吸收塔的工艺计算..

合集下载

填料吸收塔的计算.

填料吸收塔的计算.

4.5 填料吸收塔的计算本节重点:吸收塔的物料衡算、吸收剂用量及填料层高度的计算本节难点:填料吸收塔传质单元数的概念及计算4.5.1 吸收塔中的物料衡算—操作线方程如图,q n (V)—惰性气体的摩尔流量 mol/sq n (L)—溶剂的摩尔流量 mol/sY 1、X 1—塔底气液两相中吸收质的物质的量比Y 2、X 2—塔顶气液两相中吸收质的物质的量比Y 、X —塔内任意截面吸收质的物质的量比从塔内任意截面到塔底对吸收质作物料衡算:q n (L)X+ q n (V)Y 1= q n (L)X 1+ q n (V)Yq n (V)(Y 1-Y)= q n (L)(X 1-X) (4-40)或 1n n 1n n X )V (q )L (q Y X )V (q )L (q Y -+= (4-41) 该式称为吸收操作线方程,表示吸收过程中,塔内任意截面Y 与X 间的关系。

若对整个塔作物料衡算,则有:1n n 12n n 2X )V (q )L (q Y X )V (q )L (q Y -+= (4-42) 如图4-9,吸收过程的操作线是经过点(X 1,Y 1)和点(X 2,Y 2)的一条直线,其斜率为q n (L)/q n (V),操作线上的任一点表示在塔内任一截面上气液相组成的关系。

生产中常以气相被吸收的吸收质的量与气相中原有吸收质的量之比,衡量吸收效果和确定吸收任务,称为吸收率η)1(Y Y 12η-= (4-43)4.5.2 吸收剂用量的计算吸收操作处理气量q n (V),进出塔气体组成Y 1、Y 2,以及吸收剂进塔组成X 2通常是由生产工艺确定的,而吸收剂用量和塔底溶液浓度是可以变动的,为了完成工艺要求的任务,需计算吸收剂的用量。

1、液气比由全塔物料衡算式(4-42)1n n 12n n 2X )V (q )L (q Y X )V (q )L (q Y -+= 可知吸收剂出塔浓度 X 1与吸收剂用量q n (L)是相互制约的,选取的q n (L)/q n (V) ↑,操作线斜率 ↑ ,操作线与平衡线的距离 ↑ ,塔内传质推动力 ↑ ,完成一定分离任务所需塔高 ↓;q n (L)/q n (V) ↑,吸收剂用量↑ ,吸收剂出塔浓度 X 1↓ ,循环和再生费用↑ ; 若q n (L)/q n (V) ↓ ,吸收剂出塔浓度 X 1↑ ,塔内传质推动力↓ ,完成相同任务所需塔高↑ ,设备费用↑ 。

6.3吸收(或解析)塔的计算解析

6.3吸收(或解析)塔的计算解析

x
h0 H OL NOL
G dy H G , NG kya y y i ya
b L dx H L , NL kx a x x xa i
yb
h0 H G NG
h0 H L N L
x
填料层高度 传质单元高度 传质单元数
(1) 传质单元数
G,yb
L,xb
逆流操作的塔
N A K y y y K x x x



dh

气相:Gdy N A adh
Gdy K y a y y dh
G b dy h0 y y K ya y a
y
N A K y y y





h0
G dy dh K a y y y 0 ya
GBY- 气 相 中A 的 量 L S X- 液 相 中A 的 量
Lb,xb
2、操作线方程
由前式知,如用y、x浓度表示,操作线方程为:
对塔顶到任一截面作物料衡算:
G y La xa Ga ya Lx
y G y La xa L x a a G G
Ga,ya La,xa
操作线上任意一点代表塔内某一截面上的气、液 相组成的大小。 如用Y、X浓度表示,则操作线方程为:
L,xa
1. 吸收过程基本方程式
对高度dh微元段: 气相:Gdy N A adh
y+dy x+dx
液相:Ldx N Aadh
a-单位体积填料层的有效传质面积,m2/m3 adh-单位体积填料层提供的有效传质体积 G、L-气体、液体的摩尔流率,kmol/m2.s NA-组分A的传质速率,kmol/m2.s

