模糊控制的原理
模糊控制理论及工程应用

模糊控制理论及工程应用模糊控制理论是一种能够处理非线性和模糊问题的控制方法。
它通过建立模糊规则和使用模糊推理来实现对系统的控制。
本文将介绍模糊控制理论的基本原理,以及其在工程应用中的重要性。
一、模糊控制理论的基本原理模糊控制理论是由扬·托东(Lotfi Zadeh)于1965年提出的。
其基本原理是通过建立模糊规则,对系统的输入和输出进行模糊化处理,然后利用模糊推理来确定系统的控制策略。
模糊规则是一种类似于“如果...那么...”的表达式,用于描述输入和输出之间的关系。
模糊推理则是模糊控制系统的核心,它通过将模糊规则应用于模糊化的输入和输出,来确定控制的动作。
二、模糊控制理论的工程应用模糊控制理论在工程应用中具有广泛的应用价值。
下面将分别介绍其在机械控制和电力系统控制中的应用。
1. 机械控制模糊控制理论在机械控制领域有着重要的应用。
其优势在于能处理非线性和模糊问题,使得控制系统更加鲁棒和稳定。
例如,在机器人控制中,模糊控制可实现对复杂环境的适应性和灵活性控制,使机器人能够自主感知和决策。
此外,模糊控制还可以应用于精密仪器的控制,通过建立模糊规则和模糊推理,实现对仪器位置和姿态的精确控制。
2. 电力系统控制模糊控制理论在电力系统控制领域也有着重要的应用。
电力系统是一个复杂的非线性系统,模糊控制通过建立模糊规则和模糊推理,可以实现对电力系统的稳定性和性能进行优化。
例如,在电力系统调度中,模糊控制可以根据不同的负荷需求和发电能力,实现对发电机组的出力控制,保持电力系统的稳定运行。
此外,模糊控制还可以应用于电力系统中的故障诊断和故障恢复,通过模糊推理,快速准确地定位和修复故障。
三、总结模糊控制理论是一种处理非线性和模糊问题的有效方法。
其基本原理是通过建立模糊规则和使用模糊推理来实现对系统的控制。
模糊控制理论在机械控制和电力系统控制等工程领域有着广泛的应用。
它能够提高控制系统的鲁棒性和稳定性,并且能够适应复杂的环境和变化,具有良好的控制效果。
模糊控制理论及应用

模糊控制理论及应用模糊控制是一种基于模糊逻辑的控制方法,它能够应对现实世界的不确定性和模糊性。
本文将介绍模糊控制的基本原理、应用领域以及未来的发展趋势。
一、模糊控制的基本原理模糊控制的基本原理是基于模糊逻辑的推理和模糊集合的运算。
在传统的控制理论中,输入和输出之间的关系是通过精确的数学模型描述的,而在模糊控制中,输入和输出之间的关系是通过模糊规则来描述的。
模糊规则由模糊的IF-THEN语句组成,模糊推理通过模糊规则进行,从而得到输出的模糊集合。
最后,通过去模糊化操作将模糊集合转化为具体的输出值。
二、模糊控制的应用领域模糊控制具有广泛的应用领域,包括自动化控制、机器人控制、交通控制、电力系统、工业过程控制等。
1. 自动化控制:模糊控制在自动化控制领域中起到了重要作用。
它可以处理一些非线性和模糊性较强的系统,使系统更加稳定和鲁棒。
2. 机器人控制:在机器人控制领域,模糊控制可以处理环境的不确定性和模糊性。
通过模糊控制,机器人可以对复杂的环境做出智能响应。
3. 交通控制:模糊控制在交通控制领域中有重要的应用。
通过模糊控制,交通信号可以根据实际情况进行动态调整,提高交通的效率和安全性。
