来测量。

热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。

由式(1)可以知道, 单位时间内通过待测样品B 任一圆截面的热流量为Qt=λ12T T hb -πR 2B(2)公式中R B 为样品的半径,h B 为样品的厚度,当然传导达到稳定状态时,T 1、T 2的值 不变,于是通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速度相等,因此,可通 过铜盘P 在稳定温度T 2时的散热速度来求出热流量Qt∆∆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、数据处理
1、在内容三所测数据中,选取稳态温度附近10组数据,用逐差法计算散热盘C在稳态T2附近的冷却速率Vc。

根据选取稳态温度附近10组数据
由逐差法计算有Vc={(44.7-42.2)+(44.3-41.6)+(44.1-41.2)+(43.3-40.8)+(42.6-40.5)}/(5*2.5)=1.048℃/min=0.0175℃/s
2、计算出待测样品B的导热系数λ:
λ={mch B(R c+2h c)/2πR b² (T1-T2)(R c+h c)}*(△T/△t)
B
R c=(9.960+9.958+9.980+9.956+9.942)/(2*5)=4.9796cm=4.9796*10^-2m
hc=(0.984+0.986+0.982+0.986+0.982)/5=0.984cm=9.84*10^-3m
R b=(9.966+9.950+9.948+9.958+9.956)/(2*5)=4.9778cm=4.9778*10^-2m
T1=53.1℃T2=42.3℃
△T/△t=Vc=0.0175℃/s
λ={0.669*385*8.332*10^-3*(4.9796*10^-2+2*9.84*10^-3)/2*3.14*(4.9778*10^-2)²*(53.1-42.3) ( 4.9796*10^-2+9.84*10^-3)}*0.0175=0.261 W/m*K
3、求出环氧盘λ的不确定度,给出结果表达式。

(只考虑冷却速率误差)
由于比较复杂,过程见实验报告纸。

可得结果为Uλ=0.036 W/m*K∴λ=0.261±0.036 W/m*K
4、分析误差原因。

测量盘的直径与厚度时由于是人为读数,有读数误差,再有环境误差,盘的质量可能由于多次实验有磨损存在误差等等。

5、所有测量数据都要列表。

相关文档
最新文档