吸收塔塔径计算公式

吸收塔塔径计算公式

吸收塔塔径计算公式吸收塔是化工、环保等领域中常见的设备,用于实现气体混合物中某些组分的吸收。

而吸收塔塔径的计算可是个关键环节,这直接关系到吸收塔的性能和工作效率。

要计算吸收塔的塔径,咱们得先弄清楚几个重要的参数和概念。

首先就是气体的流量,这就好比是一条河流的水流量,流量越大,需要的河道就得越宽。

还有气体的流速,它决定了气体在塔内流动的快慢。

另外,吸收塔的操作条件,比如温度、压力,也会对塔径产生影响。

那具体的计算公式是啥呢?一般来说,吸收塔塔径可以通过下面这个公式来计算:D = √(4Q / πv),这里的 D 就是塔径啦,Q 是气体的体积流量,v 是适宜的空塔气速,π 就是大家熟悉的圆周率。

举个例子吧,就说咱们在一家化工厂,要设计一个用于吸收二氧化硫的吸收塔。

经过前期的工艺计算和分析,已知气体的体积流量是1000 立方米每秒,通过实验和经验数据,确定适宜的空塔气速为 2 米每秒。

那咱们就可以这样来算塔径:先把数字代入公式,D = √(4×1000 / 3.14×2),经过计算,得出塔径大约是 31.8 米。

可别以为这就算完事儿了,实际情况可复杂得多。

比如说,气体的性质也得考虑进去。

如果气体中含有一些容易堵塞或者粘结的成分,那咱们在选择塔径的时候就得留有余地,稍微选大一点,免得后期出现堵塞影响生产。

还有啊,不同的吸收工艺对塔径的要求也不一样。

有的工艺需要气体和吸收液充分接触,那塔径就得适当大一些,以增加接触面积和时间。

在实际操作中,计算塔径还得考虑设备的成本、安装和维护的便利性等因素。

就像我之前参与过的一个项目,最初计算出的塔径从理论上来说是没问题的,但考虑到工厂的场地限制和后续的维护难度,我们不得不重新调整计算参数,经过多次的讨论和修改,最终确定了一个既能满足工艺要求,又能适应实际情况的塔径。

总之,吸收塔塔径的计算可不是个简单的数学问题,它需要综合考虑各种因素,还得结合实际经验,才能得出一个既合理又实用的结果。

吸收塔工艺流程计算案例分析

吸收塔工艺流程计算案例分析

吸收塔工艺流程计算案例分析作者:陈寅来源:《石油研究》2019年第07期摘要:现代化工生产中,各种“三废”污染产生较多,为避免有毒有害物质对环境产生污染,需采用适当流程对三废进行处理。

通过案例分析,分析计算结果,探讨各影响因素对吸收过程的影响,为优化相关工艺路线提供指导方向。

关键词:尾气回收,传质吸收案例:某厂有机硅装置生产废气中含HCl,为回收尾气中HCl,拟在吸收塔中用20℃清水对尾气进行吸收。

现有两股含HCl尾气(其余为惰性气体,与吸收剂不发生反应),一股流量为150kmoL/h,HCl含量为10mol%,由塔釜加入;另一股流量100kmoL/h,HCl含量为4mol%,在吸收塔的最佳进料位置单独加入。

该吸收塔为常压操作,若要求HCl的总回收率不低于95%,且吸收塔上段实际液气比取最小液气比的1.2倍。

核算该工艺条件下塔顶所需吸收剂量。

由于工艺负荷变化,塔釜进料量发生变化后,吸收塔第二股物料进料处液相组成为1.2 moL %,塔釜吸收液中HCl含量为2.4 moL%,吸收塔塔径为1.4m,经实验测定吸收塔的Kyα=28.8kmol/(m3·h),吸收塔下段平均推动力为△Ym=0.0179,核算该吸收塔下段所需填料高度。

1、研究传质吸收的意义现代工业的生产过程中,随着工业化的迅速发展,化工行业在不断生产出各种产品,不可避免产生各种“三废”污染。

其中大气污染时我国目前所面临的最突出环境问题之一。

为避免有毒有害物质对环境造成破坏,在工业生产中需考虑对污染物进行处理。

本文通过探讨对某厂含HCl废气的回收,为相关处理方案提供一定借鉴。

2、传质吸收影响因素吸收操作是用于对气体混合物进行分离的重要方法,在化工生产、医药、冶金等过程中得到相当广泛的应用。

主要应用有以下几种:(1)对气体混合物进行分离,并回收其中有用的组分;(2)分离气体混合物中的有害组分,得到所需有用气体;(3)制备溶液;(4)治理工业废气,防止废气污染。