4. 电力系统:在电力系统中,模糊控制可以应对电力系统的不确定性和复杂性。
通过模糊控制,电力系统可以实现优化运行,提高供电的可靠性。
5. 工业过程控制:在工业生产中,许多过程具有非线性和不确定性特点。
模糊控制可以应对这些问题,提高生产过程的稳定性和质量。
三、模糊控制的发展趋势随着人工智能技术的发展,模糊控制也在不断演进和创新。
未来的发展趋势主要体现在以下几个方面:1. 混合控制:将模糊控制与其他控制方法相结合,形成混合控制方法。
通过混合控制,可以充分发挥各种控制方法的优势,提高系统的性能。
2. 智能化:利用人工智能技术,使模糊控制系统更加智能化。
例如,引入神经网络等技术,提高模糊控制系统的学习和适应能力。
3. 自适应控制:模糊控制可以根据系统的变化自适应地调整模糊规则和参数。
模糊控制原理与应用

模糊控制原理与应用一、引言在现实世界的控制系统中,我们常常面临各种各样的不确定性和模糊性。
传统的控制理论往往无法有效地处理这些问题,而模糊控制理论的提出填补了这一空白。
模糊控制原理与应用是一门涉及模糊集合、模糊逻辑和模糊推理的学科,它已经在各个领域取得了广泛的应用和重要的成果。
二、模糊控制的基本原理模糊控制的基本原理是将传统的精确控制方法中的精确数学模型替换为模糊数学模型。
模糊数学模型中使用模糊集合来描述系统的输入和输出变量,并使用模糊规则来描述系统的控制策略。
2.1 模糊集合模糊集合是对传统集合的一种推广,它允许一个元素具有一定程度的隶属度。
在模糊控制中,我们通常使用隶属函数来描述模糊集合的隶属度分布。
2.2 模糊逻辑模糊逻辑是一种符号运算方法,它可以处理模糊集合上的逻辑运算。
在模糊控制中,我们使用模糊逻辑运算来进行模糊推理,从而得出控制信号。
2.3 模糊推理模糊推理是指从模糊规则和模糊事实出发,通过模糊逻辑运算得出一个模糊结论。
在模糊控制中,模糊推理用于将模糊输入映射为模糊输出。
三、模糊控制的应用领域模糊控制在各个领域都取得了广泛的应用。
下面介绍几个典型的应用领域。
3.1 自动化控制模糊控制在自动化控制系统中具有重要的应用价值。
通过使用模糊控制,可以有效地处理控制对象的各种不确定性和模糊性,提高控制系统的稳定性和鲁棒性。
3.2 智能交通模糊控制在智能交通系统中扮演着重要的角色。
通过使用模糊控制,可以根据交通状况和驾驶行为进行实时调整,从而提高交通系统的效率和安全性。
3.3 机器人控制模糊控制在机器人控制领域得到广泛应用。
通过使用模糊控制,可以实现对机器人的路径规划、动作控制和任务调度等功能,从而提高机器人的智能性和灵活性。
3.4 电力系统模糊控制在电力系统中的应用越来越多。
通过使用模糊控制,可以实现对电力系统的负荷预测、调度优化和设备故障诊断等功能,从而提高电力系统的稳定性和可靠性。
四、模糊控制的优势与不足模糊控制具有一些明显的优势,但也存在一些不足之处。
模糊控制的基本原理

模糊控制的基本原理模糊控制是一种基于模糊逻辑的控制方法,它模仿人类的思维方式,通过模糊化、模糊推理和解模糊化来实现对系统的控制。
模糊控制的基本原理可以概括为以下几个方面。
模糊控制通过将输入和输出与一组模糊集相对应,来模拟人类的模糊推理过程。
在传统的控制方法中,输入和输出通常是精确的数值,而在模糊控制中,输入和输出可以是模糊的、不确定的。