吸收塔 设计计算

吸收塔 设计计算

吸收塔设计计算吸收塔是工业生产中常用的设备,用于气体洗涤、脱硫、脱硝、除尘等工艺过程。

其设计计算是确保设备正常运行的重要步骤之一。

下文将从吸收塔的应用、结构分类、设计参数以及计算方法等方面探讨吸收塔的设计计算。

一、吸收塔的应用吸收塔是工业生产中常用的设备,广泛应用于化工、石化、钢铁、电力、印刷、制药等领域,用于将气体中的污染物分离除去。

具体应用包括:1、脱硫:吸收塔可用于烟气中的二氧化硫的脱除。

2、脱硝:吸收塔可用于烟气中的氮氧化物的脱除。

3、除尘:吸收塔可用于烟气中的粉尘颗粒的分离除去。

4、洗涤:吸收塔可用于气体中的酸气、碱气的洗涤处理。

二、吸收塔的结构分类根据结构形式可将吸收塔分为以下几种类型:1、板式吸收塔板式吸收塔是一种以板作为填料的吸收塔,分为横流型、纵流型和斜流型。

吸收塔内置有很多平行的垂直板,气体垂直流过板间空隙,与液体进行旋转接触混合,实现气体进液接触吸收的目的。

板式吸收塔简单易制,可耐受高浓度废气,且维护简单。

2、喷雾吸收塔喷雾吸收塔又称喷淋吸收塔,主要由塔体、喷头等组成。

塔体内装有填料液槽和底部雾化器。

气体经过填料液槽,液体被填料吸附,接触后管道中的液体被喷头雾化,形成雾滴与废气充分接触,从而达到吸附效果。

喷雾吸收塔结构简单,投资少,可以广泛应用。

3、吸附塔吸附塔是一种以吸附剂为填充物的吸收塔。

分为干法吸收和湿法吸收。

吸附塔可用于汽车尾气和工业废气的处理。

吸附塔结构简单,吸附盘式塔种类多样,能够高效地处理各类废气污染物。

三、吸收塔的设计参数1、气体流量气体流量是吸收塔的基本参数之一。

气体流量决定了吸收塔的尺寸和填料数量,它是吸收塔设计的起点。

2、液体流量液体流量是衡量吸收塔性能的重要指标之一。

液体流量要求经过塔体和填料液槽时能够喷淋到填料和气体中,从而实现吸收的目的。

3、气体温度气体温度是影响吸收塔工作效果的因素之一。

高温会导致液体蒸发速度减慢,吸收效果不佳,因此需要保持适宜的气体温度。

化工原理第五章吸收塔的计算

化工原理第五章吸收塔的计算
【吸收塔的计算内容 】 1、设计型计算
(1)吸收塔的塔径;
(2)吸收塔的塔高等。 2、操作型计算
(1)吸收剂的用量;
(2)吸收液的浓度;
(3)在物系、塔设备一定的情况下,对指定的生产
任务,核算塔设备是否合用。
2018/10/17
一、物料衡算和操作线方程
1、物料衡算 G——单位时间通过任一塔截
G, Y2 L, X2
2018/10/17
【特点】任一截面上的吸收的 推动力均沿塔高连续变化。
* N A KY (YA YA )
* NA K X ( X A X A)
逆流吸收塔内的吸收推动力
2018/10/17
(2)吸收塔填料层高度微分计算式 微分填料层的传质面积为:
Y2=(1-η)Y1=(1-0.95)×0.099=0.00495
据 Y*=31.13X 知: m=31.13

Y1 Y2 L ( ) min G Y1 / m X 2
L 0.099 0.00495 ( ) min 29.6 0.099 G 0 31.13

2018/10/17
过程中L、G为常数)。以单位时间为基准,在全塔
范围内,对溶质A作物料衡算得:
G , Y2
L, X2
GY1 LX 2 GY2 LX1
(进入量=引出量) 或
G(Y1 Y2 ) L( X1 X 2 )
——全塔的物料衡算式
G, Y1 L, X1
物料衡算示意图
2018/10/17
【有关计算】 (1)吸收液的浓度 据
XXຫໍສະໝຸດ 吸收推动力2018/10/17
二、吸收剂用量与最小液气比
1、最小液气比

吸收塔的设计选型和计算

吸收塔的设计选型和计算

吸收塔的设计选型和计算吸收塔是一种常见的化工设备,主要用于气体或液体物质的吸收和分离。

设计选型和计算是吸收塔设计过程中的重要环节,本文将对吸收塔的设计选型和计算进行详细介绍。

一、吸收塔的设计选型吸收塔的设计选型是根据工艺要求和操作条件来确定的。

在进行设计选型时,需要考虑以下几个方面:1. 工艺要求:根据需要吸收的物质性质和组成、吸收效率要求等,确定吸收塔的设计参数。

例如,选择适当的填料材料、塔径、塔高等。

2. 流体性质:吸收塔的设计选型还需要考虑流体的性质,包括流体的流量、温度、压力等。

根据流体性质选择适当的吸收剂和溶质。

3. 塔内流体分布:吸收塔内流体的分布对吸收效果有很大影响。

设计时需要考虑塔顶和塔底的液相和气相分布,以及填料层的布置方式。

4. 塔型选择:吸收塔的塔型有很多种,常见的有板式塔、填料塔、喷淋塔等。

选择适当的塔型可以提高吸收效率和操作性能。

二、吸收塔的计算吸收塔的计算是为了确定塔的尺寸和操作参数,以满足设计要求。

吸收塔的计算主要包括以下几个方面:1. 塔径计算:根据流体的流量和操作要求,计算出吸收塔的塔径。

塔径的大小直接影响到液相和气相的接触效果和传质速率。

2. 塔高计算:根据吸收效率、塔径和填料性能等因素,计算出吸收塔的塔高。

塔高的大小决定了流体在塔内停留的时间,对传质效果有重要影响。

3. 填料计算:选择合适的填料材料,并根据填料的性能参数,计算填料层的高度和填料比表面积。

填料的选择和布置对吸收效果有重要影响。

4. 液相和气相流速计算:根据液相和气相的流量和流速要求,计算出液相和气相的流速。

流速的大小会影响到液相和气相的接触程度和传质速率。

5. 塔内压降计算:根据流体的性质和操作要求,计算出吸收塔的压降。

压降的大小对塔的能耗和操作费用有影响。

吸收塔的设计选型和计算是一项复杂而关键的工作,需要综合考虑多个因素。

合理的设计选型和计算可以提高吸收塔的吸收效率和操作性能,降低能耗和成本。

吸收塔的计算

吸收塔的计算

(7-40)便可求出塔底排出的吸收液的组成X1,即
吸收塔的计算
2. 吸收塔的操作线方程式
在稳态操作的情况下,操作线方程可通过对吸收塔 内任一横截面M-N与塔底端面之间进行对溶质A作物料衡 算获得,即
VY+LX1=VY1+LX
吸收塔的计算
式(7-43)和式(7-44)称为逆流吸收塔的操作线方程,两式 可相互转化。它们表明了在吸收塔内任一截面上气相组成Y与液相组 成X的关系。
吸收塔的计算
1. 物料衡算
图7-7所示为一处于稳定操作状态下,逆流操作吸收塔 内气、液两相流量与组成的变化情况。混合气体通过吸收塔 的过程中,可溶组分不断被吸收,故气体的总量沿塔高而变, 液体也因其中不断溶入可溶组分,其量也沿塔高而变。但是, 通过吸收塔的惰性气体量和吸收剂量是不变的。因此,在进 行物料衡算时,以不变的惰性气体流量V和吸收剂量L作为计 算基准。现对全塔作物料衡算,可得
(2)坐标X、Y代表吸收塔内某一截面的液相和气相组成。 (3)当进行吸收操作时,因塔内任一截面处的 Y > Y*或X* > X, 故吸收操作线位于平衡线的上方。反之,如果操作线位于平衡线的下方, 则为解吸操作。 (4)操作线上的任一点A与平衡线之间的垂直距离和水平距离,表 示塔内某一截面的气相和液相传质推动力。操作线离平衡线愈远,吸收 的推动力愈大。
吸收塔的计算
通常,进塔混合气的组成与流量是由吸收任务规定了的,如
果吸收剂的进塔组成和流量确定。同时又规定了吸收率η,则气体
出塔时的组成Y2为
Y2=Y1(1-η)
(7-42)
式中,η为混合气体中被吸收的溶质量V(Y1-Y2)占总的溶质量
VY1的百分率,称为吸收率或回收率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 吸收塔的工艺计算3.1基础物性数据 3.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