通过将输入和输出模糊化,可以将问题从精确的数学计算转化为模糊的逻辑推理,使得控制系统更加灵活和适应性强。
模糊控制通过定义一组模糊规则来描述系统的行为。
模糊规则是一种类似于人类思维的规则,它由若干模糊条件和模糊结论组成。
模糊条件和模糊结论通过模糊集来表示,并通过模糊推理来确定系统的控制策略。
模糊推理是基于模糊规则和模糊集的逻辑推理过程,它通过对模糊条件的匹配和模糊结论的合成,来确定系统的输出。
然后,模糊控制通过解模糊化将模糊输出转化为精确的控制信号。
解模糊化是将模糊输出映射到一个确定的值域上的过程,它可以通过取模糊输出的平均值、加权平均值或者其他方式来实现。
解模糊化的目的是将模糊的控制信号转化为精确的控制动作,以实现对系统的精确控制。
模糊控制通过反馈机制来实现对系统的自适应调节。
反馈机制是模糊控制系统中的重要组成部分,它通过不断测量系统的输出,并与期望输出进行比较,来调节系统的控制策略。
通过反馈机制,模糊控制系统可以根据系统的实际情况进行调节,以适应不同的工作环境和工作条件。
模糊控制的基本原理包括模糊化、模糊推理、解模糊化和反馈机制。
通过模糊化和模糊推理,模糊控制可以将问题从精确的数学计算转化为模糊的逻辑推理,使得控制系统更加灵活和适应性强。
通过解模糊化,模糊控制可以将模糊的控制信号转化为精确的控制动作,以实现对系统的精确控制。
通过反馈机制,模糊控制可以根据系统的实际情况进行调节,以适应不同的工作环境和工作条件。
模糊控制的基本原理为工程领域提供了一种灵活、适应性强的控制方法,可以应用于各种复杂的控制问题中。
模糊控制原理

模糊控制原理
模糊控制原理是一种基于模糊逻辑理论的控制方法。
模糊控制通过模糊化输入变量和输出变量,建立模糊规则库,并通过模糊推理得到模糊控制输出。
模糊控制的主要目标是实现对非线性、模糊、不确定或不精确系统的控制。
通过引入模糊因素,模糊控制可以在不准确或不确定的情况下,对系统进行稳定、鲁棒的控制。
模糊控制的核心思想是将控制问题转化为一系列的模糊规则,其中每个规则都包含了一组模糊化的输入和输出。
模糊规则的编写通常需要基于领域专家的经验和知识。
通过对输入变量和输出变量的模糊化,可以将问题的精确描述转化为模糊集合。
模糊推理使用了一系列的逻辑规则来描述输入模糊集合与输出模糊集合之间的关系,以得到模糊控制输出。
最后,通过解模糊过程将模糊输出转化为具体的控制信号,以实现对系统的控制。
模糊控制具有很强的鲁棒性和适应性,能够处理非线性、时变和多变量的系统。
它还可以处理模糊和不准确的信息,适用于实际系统中存在的各种不确定性和复杂性。
此外,模糊控制还具有良好的可解释性,可以用于解释控制决策的原因和依据。
总之,模糊控制原理是一种基于模糊逻辑理论的控制方法,通过模糊化变量、建立模糊规则库和进行模糊推理,实现对非线性、模糊、不确定或不精确系统的稳定控制。
模糊控制具有鲁棒性、适应性和可解释性等特点,在实际系统中有广泛的应用。
模糊控制原理课件优秀课件

描述了输入(水温与期望值的偏差 e)和输出(燃气阀开度的增量 u) 之间的模糊关系R
3.1 模糊控制的基本原理
模糊值
规则库R
模糊值
模糊化
输入e
输出u
模糊推理
精确值
精确值
期望值 +
e A/D
-
温度 传感器
热水器
?
为了提高实时性,模糊控制器常常以控制查询表的形式出现。 该表反映了通过模糊控制算法求出的模糊控制器输入量和输 出量在给定离散点上的对应关系。为了能方便地产生控制查 询表,在模糊控制器的设计中,通常就把输入输出的论域定 义为有限整数的离散论域。
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
档级多,规则制定灵活,规则细致,但规则多、复杂, 编制程序困难,占用的内存较多; 档级少,规则少,规则实现方便,但过少的规则会使 控制作用变粗而达不到预期的效果。 因此在选择模糊状态时要兼顾简单性和控制效果。
3.1 模糊控制的基本原理
对输入量进行模糊化处理,包括确定语言变量和隶属函数
确定隶属函数(原则)
模糊化
将输入的精确量转化成为模糊量的过程称为模糊化
模糊化步骤
确定符合模糊控制器要求的输入量和输出量 常用的输入量是系统输出的误差(e)和误差的改变量 (ec),而输出量就是控制量(u)。
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
基本论域
e ec u 的实际范围称为这些变量的基本论域
e的基本论域: [eL eH] ec的基本论域: [ecL ecH] u的基本论域: [uL uH]
模糊控制算法域

模糊控制算法域模糊控制算法是一种基于模糊逻辑的控制方法,它通过对输入和输出之间的关系建立模糊规则,实现对系统的控制。
模糊控制算法的应用范围广泛,包括工业控制、机器人控制、交通控制等领域。
一、模糊控制算法的原理模糊控制算法的核心思想是将模糊逻辑应用于控制系统中,通过模糊化的输入变量和输出变量之间的关系建立模糊规则,从而实现对系统的控制。
模糊控制算法的主要步骤包括模糊化、规则库的建立、模糊推理和解模糊化。
1. 模糊化:将输入变量转化为模糊集合,通常使用隶属度函数来表示不同程度的归属度。
2. 规则库的建立:根据专家经验或实验数据,建立一系列模糊规则,用于描述输入变量和输出变量之间的关系。
3. 模糊推理:根据输入变量的模糊集合和规则库,通过模糊逻辑运算得到输出变量的模糊集合。
4. 解模糊化:将模糊集合转化为确定的输出值,常用的方法有最大隶属度法、重心法等。
二、模糊控制算法的优势与传统的控制方法相比,模糊控制算法具有以下优势:1. 适应性强:模糊控制算法能够对非线性、时变和不确定的系统进行控制,具有较强的适应性。
2. 鲁棒性好:模糊控制算法对系统参数的变化和扰动具有较好的鲁棒性,能够有效地抑制系统的抖动和波动。
3. 知识表达灵活:模糊控制算法通过模糊规则的形式对专家知识进行表达,能够灵活地应对各种控制需求。
4. 简化建模过程:相比于传统的控制方法,模糊控制算法可以不需要建立精确的数学模型,简化了系统建模的过程。
三、模糊控制算法的应用模糊控制算法在工业控制、机器人控制、交通控制等领域得到了广泛的应用。
1. 工业控制:模糊控制算法可以应用于各类工业过程的控制,如温度控制、液位控制、压力控制等。
通过对输入变量和输出变量之间的模糊规则建模,能够实现对复杂工业过程的精确控制。
2. 机器人控制:模糊控制算法可以应用于机器人的路径规划、姿态控制等方面。
通过对机器人的传感器数据进行模糊化处理,可以实现对机器人行为的智能化控制。
机械控制系统的模糊控制技术

机械控制系统的模糊控制技术在机械控制系统中,为了实现对机器设备的精确控制,模糊控制技术应运而生。
模糊控制技术是一种基于模糊逻辑原理的控制方法,可以在模糊环境下进行控制,使得机械控制系统具有较强的适应性和鲁棒性。
本文将介绍机械控制系统的模糊控制技术及其在实际应用中的优势。