由手册查得,20℃时水的有关物性数据如下:密度为3998.2/L km m ρ=粘度为 001.0=L μs Pa ⋅=3.6 kg/(m ·h)表面张力为 272.6/940896/L dyn cm kg h ==σ查手册得20C 时氨在水中的扩散系数为 921.76110/D m s -=⨯3.1.2气相物性数据 混合气体的平均摩尔质量为0.05170.952928.40/Vm i i M y M kg kmol =∑=⨯+⨯=混合气体的平均密度为3Vm PM 101.32528.4= 1.161 kg/m 8.314298Vm RT ρ⨯==⨯25C 时混合气体流量:)/(2.229215.27315.29821003h m =⨯混合气体的粘度可近似取为空气的粘度,查手册得25C 时空气的黏度为:518.1100.065/()v pa s kg m h -=⨯⋅=⋅μ 由手册查得,25C 时氨在空气中的扩散系数为:220.236/0.08496/v D cm s m h ==3.1.3气相平衡数据有手册查得氨气的溶解度系数为30.725/()H kmol kPa m =⋅计算得亨利系数998.276.410.72518.02LSE kPa HM ρ===⨯相平衡常数为76.410.7543101.3E m P ===3.2物料衡算进塔气相摩尔比为:05263.005.0105.01=-=Y出塔气相摩尔比为:003158.0)94.01(05263.0)1(12=-⨯=-=A Y Y ϕ 对于纯溶剂吸收过程,进塔液相组成为:02=X (清水) 惰性气体流量:)/(06.89)05.01(4.222100h kmol V =-⨯= 最小液气比:7090.007543.0/05263.0003158.005263.0/)(21212121min =--=--=--=X m Y Y Y X X Y Y V L 取实际液气比为最小液气比的2倍,则可得吸收剂用量为:)/(287.12606.894180.14180.17090.02)(2min h kmol L VLV L =⨯==⨯== 03876.06584.113)003158.005263.0(06.89)(211=-⨯=-=L Y Y V X V ——单位时间内通过吸收塔的惰性气体量,kmol/s; L ——单位时间内通过吸收塔的溶解剂,kmol/s;Y 1、Y 2——分别为进塔及出塔气体中溶质组分的摩尔比,kmol/kmol; X 1、X 2——分别为进塔及出塔液体中溶质组分的摩尔比,kmol/kmol;3.3填料塔的工艺尺寸的计算 3.3.1塔径的计算填料塔直径的计算采用式子D =计算塔径关键是确定空塔气速 ,采用泛点气速法确定空塔气速. 泛点气速是填料塔操作气速的上限,填料塔的操作空塔气速必须小于泛点气速才能稳定操作.泛点气速(/)f u m s 的计算可以采用EcKert 通用关联图查图计算,但结果不准确,且不能用于计算机连续计算,因此可采用贝恩-霍根公式计算:气体质量流量:h /kg 2.2661161.12.2292=⨯=V W液相质量流量可近似按纯水的流量计算,即:h kg W L /69.227502.18287.126=⨯=120.20.2583lg[()()]()()t v v F L L L v Lu W A K g W αρρμερρ=- 式中 29.81/g m s = 23114.2/t m m α=30.9271.161/v kg mερ==3998.2/L kg m ρ=0.2041.751.0042275.69/2661.2/L L v A K mpa s W kg hW kg hμ===⋅==代入以上数据解得泛点气速 4.219/F u m s = 取 0.8 3.352/F u u m s ==则塔径0.492D m ==圆整后取 0.5500D m mm == 3.3.2泛点率校核22292.2/36003.244/0.7850.5u m s ==⨯3.244100%76.89%4.219F u f u ==⨯= f 在50%-85%之间,所以符合要求.3.3.3填料规格校核 有50010850D d ==> 即符合要求. 3.3.4液体喷淋密度校核对于直径不超过75mm 的散装填料塔,取最小润湿速率为:()()h m m L w ⋅=/08.03min本设计中填料塔的喷淋密度为:32222275.6911.62/()0.785998.20.7850.5h L U m m h D ===⋅⨯⨯ 最小喷淋密度: 32min min ()0.08114.29.136/()w t U L m m h α=⋅=⨯=⋅min U U >说明填料能获得良好的润湿效果.经以上校核可知,填料塔直径选用D=500mm 能较好地满足设计要求。