一、模糊控制技术的基本原理模糊控制技术是一种基于模糊逻辑的控制方法,通过模糊推理和模糊集合运算来实现对机械设备的控制。
其基本原理可以归纳为以下几点:1. 模糊化:将输入输出的实际值转化为模糊集合,用语言词汇来描述系统状态。
2. 规则库的建立:根据专家经验和实际观测数据,建立一套模糊规则库,其中包含了输入输出之间的关系。
3. 模糊推理:通过将输入模糊集合与规则库中的规则进行匹配,得到输出的模糊集合。
4. 解模糊化:将输出的模糊集合转化为实际值,供机械设备进行控制。
二、模糊控制技术的优势相比于传统的控制方法,模糊控制技术具有以下几个优势:1. 简化建模过程:传统的控制方法需要建立精确的数学模型,而模糊控制技术可以通过专家经验和模糊规则库来建立控制模型,简化了建模的过程。
2. 适应性强:模糊控制技术可以在模糊环境下进行控制,对于输入参数的模糊性和不确定性具有较好的适应性。
3. 鲁棒性好:模糊控制技术对于机械设备参数的变化和外部干扰具有较好的鲁棒性,可以保持较稳定的控制性能。
4. 知识表示灵活:模糊控制技术使用自然语言词汇描述系统状态和规则,便于人们理解和调整系统。
三、模糊控制技术的应用领域模糊控制技术在机械控制系统中有广泛的应用,以下是一些典型的应用领域:1. 机器人控制:模糊控制技术可以用于机器人的轨迹控制、力控制和路径规划等方面,实现对机器人的精确控制。
2. 电机控制:模糊控制技术可以用于电机的速度调节、力矩控制和位置控制,提高电机系统的稳定性和精度。
3. 汽车控制:模糊控制技术可以应用于汽车的刹车系统、转向系统和巡航控制,提高汽车的安全性和舒适性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制器的结构设计就是要确定模糊控制器的输入变量和输出变量。在手动控制过程中,人对误差、误差的变化以及误差变化的速率这三个信息的敏感程度是完全不同的。由于模糊控制器的控制规则往往是根据手动控制的大量实践经验总结出来的,因此模糊控制器的输入变量自然也可以有三个:即误差、误差的变化和误差变化的速率;而输出变量则一般选择为控制量的变化,即增量。
(3)建立模糊控制器的控制规则,模糊控制规则应该是人们在手动控制过程中经过长期操作实践,不断修正完善后的一套行之有效的控制策略。
将精确量(实际上是数字量)转化为模糊量的过程称为模糊化或称模糊量化。(1)把精确量离散化如把在[-6,+6]之间变化的连续量分为7个档次,每一档对应一个模糊集,这样处理使模糊化过程比较简单。否则,将每一精确量对应一个模糊子集,有无穷多个模糊子集,使模糊化过程复杂化。(2)第二种方法比较简单,它是将在某区间的精确量X模糊化成这样的一个模糊子集,它在点X处的隶属度为1,除X点外其余各点的隶属度均取0,显然这种模糊化方法相对粗略一点。
C的隶属度函数只有一个峰值,则取隶属度函数的最大值为清晰值,即:
ZzzzCC),()(,
,
0
(1.5)
如果输出量的隶属度函数有多个极值,则取这些极值的平均值为清晰值。在这种方法中能够突出主要信息,简单易行,但其缺点是概括的信息量较少。因为它排除了其他一切隶属度较小的论域元素的作用,从而比较粗糙,只能用于控制性能要求一般的系统中。(2)中位数法
(3)易产生振荡现象。如果查询表构造不合理,或量化因子和比例因子选择不当,都会产生振荡。
1.2模糊控制的特点
L.A.zadeh教授提出的模糊集合论,其核心是对复杂的系统或过程建立一种语言分析的数学模式,使自然语言能直接转化为计算机所能接受的算法语言。模糊集合理论的诞生为推理客观世界中存在的一类模糊性问题提供了有力的工具,同时,也适应了自适应科学发展的迫切需要。
2)不需要根据机理与分析建立被控对象的数学模型,对于某些系统,要建立数学模型是很困难的,甚至是不可能的。
3)与传统的控制方法相比,模糊控制系统依赖于行为规则库,由于是用自然语言表达的规则,更接近于人的思维方法和推理习惯,因此,便于现场操作人员的理解和使用,便于人机对话,以得到更有效的控制规律。
4)模糊控制与计算机密切相关。从控制角度看,它实际上是一个由很多条件语句组成的软件控制器。目前,模糊控制还是应用二值逻辑的计算机来实现,
3
模糊规律经过运算,最后还是进行确定性的控制。模糊推理硬件的研制与模糊计算机的开发,使得计算机将像人脑那样工作。
1.3模糊控制的研究对象
模糊控制作为智能控制的一种类型,是控制理论发展的高级阶段产物,主要用来解决那些传统方法难以解决的复杂系统的控制问题。具体地说,其研究对象具备以下一些智能控制对象的特点[18]:
(2)模糊控制规则设计方法的研究,包括模糊集合隶属函数设定方法,量化水平,采样周期的最优选择,规则的系数,最小实现以及规则和隶属函数参数自动生成等问题,以及进一步给出模糊控制器的系统化设计方法。(3)模糊控制器参数最优调整理论的确定以及修正推理规则的学习方式和算法等。
(4)模糊动态模型的辨识别方法。
模糊数学的鼻祖——美国加利福尼亚大学电气工程系教授扎德(L.A.zadeh)于1965年首次提出了“模糊集合”的概念,1973年又进一步研究了模糊语言处理,这些理论研究给模糊控制理论提供了数学依据,为模糊推理打下了理论基础,使得有人的经验参与的控制过程成为了实际可能。1974年,英国伦敦大学教授马丹(E.H.MamdanU)制造出当时世界上第一个用于锅炉和蒸汽机控制的模糊控制器,距今仅仅30来年,各种各样的模糊控制系统被研制成功,其发展之快、成果之多和被世人重视的程度都是少有的。各种各样的家用电器的控制系统,各种熔炉、电气炉、水泥生成炉的控制系统,核能发电供水控制系统,汽车控制系统,电梯控制系统,机器人控制系统,以及活跃于航空航天、通信领域的专家系统等模糊控制系统的广泛应用取得了明显效益,与传统控制相比展示了无比的优越性。当前,模糊控制理论与技术的深入研究和在美国、日本、中国、欧洲、东南亚等国家和地区的广泛应用引起人们更广泛的关注.
b
a
Cb
aCdz
zdz
zzzdfz)()()(,
,
0
(1.7)Leabharlann 当其论域为离散时,则有:n
iiCn
iiCizzzz1
10)
()
(,
,
(1.8)
在加权平均法中,即突出了主要信息,同时又兼顾了其他的信息,所以显得较为贴近实际情况,因而应用也更为广泛。
3模糊控制器的设计
模糊逻辑控制器简称为模糊控制器,其控制规则是以模糊条件语句描述的语言控制规则为基础的,因此,模糊控制器又称为模糊语言控制器。模糊控制器是模糊控制系统的核心,因而在模糊控制系统设计中怎样设计和调整模糊控制器及其参数是一项很重要的工作。一般而说,设计模糊控制器主要包括以下几项内容:
1.4模糊控制的展望
模糊控制系统理论还有一些重要的理论课题还没有解决。其中两个重要的问题是:如何获得模糊规则及隶属函数的问题以及如何保证模糊系统的稳定性。大体说来,在模糊控制理论和应用方面应加强研究的主要课题有:
(1)适合于解决工程上普遍问题的稳定性分析方法,稳定性评价理论体系,控制器的鲁棒性分析,系统的可控性分析和可观测性的判定方法等。
模糊控制是一种以模糊集合论、模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。本章着重介绍模糊控制的基本思想、模糊控制的基本原理、模糊控制器的基本设计方法和模糊控制系统的性能分析。