3.4填料塔填料高度计算 3.4.1传质单元高度计算传质过程的影响因素十分复杂,对于不同的物系、不同的填料及不同的流动状况与操作条件, 传质单元高度迄今为止尚无通用的计算方法和计算公式.目前,在进行设计时多选用一些准数关联式或经验公式进行计算,其中应用较普遍的是修正的恩田(Onde )公式:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--=-2.0205.0221.075.045.1exp 1t L L L L t L L t L L C t w U g U U ασρραμασσαα 查]1[13-5 得233/427680/C dyn cm kg h σ==液体质量通量为()222275.6911585.8726/0.7850.5L U kg m h ==⋅⨯ 0.050.750.12280.2242768011595.872611595.8726114.21.45940896114.2 3.6998.2 1.27101exp 0.348211595.8726998.2940896114.2w tαα-⎧⎫⎛⎫⨯⎛⎫⎛⎫-⎪⎪ ⎪⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎪⎪⎝⎭=-=⎨⎬⎛⎫⎪⎪ ⎪⎪⎪⨯⨯⎝⎭⎩⎭230.348239.76/w t m m αα==气膜吸收系数有下式计算:气体质量通量为:222292.2 1.16113560.48/()0.7850.5V kg m h U ⨯==⋅⨯()10.7310.7321113560.480.065114.20.084960.237114.20.065 1.1610.084968.3142930.1577V V t V G t V V V U D k c D RT kmol m h KPa μααμρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⨯⎛⎫⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭=⋅⋅⋅液膜吸收系数由下式计算:()210.533120.583390.009511595.8726 3.6 3.6 1.27100.009539.76 3.6998.2 1.761103600998.20.5614/L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=由1.1ψ=w G G k k αα ,查[1] 14-5 得45.1=ψ则 1.1 1.130.157739.76 1.459.4359/()G G w k k kmol m h kPa αα=ψ=⨯⨯=⋅⋅0.40.40.561439.76 1.4525.8980/L L w k k h αα=ψ=⨯⨯=因为76.89%50%Fuu =>,所以必须对G k α和L k α进行校正,校正计算如下: 由 1.419.5(0.5)G G F u k k u αα⎡⎤'=+-⎢⎥⎣⎦, 2.21 2.6(0.5)L L F uk k u αα⎡⎤'=+-⎢⎥⎣⎦得1.4319.5(0.76890.5)9.435923.6898/()G k kmol m h kPa α'⎡⎤=+-⨯=⋅⋅⎣⎦ 2.21 2.6(0.76890.5)25.898029.6420/L k h α'⎡⎤=+-⨯=⎣⎦则气相总传质系数为:31111.2683/()111123.68980.72529.6420G G L k kmol m h kpa k Hk ααα===⋅⋅++''⨯由289.060.397611.2683101.30.7850.5OG G V H m K α===PΩ⨯⨯⨯3.4.2传质单元数的计算*110.75430.038760.02924Y mX ==⨯= *220Y mX ==解吸因数为0.754389.060.5319126.287mV S L ⨯===气相总传质单元数为:*12*22110.052630ln (1)ln (10.5319)0.5319 4.3143110.53190.0035180OGY Y N S S S Y Y ⎡⎤--⎡⎤=-+=-+=⎢⎥⎢⎥----⎣⎦⎣⎦3.4.3填料层高度的计算由0.3976 4.3143 1.7154OG OG Z H N m =⨯=⨯=得1.4 1.71542.4016Z m '=⨯= 设计取填料层高度为3Z m '=查 16-5[1] 对于阶梯环填料, h/D=8~15, m h 6max ≤取8hD=,则 85004000h mm mm =⨯= 计算得填料塔高度为3000mm ,故不需分段。

3.5填料塔附属高度计算塔上部空间高度可取1.5m, 塔底液相停留时间按5min 考虑, 则塔釜所占空间高度为()125602275.690.96810.50.7853600998.2h m ⨯⨯==⨯⨯⨯考虑到气相接管所占的空间高度,底部空间高度可取1.5m,所以塔的附属高度可以取3m. 所以塔高为 336A H m =+=3.6液体分布器计算和再分布器的选择和计算 3.6.1液体分布器液体分布装置的种类多样,有喷头式、盘式、管式、槽式、及槽盘式等。

工业应用以管式、槽式、及槽盘式为主。

性能优良的液体分布器设计时必须满足以下几点: ⑴液体分布均匀 评价液体分布均匀的标准是:足够的分布点密度;分布点的几何均匀性;降液点间流量的均匀性。

相关文档
最新文档