随着科学技术的飞速发展,在那些复杂的、多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表示出来,而且这种形式既能取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方案的过程,同时还很容易被实现的、简单而灵活的控制方式。于是,模糊控制理论及其技术便应运而生。
8
2.6模糊控制规则的设计和模糊化方法
模糊控制规则的设计是设计模糊控制器的关键,具体的设计内容一般包括以下三个部分:
(1)选择描述输入输出变量的词集,一般要求词集中词汇少,并且利用这些词汇又可以对各种自然现象进行准确的描述。
(2)定义各模糊变量的模糊子集,由于模糊变量没有明确的外延,如何用具体的数据来刻画一个模糊变量的性质,这就是模糊子集的确定问题。对模糊子集的理想要求是它必须客观的反应实际情况。
(5)模糊预测系统的设计方法和提高计算速度的方法。
(6)简单、实用且具有模糊推理功能的模糊集成芯片和模糊控制装置、通用模糊控制系统的开发和推广应用。
4
当然,模糊控制无论在理论上和实用上都是一门年轻的学科。正处于不断发展和完善的进程中,不像经典控制理论和现代控制理论皆已形成较完善的理论体系。同时,也正是因为它的不完善和正在发展,显示了他有很大的发展潜力和前途。
10
通常将模糊控制器输入变量的个数称为模糊控制的维数。常见的模糊控制器的结构有三种形式。从理论上讲,模糊控制器的维数越高,控制的效果也越好,但是维数高的模糊控制器实现起来相当复杂和困难。而维数低的模糊控制器,控制效果有不理想,因此,目前大都使用二维模糊控制器,其控制精度一般都可以满足要求。比如,在往桶内注水时,若只把水位差作为输入变量,要达到尽快注满水的目的,必须把阀门开的很大,但是不可避免的会出现溢水;而要达到不溢出或少溢出水的目的,相当于减少超调量,必须使进水阀门的开度变化相对的小一点,这样又会出现注水时间太长,相当于过程时间长。在这个过程中,模糊控制按非线性的比例(P)控制规律来控制注水过程,很难同时达到超调小而过度过程时间短这两个性能指标的要求。为此,可以用水位差的大小以及水位差减小的速度这两个信息作为模糊控制器的输入变量。一方面要看到当前的水位差,另一方面要看到目前水位差减小的速度。通过这两个物理量的综合来得到一个理想的控制动作,达到期望的控制目标。在这个二维的模糊控制系统中,采用了比例积分微分控制规律,利用微分作用的“超前预报”特性减少了溢出的水,即减小了系统的超调。
2)非线性
在传统的控制理论中,线性系统理论比较成熟。对于具有非线性特性的控制对象,虽然也有一些非线性控制的方法,但总的来说,非线性控制理论还很不成熟,而且方法也比较复杂。采用模糊控制的方法往往可以较好地解决非线性系统的控制问题。
3)复杂的任务要求
在传统的控制系统中,控制的任务或者是要求输出量为定值(调节系统),或者要求输出量跟随期望的运动轨迹(跟踪系统),要求比较单一。对于模糊控制系统,任务的要求往往比较复杂。例如,在智能机器人系统中,它要求系统对一个复杂的任务具有自行规划和决策的能力,有自动躲避障碍并且运动到期望目标位置的能力。
以模仿人类人工控制特点而提出的模糊控制虽然带有一定的主观性和模糊性,但往往是简单易行,而且是行之有效的。模糊控制的任务正是要用计算机来模拟这种人的思维和决策方式,对这些复杂的生产过程进行控制和操作。
从以上背景可以看出,模糊控制有以下的特点:
1)模糊工程的计算方法虽然是运用模糊集理论进行的模糊算法,但最后得到的控制规律是确定性的、定量的条件语句。
2.7解模糊化
在实行模糊控制时,将许多控制规则进行上述推论演算,然后结合各个由演算得到的推论结果获得控制输出;为了求得受控系统的输出,必须将模糊集合解
模糊化。
)(0zdfz
(1.4)
其中0z
为控制的清晰化量;df表示清晰化运算符,其中清晰化计算通常有以下几种方法: